
Alternator: A General-Purpose Generative Music Player

Ian Clester
Georgia Institute of Technology
Atlanta, Georgia, United States

ijc@gatech.edu

Jason Freeman
Georgia Institute of Technology
Atlanta, Georgia, United States
jason.freeman@gatech.edu

ABSTRACT
Computers are a powerful technology for music playback:

as general-purpose computing machines with capabilities be-
yond the fixed-recording playback devices of the past, they
can play generative music with multiple outcomes, or com-
putational compositions that are not fully determined until
they are played. However, there is no convenient platform
for distributing generative music in a way that captures the
space of all possible outputs. This absence hinders com-
posers’ and listeners’ access to the possibilities of computa-
tional playback.

In this paper, we address the problem of distributing gen-
erative music. We present a) a format for bundling com-
putational compositions with static assets in self-contained
packages and b) a music player for finding, fetching, and
playing/executing these compositions. These tools are built
for generality to support a variety of approaches to mak-
ing music with code and remain language-agnostic. We
take advantage of WebAssembly and related tools to en-
able the use of general-purpose languages such as C, Rust,
JavaScript, and Python and audio languages such as Pure
Data, RTcmix, Csound, and ChucK. We use Audio Worklets
and Web Workers to enable scalable distribution via client-
side playback. And we present the user with a music player
interface that aims to be familiar while also presenting the
possibilities of generative music.

1. INTRODUCTION

From now on there are three alternatives: live
music, recorded music and generative music.
Generative music enjoys some of the benefits of
both its ancestors. Like live music, it is always
different. Like recorded music, it is free of time-
and-place limitations — you can hear it when you
want and where you want.

— Brian Eno, A Year with Swollen Appendices

In the essay “Generative Music” [5], Eno describes three
kinds of music. The first is live music, in which the music

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2022, July 6–8, 2022, Cannes, France.

© 2022 Copyright held by the owner/author(s).

Artist ListenerStreaming 
Service

Artist Alternator Listener

...

Figure 1: Conventional streaming model (top) vs. Alternator

comes out differently every time. Even the same musicians
playing the same piece will sound a little different between
performances. In musical traditions that emphasize impro-
visation on a form, each performance of a piece may differ
significantly, but still be recognizably the same piece. Freer
practices go further still, taking each performance in differ-
ent directions bound together only by the improvisational
spirit of the performers — or by a score that embraces ran-
domness, with variability built-in by the composer.

The second kind is recorded music, in which music is
frozen in time. The recording consists of whatever partic-
ular sounds occurred that time, e.g. samples output by an
ADC or grooves etched into a record, and the recording does
not change each time it is played (other than, perhaps, the
medium degrading). Nonetheless, recorded music is wildly
successful because it is convenient for both artist and lis-
tener. Once an artist records their music, their fans can
listen to it across time and space, whenever they want and
however they want. A recording, as information, is inher-
ently less scarce than a performance—a performer can only
play one thing in one place at a time. Digital recordings
in particular are non-rivalrous: my listening to a recording
does not prevent your listening to an identical copy of the
same recording, and there is no venue to limit the size of the
audience.

So on the one hand we have live performance, which is dy-
namic but constrained and scarce, and on the other record-



ings, which are static but easy to distribute and reproduce.
Then there’s the third alternative: generative music. By rep-
resenting music as systems that generate audio rather than
audio itself, we can have the best of both worlds: dynamism
and availability; possibilities and scalability.

Eno described that third alternative in 1996, but where is
it today? Live music and recorded music are ubiquitous, but
generative music remains niche. Modern music production
invariably involves a computer, but playback uses almost
none of the machine’s potential. Languages and environ-
ments abound for making computer music, but distribution
remains challenging, and the solutions that exist are typi-
cally custom-made for a particular musical work, artist, or
language. From the perspective of the listener, these forms
of distribution present a barrier to listening and separate
generative music not only from other music, but even from
other generative music.

In this paper, we address this state of affairs and inves-
tigate the problem of distributing generative music. We
describe Alternator: a system for distributing and playing
computational compositions, making the possibilities of such
compositions more accessible to listeners and more useful to
composers.1

Fig. 1 summarizes the conceptual model of Alternator.
In conventional music distribution platforms (top), an artist
produces an audio recording of their music and uploads it
to a streaming service, which then streams it to listeners.
A fixed, unchanging waveform represents the musical work,
and listeners hear the same thing every time. In the Al-
ternator model (bottom), the artist creates and uploads a
computational recording of their music instead—rather than
audio, a program that generates audio (represented by a con-
traption in the figure). At the time of playback, the program
runs, and there may be many possible outcomes; listeners
hear a different one each time.

2. BACKGROUND & RELATED WORK

2.1 Musical Inspirations
Our work is inspired by the long tradition of thinking

about music in terms of systems and processes. Aleatoric or
indeterminate music may include instructions in the score
that allow for many possible outcomes at the time of perfor-
mance, as in works by Cage, Brown, and Stockhausen [3].2

Steve Reich [14] made explicit the notion of a piece of music
as a process, and emphasized gradual, perceptible processes
as opposed to the chance of Cage (or the “seldom audible”
processes of serial composers). Brian Eno [5], inspired in
turn by Reich, articulated the idea of generative music as a
kind of hybrid between live and recorded music, and linked
its future to advances in the capabilities of ubiquity of com-
puting technology.

Alternator also builds on work in algorithmic composition;
for a summary, see [6]. Algorithmic thinking long predates

1A live demo is available at https://ijc8.me/alternator, and
the source code can be found at https://github.com/ijc8/
alternator.
2Some aleatoric works are “indeterminate with respect to
their compositon,” as Cage puts it (or, as we might say,
they vary only at ‘compile-time’). In this paper, we are
more interested in those that are“indeterminate with respect
to their performance” (which vary at ‘run-time’), as these
compositions encompass multiple outcomes.

automatic computing machines, but as Essl notes, “[by] us-
ing generative composition algorithms on computers, music
can be created in realtime by an autonomous and infinite au-
tomatic process”. Essl also observes that, due to the nature
of generative music, “distribution on a reproductive medium
such as a compact disc seems highly inappropriate.” While
CDs may have since been eclipsed by streaming services, the
fit is no better, as the medium (static audio recordings) re-
mains reproductive rather than generative. The core aim of
Alternator is to provide a more appropriate medium, suit-
able for the variable output and variable (potentially infi-
nite) length of generative compositions.

Though it draws on these artistic movements and fields,
Alternator does not enforce any particular aesthetic con-
straints. The sole requirement is that a musical work have
a computable translation into sound:3 thus, Alternator sup-
ports generative and aleatoric music as well as determinis-
tic or conventionally-recorded music — and everything in-
between. Despite this aesthetic agnosticism, Alternator’s
existence is predicated on the idea that there is value in
generativity, and that the idea of the musical work as a
computable process — ever-changing, describing a field of
possibilities — is an idea worth sharing. Alternator em-
braces the vision of composers of aleatoric, generative, and
algorithmic music, and deals with the problem after compo-
sition: getting music to a listener.

2.2 Technical Precursors

2.2.1 Generation
Many projects have addressed the problem of allowing for

many possible outcomes from a computer-playable piece of
music. SSEYO’s Koan software (used by Brian Eno as de-
scribed in [5]) and its successors explicitly address this under
the umbrella of generative music, usually with an ambient
emphasis. Programming languages designed for music offer
a general solution, from Max Mathews’s original MUSIC on-
wards [17]. Today, a composer can use audio programming
languages (Max/MSP, Pure Data, SuperCollider, ChucK,
RTcmix, Csound, etc.) to describe a computational program
which may depend on random values or external input and
thus encompass a broad range of possibilities. A composer
may also use general-purpose languages toward the same
end, possibly in conjunction with composition/synthesis li-
braries such as Aleatora [4] (for Python) or JSyn [2] (for
Java).

Alternator does not offer a new language for composition,
nor does it enforce the use of any particular existing lan-
guage. Instead, it leverages the development of WebAssem-
bly and open-source projects such as Emscripten and Pyo-
dide to allow the composer to choose among the large set of
existing options.

2.2.2 Distribution
Generation is only part of the puzzle. A composer may

create a piece as a Max patch, but they still need to dis-
tribute it. They can upload the patch somewhere and send
out a link, but this requires listeners to install a new ap-
plication to play it. Max/MSP allows for creating stan-

3More specifically, Alternator requires bundles that produce
up to two channels of floating point samples at consumer-
audio sample rates, but none of these practical restrictions
are essential to the idea.

https://ijc8.me/alternator
https://github.com/ijc8/alternator
https://github.com/ijc8/alternator


dalone patches (patches bundled with the Max runtime),
but this requires listeners to run an untrusted binary ex-
ecutable. Even if listeners trust the artist completely, the
playback experience is isolated: instead of a familiar music
player, they see the interface of the patch (which may lack
basic controls such as pause, rewind, and seek), and there is
no way to put the patch in a playlist with the rest of their
music.

Another option is to render the piece as an audio file and
distribute that instead, but then the composer must choose
one fixed rendering of the piece, eliminating all other pos-
sible outputs. To address this, they may opt to run a few
renderings — generate and include multiple versions of the
piece (as in jazz albums that include multiple takes for each
tune). But doing this for every piece (or even a single piece,
if there are thousands of possible outcomes) is not feasible.

Some artists have solved the distribution problem individ-
ually by leveraging programming expertise that is indepen-
dent of their musical skills. For example, Jason Freeman’s
Grow Old EP consists of pieces which vary their output as
the days pass.4 New audio files are automatically generated
each day and replace the old ones. Thus, the pieces are al-
ways available in the same place, can be readily played in
a web browser without requiring the user to execute code,
and realize new possibilities day by day.

Alex Bainter’s Generative.fm [1] solves the same problem
another way. On Generative.fm, listeners are presented with
a web-based music player offering 50+ ambient music gen-
erators in a familiar interface. The interface is simple and
consistent across pieces. Unlike the Grow Old EP, the pieces
are generated at the time of playback. The generation oc-
curs client-side, as the user’s browser executes the code for
each piece on demand.

Though these both effectively distribute generative mu-
sic, they are artist- and technology-specific. The Grow Old
EP is an album with all pieces written in RTcmix by Jason
Freeman and rendered server-side. Generative.fm is a col-
lection of ambient works written by Alex Bainter with the
Web Audio API. Alternator takes inspiration from these ef-
forts and aims to generalize, serving as a platform where
many composers, using many different languages, tools, and
workflows, can share their music.

The nearest precursors to Alternator are automated In-
ternet radio stations that stream real-time generative mu-
sic, such as rand()%5and Streaaam [9]. Unlike the previ-
ous examples, these projects serve as independent platforms
where artists (at least within a particular community) can
submit their own work using a variety of languages. As ra-
dio stations, all listeners hear the same thing per the station
schedule. We present Alternator similarly, as a platform
where artists can submit their own generative music, with
the key distinction that it takes the form of a personal music
player (such that listeners can independently listen to what-
ever they want, whenever they want) rather than a radio
station. This would be difficult if Alternator rendered on
the server-side like rand()% or Streaaam, as each simultane-
ous listener would require their own sandboxed composition

4http://distributedmusic.gatech.edu/GrowOld/
5rand()% has been down since 2007, but some
information is available on the Internet Archive
(https://web.archive.org/web/20070629095427/http:
//www.r4nd.org/rand home.html) and at https:
//www.bbc.co.uk/radio3/cutandsplice/rand.shtml.

process running on the server. Instead, Alternator executes
compositions in the browser, which allows listeners to choose
what they hear while avoiding the scalability issues inherent
to server-side execution.

2.2.3 Platforms & Archives
Though it has a different focus, Alternator bears some

relation to the mobile apps RjDj, MobMuPlat [10], and
PdDroidParty6, as well as JSyn [2] and WebPd.7 The three
apps play Pure Data patches on mobile devices, while JSyn
and WebPd enable interactive musical applications to run
in the browser. Like these, Alternator runs computational
compositions in the browser and on mobile, but it aims to
support many different languages and provide a consistent
music player interface.

Looking further back, MPEG-4 Structured Audio [16] de-
serves special mention. This forward-thinking standard like-
wise dealt with the distribution and playback of computa-
tional audio. However, it focused on the efficiency (in terms
of compression) of describing audio computationally—an ill-
fated tack given increasing bandwidth and storage—rather
than the new possibilities afforded by such a general repre-
sentation. Additionally, it inherited a synthesis framework
from Csound (and older MUSIC-N languages) and embed-
ded a high-level language (SAOL) in the standard itself,
making it difficult to use alternative languages or approaches
to computational composition (and more difficult to imple-
ment the standard). In contrast, Alternator aims to be
a “common carrier,” providing an executable format suffi-
ciently low-level to accommodate all kinds of approaches to
computational composition and sound synthesis.

Alternator differs from digital archival projects such as
Rhizome ArtBase8 and Miller Puckette’s Pd Repertory
Project [13]; it aims to enable any composer to share their
work, rather than attempting to preserve works of historical
significance. It also differs from platforms such as Scratch
[12], EarSketch [11], and TunePad [7]; like Alternator, these
are focused on computational art & music and enable shar-
ing, but they are geared towards pedagogy rather than dis-
tribution and lack a dedicated interface for the listener.

In short, Alternator aims to fill a void: a generative music
player for any composer, in any language, on any device with
a browser.

3. GOALS
Alternator’s goal is to enable composers to easily dis-

tribute and share their compositions—including generative
music, without compromises to fit it into static media. From
a complementary perspective, Alternator’s goal is to enable
listeners to easily discover and listen to such compositions,
experiencing the field of possibilities inherent in each piece
without abandoning the features, interfaces, and portability
they are used to finding in a music player.

This goal implies two others. The first is generality: to
enable composers to easily distribute and share their compo-
sitions, Alternator must play their compositions. Therefore,
it must avoid mandating a single chosen way to create com-
putational compositions. If composers have to drop their
existing tools, expertise, and workflows to fit into a mold,

6https://droidparty.net/
7https://github.com/sebpiq/WebPd
8https://artbase.rhizome.org/

http://distributedmusic.gatech.edu/GrowOld/
https://web.archive.org/web/20070629095427/http://www.r4nd.org/rand_home.html
https://web.archive.org/web/20070629095427/http://www.r4nd.org/rand_home.html
https://www.bbc.co.uk/radio3/cutandsplice/rand.shtml
https://www.bbc.co.uk/radio3/cutandsplice/rand.shtml
https://droidparty.net/
https://github.com/sebpiq/WebPd
https://artbase.rhizome.org/


Figure 2: How music flows from the composer to the listener in Alternator.

the battle is already lost. Alternator must strive to provide
a general platform, suitable for the tools and languages we
have today and for those yet to be invented.

The second implied goal is stability. A platform is not
useful to composers if it requires them to continually main-
tain and update their compositions every time the platform
changes. This is unheard of in music streaming services for
the simple reason that PCM data is forever—after a com-
poser uploads the audio recording for a given track, no main-
tenance is required. Unfortunately, this situation is com-
mon in software, especially on the ever-changing web: an
API for some service changes, or disappears entirely, and
breaks anything that depends on it. This requires regular
upkeep by software engineers to keep their software running
as the foundations shift beneath it. As this is unacceptable
for most composers, Alternator must endeavor to make its
compositions more like audio files than living software in
terms of maintenance requirements.

In the following section, we describe how Alternator meets
this and the other goals in its design and implementation.

4. DESIGN AND IMPLEMENTATION

4.1 Architecture
The core of Alternator is a music player that executes

computational compositions, generating samples on demand
for playback. These computational compositions are repre-
sented as bundles containing all of the resources needed to
run the piece: code (potentially in multiple languages), au-
dio samples, MIDI data, models, etc.

These bundles could be executed server-side (streaming
generated audio to each client) or client-side. Server-side
generation, however, would require a backend capable of
running a process for each concurrent listener (or else trade-
off some of this computation cost for storage cost or compro-
mised variability).9 Given that most digital music listeners
today are listening on relatively powerful devices (smart-
phones, tablets, laptops), client-side execution is feasible and
inherently more scalable.

Thus, Alternator executes musical bundles client-side, in
the browser. However, the browser does not understand
languages like Csound or Pd. Until a few years ago, it only
understood JavaScript; this limitation led to asm.js and then
to development of WebAssembly (henceforth “Wasm”), a bi-
nary instruction format for a portable virtual machine. Al-

9Note that the Grow Old EP, which does use server-side gen-
eration, avoids this problem by only generating each piece
once per day. This optimization is only possible because it
fits the artistic intent of the album; the pieces evolve slowly,
day-by-day, so there is no need to generate them at the exact
time of playback.

ternator takes advantage of this development, using Wasm
builds of libpd,10 libcsound [18], ChucK,11 RTcmix,12 and
the like to enable the execution of patches and scores in the
browser.

The complete flow of a piece of music in Alternator is de-
picted in Fig. 2. First, the composer creates a piece using
their preferred tools. In this example, their piece consists of
a Pure Data patch (main.pd), an abstraction (helper.pd)
used by the main patch, a MIDI file (funky.mid) con-
taining recorded performance data, and an audio sample
(guitar.flac). The patches and MIDI/audio resources are
then bundled together by the bundler, using the Pure Data
template. The template consists of a Wasm blob and some
glue JS. These are combined with the composer’s assets and
some metadata about the track (title, artist, etc.) to pro-
duce a bundle. Finally, this bundle is statically served to
a listener’s client, which executes the JS and Wasm (which
may access the static assets) to generate audio in real-time
when the listener plays the track.

4.2 Execution
In the last subsection, we used Pure Data as an example,

but the Alternator player does not have special support for
any particular audio language built-in. Rather, it supports a
general executable format; the only requirement is that the
executable can fill buffers with samples, and (optionally)
indicate when it is finished.

An Alternator executable is called a bundle. A bundle
includes some JavaScript that implements two functions:
setup(), which takes the listener’s sample rate as an argu-
ment and does any necessary preparation, and process(),
which takes in a buffer and fills it with samples. Unless the
piece is written in JavaScript, the bundle also includes a
Wasm blob. Typically this blob corresponds to a language
runtime, but it may also correspond to the piece itself if it
is written in e.g. C/C++ or Rust.

Thus far, we have implemented templates for Pure Data,
ChucK, Csound, RTcmix, Python (with our composition
framework Aleatora [4]), and static audio files (WAV and
Ogg Vorbis). Alternator’s design is intended to be future-
proof: regardless of what music programming environments
exist in the future, they can work in Alternator as long as
they 1) can spit out samples and 2) fit in a Wasm blob. #1
is a prerequisite for any audio programming environment (it
must be audible), and #2 is in a good state today thanks to
efforts such as Emscripten and the Rust toolchain. It is of
course impossible to predict the future, but existing support

10Claude Heiland-Allen’s empd: https://mathr.co.uk/empd/
11https://github.com/ccrma/chuck/tree/main/src/host web
12We created a Wasm build in a fork: https://github.com/
ijc8/RTcmix

https://mathr.co.uk/empd/
https://github.com/ccrma/chuck/tree/main/src/host_web
https://github.com/ijc8/RTcmix
https://github.com/ijc8/RTcmix


and the simplicity of the WebAssembly specification bodes
well for its continued viability as a compiler target.

One important execution detail is endings: how does Al-
ternator know when a piece is done? Pieces can end at any
time by returning fewer than the requested number of sam-
ples in process(). This signals to the player that the piece
is finished, and it will not call process() again. Some lan-
guages lack built-in notions of endings. In these cases, the
bundle template can implement this notion in whatever way
is most convenient. For example, the Pure Data template
allows a patch to signal that the piece is over by banging a
send object named “finish”.

When the listener plays a piece, Alternator fetches the
corresponding bundle. The JavaScript is executed in a Web
Worker, and typically fetches and instantiates a Wasm mod-
ule. An Audio Worklet communicates with the Web Worker,
transferring buffers to fill with freshly-generated samples.
The Audio Worklet uses double-buffering with a moderate
buffer size (1024) to avoid hitches, connects to a GainNode
for volume control, and finally gets audio out to the listener.

4.3 Listener Interface
In pursuit of its goal for listeners, Alternator adopts a fa-

miliar music player interface. The basic features of a music
player are playing, pausing, resuming, seeking (skipping for-
ward/backward within a track), and switching tracks. It is
clear what these should do in the case of a static record-
ing, which is pre-computed time-series data to be replayed.
Alternator translates these core operations into a genera-
tive music context. From Alternator’s perspective, music is
something that can generate sound. To play, then, means
to start generating sound; pausing pauses generation; and
resuming picks up from the same point. However, some
aspects of the interface require special consideration in a
computational music context.

Seeking is less straightforward, but nonetheless has clear
analogs. Seeking backward should replay exactly what was
heard the first time, as the listener typically uses seeking
backward to hear something again. So, Alternator main-
tains a growing history buffer for the playing piece. Seeking
backward 10 seconds, for example, will replay the previous
10 seconds of generated samples, and then return to gener-
ating fresh samples from where it left off.

Seeking forward, however, requires playing samples that
have not been generated yet. The only way to generate those
samples is to reach that point in the piece. Thus, when the
user seeks forward, beyond what has already been gener-
ated, Alternator generates the intervening samples as fast
as possible (faster than real-time, only limited by the per-
formance of the bundle) and then resumes real-time audio
generation and playback from the target position.

Alternator expands the visual language of the seek bar to
convey these differences. Electric blue indicates the segment
in the past, which have necessarily already been generated.
Solid gray indicates samples in the future which have already
been generated. Such samples only exist after a seek back-
wards; the user can seek forward to these samples instantly,
because they were already generated. Dashed gray indicates
samples in the future which have yet to be generated; this
region is still “potential sound,” as yet unrealized in this
playthrough and possibly indeterminate. When the current
position is also the end of the generated samples (in other
words, when there is no solid gray), the dashed line moves

Figure 3: It is feasible to generate and play compositions
(such as this Csound reconstruction of “Stria”) smoothly, in
real-time, in a browser, on a smartphone.

as it shrinks to convey activity: the system is in motion.
Another consideration for a computational music inter-

face is duration. In an ordinary music player, duration is
straightforward: because each recording is static, it is known
in advance, and therefore it must be finite, with a known
duration. In Alternator, none of this is necessarily true. A
piece may be infinite, continuing until the user intervenes.
Or a piece may be finite, but with many possible durations
(say, anywhere from 2:30-3:00). Due to the Halting Problem,
it is impossible for Alternator to determine the duration of
a piece in advance (or whether it ever ends). From a UX
perspective, however, it is valuable to the listener to know
what to expect. Thus, the composer declares the duration of
a piece in its metadata. If the piece is finite, Alternator will
display the piece’s duration (or duration range) and use it
in scaling the seekbar. If the piece is infinite, Alternator will
display “∞” as the duration instead, and will use the time
of the last generated sample + 10 seconds as the duration
in the seekbar,13 so that the user can still skip ahead of the
already-generated audio.

Finally, there is one element of Alternator’s interface
which has no analog in a conventional music player: the
“view source” button. Pressing it opens a window show-
ing the contents of the bundle: the code and assets that
make up the piece. It also includes a link to the repository
(elaborated in §4.4) containing the piece, which may have
additional information about how the piece was made (such

13In the future, this seek-ahead window may be user-
configurable.



Current time Total duration

Already generated, 
behind current position

Already generated, 
ahead of current position

Future samples,
yet to be generated

Current position

Figure 4: Alternator extends the visual language of conventional music players for computational music.
Seeking to the dashed region, which represents the unknown future, will trigger faster-than-realtime rendering.

as documentation or more source code, if the piece is written
in a compiled language). This implications of this feature
are discussed further in §5.

4.4 Backend
Our discussion so far has focused on the Alternator client

and bundler. By comparison, the backend is simple: the
only essential thing is static file hosting for bundles, and
some mechanism for composers to upload their work. Other
features such as search, recommendations, and playlist man-
agement require more from the backend, but these have been
solved in existing music players and do not require changes
in a computational music context.

Because the backend is not our focus, we leverage the
existing open-source ecosystem. Drawing inspiration from
utterances,14 a comment widget backed by GitHub Issues,
Alternator uses GitHub as its backend for this initial re-
lease. Albums in Alternator — which are both software and
music — take the form of GitHub repositories. An album-
repo includes all the track bundles, some JSON metadata,
and cover art.15 Alternator can discover and search through
these albums using the GitHub API because the repositories
are marked with the #alternator-album tag.

4.5 Composer Interface
Up to this point, we have described how Alternator works

and what it looks like for the listener. In this section, we
demonstrate how it works for the composer with a concrete
example.

To get started, we need a generative piece to bundle. For
this example, we’ll use the simple Pure Data patch shown in
Fig. 5, which plays random harmonics with vibrato for 10
seconds. This is an ordinary patch which is playable on its
own if Pure Data is installed, but there are two details of how
this connects with Alternator that are worth mentioning.

First, as in normal Pd usage, loadbang sends out a bang
when the patch is loaded. In Alternator, this happens when
the user plays (or resets) the track. Second, the patch sends
a delayed bang to a special destination called finish. As
mentioned in §4.2, the Pure Data template for Alternator
listens for this to indicate that the track has finished play-

14https://utteranc.es/; repository at https://github.com/
utterance/utterances

15Beyond the bundles and metadata, album-repos can con-
tain anything else, such as the source code, a README,
LICENSE, documentation, etc.

Figure 5: Example Pure Data Patch

ing. This is necessary because Pure Data, like other signal-
processing-oriented languages, does not have a built-in no-
tion of “endings,” and it demonstrates the adaptability of
Alternator’s model to different languages and environments.

Next, we need to set up the right structure and provide
some metadata. First, we create a directory for our album.
Inside, we create album.json with the contents:

{
"title": "My Cool Album",
"artist": "Jen Rétive",
"cover": "my-album-cover.svg",
"tracks": ["bundles/my-first-track"]

}

and save our album art as my-album-cover.svg.
Next, we save the patch as main.pd in a subdirectory

called my-first-track. Inside, we create a file called
track.json with the contents:

{
"title": "My First Track (Some Harmonics)",
"artist": "Jen Rétive",
"duration": 10,
"channels": 1

}

Finally, we run the bundler:

$ ../alternator/bundle.py pd my-first-track
Creating output directory: bundles/my-first-track

https://utteranc.es/
https://github.com/utterance/utterances
https://github.com/utterance/utterances


Figure 6: Our example patch is now playable in Alternator!

Copying main.js from pd template.
Copying main.wasm from pd template.
Bundling /main.pd
Saving finalized track.json.
Finished bundle: bundles/my-first-track

The bundler takes our patch and bundles it together
with everything we need to run it (the Pure Data runtime
compiled to WebAssembly and some glue code). Every-
thing that Alternator needs to play the piece is stored in
bundles/my-first-track. If our patch had any additional
assets it needed (e.g. a .wav file or an abstraction in another
patch), these would likewise be bundled up in the track.

At this point, we have a playable bundle in Alterna-
tor (Fig. 6). If we host it somewhere on the Internet,
we can then distribute a working link like https://ijc8.me/
alternator/?u=https://example.com/my-album. If we want
our album to be discoverable via Alternator’s search feature,
we can put it on GitHub as discussed in §4.4.

5. DISCUSSION & LIMITATIONS
In this paper, we have presented Alternator, a platform

for distributing and playing computational music composi-
tions: music that is generated on-demand, such that each
track may encompass a field of possibilities rather than a
single fixed recording. In this section, we reflect on the im-
plications of Alternator’s design and its limitations.

5.1 Music as Code
Alternator’s premise is distributing music as code (in-

structions that generate audio) rather than pre-rendered au-
dio. Depending on how composers use this, it opens up ex-
citing possibilities: an enthralled listener who thinks “this
is amazing, how did they do it?” can look at the source
and start to get a glimpse. Other musicians (typically avid
listeners) can go even further, forking the repository and ex-
perimenting with it to make it their own. These ideals are
shared by other contemporary projects, as in Fluid Music’s

[8] vision for music production and sound design shared as
code.

Alternator does not guarantee any of these possibilities.
Most music released today is opaque, with alternatives (re-
leasing stems or a DAW project) being the exception rather
than the norm. A composer is free to follow this broader
trend and distribute their music as an opaque binary blob,
as with ordinary closed-source software. Indeed, this may
be necessary, at least in part, for proprietary systems such
as Max/MSP to be usable in Alternator.16 Alternator can
suggest another way through its design (the “view source”
button, the repository link, hosting on GitHub) and prac-
tices (releasing the player, templates, and demo albums as
open-source), but ultimately the culture will be determined
by the artists.

5.2 Interactive Music
One intentional limitation is that Alternator only deals

with purely autonomous music. It does not handle inter-
active music, where the output depends on external user
input. The reason for this is simple: Alternator is a music
player, not an instrument. All autonomous music fits es-
sentially the same interface (samples out), which translates
well to the conventional music player of static recordings. In
contrast, interactive music comes in many shapes and sizes,
requiring different input devices that the user may or may
not have, or that might make sense for a listener on a smart-
phone but not on a laptop. It also expects a different mode
of engagement from the listener. Finally, from a technical
standpoint, any potential interface for interactive bundles
will be more complex and likely to change than the simple
setup() + process() required for generative pieces. Such
a platform would thus be more prone to breaking existing
compositions, making it less reliable and thus less useful for
composers who expect their pieces to remain playable with-
out maintenance.

That said, interactive music is a vibrant area that of-
fers unique experiences impossible with purely autonomous
works. It may be worth exploring a separate UI/API in
Alternator for interactive compositions, for composers will-
ing to accept increased uncertainty (and maintenance re-
quirements) in exchange for interactivity. The possibility of
compositions (interactive or autonomous) generating video
as well as audio is likewise intriguing, especially given the
large body of work and literature on generative visual art.

5.3 Technical Limitations & Future Work
For the goal of stability, composition code would ideally

be totally self-contained WebAssembly, with as little API
surface area shared with the browser as possible. Currently,
there is some JavaScript“glue code” in each bundle that runs
in a Web Worker. A well-meaning composer could exploit
this to fetch external data (e.g. the current weather) over the
network for their compositions—rendering the composition
broken if the external resource should move or disappear.
A less-scrupulous composer could exploit this to e.g. run a
browser-based cryptominer using spare cycles.

However, switching to a self-contained (no JS) Wasm
model has some drawbacks. In the current version of Al-
ternator, support for compositions written in JS is “free;”

16Hybrids are possible: the runtime engine may be closed,
while the composer’s patch is open.



no Wasm bundle or added VM overhead is required, be-
cause browsers already come with JavaScript engines. The
Python template also depends on JS glue code to load Py-
odide [15]. These issues are surmountable, but it may be
a mistake to prioritize these changes that (at least in the
short-term) constrain Alternator’s features over other work.

Another issue is that Alternator currently uses a
“statically-linked” model for bundles, in which they are ex-
pected to come with everything they need to run. This
means that every piece using Pure Data comes with its own
Wasm-compiled version of libpd. To reduce bundle size and
load times, it may be worth allowing composers to simply
reference common templates (provided by Alternator) rather
than always bundling them with the composition. At a min-
imum, the player could cache .wasm files in localStorage.

Finally, a major limitation is lack of tooling. Currently
the only way to determine if a piece will play smoothly on
a given device & browser is to try it and see. Profiling tools
and benchmarks on common devices could give composers
more confidence in distribution. Also, the existing work-
flow for creating bundles is straightforward but technical.
It would be simple enough to make a graphical, web-based
version of the bundler (possibly embedded in the Alternator
client). It would be better to fit into artists’ existing work-
flows, integrate with DAWs, and provide access to genera-
tive possibilities without requiring composers to code. We
intend to explore these challenges in future work.

6. CONCLUSION
Behind all the technical details and design discussion, a

question lurks in the background: will Alternator, or some-
thing like it, have an impact? Will generative music reach a
wider audience? Is there an appetite for distributable music
that changes?

The popularity of dynamically-generated playlists (as on
Pandora and Spotify) and endless YouTube music streams17

suggests an appetite for familiarity with variety: give me
more like this, but different. Generative approaches in other
media have proven popular: procedural generation is used
in games such Minecraft, Dwarf Fortress, and countless
roguelikes to make the game more fun and improve re-
playability.18 And musicians, composers, and songwriters—
including those in the “mainstream”—are not shy to try out
and adopt new technologies on their own terms.

Ultimately, the appeal of generative music, like any mu-
sic, depends on its content. Much computer music has his-
torically been “pure” computer music, generated in-the-box
with techniques, timbres, and textures that set it far apart
from its contemporaries. Or else it has stuck firmly to cer-
tain genres, such as electronic and ambient music. We have
the opportunity to broaden the horizons of computer mu-
sic, blur the boundaries, and explore hybrids: music with
both conventional and computational aspects. For example,
a pop musician might record several good takes in a DAW,
and then create a computational bundle that chooses a path
through them dynamically at the time of playback. Uses
like these may serve to bring generative music to a wider

17Such as the eternal“lofi hip hop radio - beats to relax/study
to”: https://www.youtube.com/watch?v=5qap5aO4i9A

18Indeed, some games feature generative soundtracks. In this
sense, the most successful distribution platform for genera-
tive music thus far might be Steam.

audience and enable more artists to take advantage of its
possibilities, and we hope to explore the space of generative
hybrids in future work.

As Eno put it in the essay we started with [5], “I too
think it’s possible that our grandchildren will look at us in
wonder and say, ‘You mean you used to listen to exactly
the same thing over and over again?”’ Realizing this future
requires bridging the gap between the composer and would-
be listener of generative music; it requires a distribution
channel which opens up the possibilities of generative music
to both.

7. REFERENCES
[1] A. Bainter. Generative.fm. In A. Xambó, S. R.

Mart́ın, and G. Roma, editors, Proceedings of the
International Web Audio Conference, WAC ’19, page
148, Trondheim, Norway, December 2019. NTNU.

[2] P. Burk. Jsyn - A real-time synthesis API for java. In
Proceedings of the 1998 International Computer Music
Conference, ICMC 1998, Ann Arbor, Michigan, USA,
October 1-6, 1998. Michigan Publishing, 1998.

[3] J. Cage. Composition as process: indeterminacy.
Christoph Cox, Daniel Warner, Audio Culture:
Readings in Modern Music, pages 176–187, 2004.

[4] I. Clester and J. Freeman. Composing the Network
with Streams, page 196–199. Association for
Computing Machinery, New York, NY, USA, 2021.

[5] B. Eno. A Year with Swollen Appendices: Brian Eno’s
Diary. Faber and Faber, 1996.

[6] K. Essl. Algorithmic composition. In N. Collins and
J. d’Escrivan, editors, The Cambridge Companion to
Electronic Music, Cambridge Companions to Music,
page 107–125. Cambridge University Press, 2007.

[7] J. Gorson, N. Patel, E. Beheshti, B. Magerko, and
M. Horn. Tunepad: Computational thinking through
sound composition. In Proceedings of the 2017
Conference on Interaction Design and Children, IDC
’17, page 484–489, New York, NY, USA, 2017.
Association for Computing Machinery.

[8] C. J. Holbrow. Fluid Music. PhD thesis,
Massachusetts Institute of Technology, 2021.

[9] F. Hollerweger. Streaaam: A fully automated
experimental audio streaming server. In Audio Mostly
2021, AM ’21, page 161–168, New York, NY, USA,
2021. Association for Computing Machinery.

[10] D. Iglesia. The mobility is the message: The
development and uses of mobmuplat. In Pure Data
Conference (PdCon16), New York, NY, USA, 2016.

[11] B. Magerko, J. Freeman, T. Mcklin, M. Reilly,
E. Livingston, S. Mccoid, and A. Crews-Brown.
Earsketch: A steam-based approach for
underrepresented populations in high school computer
science education. ACM Trans. Comput. Educ., 16(4),
sep 2016.

[12] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and
E. Eastmond. The scratch programming language and
environment. ACM Trans. Comput. Educ., 10(4), nov
2010.

[13] M. S. Puckette. New public-domain realizations of
standard pieces for instruments and live electronics. In
Proceedings of the 2001 International Computer Music

https://www.youtube.com/watch?v=5qap5aO4i9A


Conference, ICMC 2001, Havana, Cuba, September
17-22, 2001. Michigan Publishing, 2001.

[14] S. Reich. Music as a gradual process. Writings on
music, 2000:34–36, 1965.

[15] The Pyodide development team. pyodide/pyodide.
https://doi.org/10.5281/zenodo.5135072, July 2021.

[16] E. Scheirer. The mpeg-4 structured audio standard. In
Proceedings of the 1998 IEEE International
Conference on Acoustics, Speech and Signal
Processing, ICASSP ’98 (Cat. No.98CH36181),
volume 6, pages 3801–3804 vol.6, 1998.

[17] G. Wang. A history of programming and music. The
Cambridge Companion to Electronic Music, pages
55–71, 2007.

[18] S. Yi, V. Lazzarini, and E. Costello. Webassembly
audioworklet csound. In J. Monschke, C. Guttandin,
N. Schnell, T. Jenkinson, and J. Schaedler, editors,
Proceedings of the International Web Audio
Conference, WAC ’18, Berlin, Germany, September
2018. TU Berlin.

https://doi.org/10.5281/zenodo.5135072

	Introduction
	Background & Related Work
	Musical Inspirations
	Technical Precursors
	Generation
	Distribution
	Platforms & Archives


	Goals
	Design and Implementation
	Architecture
	Execution
	Listener Interface
	Backend
	Composer Interface

	Discussion & Limitations
	Music as Code
	Interactive Music
	Technical Limitations & Future Work

	Conclusion
	References

