
Estuary 0.3: Collaborative audio-visual live coding with a
multilingual browser-based platform

David Ogborn
McMaster University

ogbornd@mcmaster.ca

Alejandro Franco Briones
McMaster University

francoba@mcmaster.ca

Luis N. del Angel
McMaster University

navarrol@mcmaster.ca

Antonio Roberts
hellocatfood@gmail.com

D. Andrew Stewart
University of Lethbridge

contact@dandrewstewart.ca

Jamie Beverley
jamie_beverley@hotmail.com

Bernard Gray

bernie@grbt.com.au

Kofi Oduro

illestpreacha@outlook.com

Jessica Rodríguez
McMaster University

rodrij28@mcmaster.ca

Carl Testa
carl@carltesta.net

Nicholas Brown-Hernandez
McMaster University

brownhen@mcmaster.ca

Alex MacLean
maclean199@gmail.com

Spencer Park

spinnr95@gmail.com

Kate Sicchio

Virginia Commonwealth University

ksicchio@vcu.edu

Eldad Tsabary
Concordia University

eldad.tsabary@concordia.ca

ABSTRACT

Estuary is a browser-based platform for live coding that allows a

heterogeneous collection of live coding languages to be used

together in collaborative “ensembles”. This paper begins with a

broad outline of the history of Estuary’s development, including

discussion of the philosophies and accountabilities that guide that

development. We then present two of the main directions in which

work on Estuary has been concentrated in recent years: (1) towards

supporting audiovisual live coding (and not merely musical live

coding) through the development and inclusion of languages

focused on visual results (in close connection with musical

concepts), and (2) towards supporting diverse use cases by evolving

into a modular “sandbox” where live coding languages, widgets

(including some focused on intra-ensemble communication), and

media resources are brought together “on-the-fly" in flexible ways.

Reflections on specific applications of Estuary in different contexts

are interspersed throughout, with a penultimate section focusing on

some further applications, largely in educational settings. The paper

concludes with brief remarks about directions for future work.

Licensed under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2022, July 6–8, 2022, Cannes, France.

© 2022 Copyright held by the owner/author(s).

1. INTRODUCTION
Estuary is a browser-based platform for collaborative live coding

that has been developed and in active use since 2015. Estuary's

affordances are characterized by an emphasis on mixing

heterogenous live coding languages (as well as other interfaces to

media computing) in collaborative, networked “ensembles”.

Estuary’s ensembles can be used by completely co-located groups

(as a way of facilitating collaboration and sharing access to

hardware), by completely distributed groups (as a way of working

together despite geographic and logistical constraints), and by

hybrid groups that mix these two possibilities (such as a co-located

group with a few members “dialing in” remotely).

The earliest work on Estuary [1] began with the goal of exploring

structure and projectional editing around the TidalCycles live

coding language [2], producing a series of different structure

editors characterized by minimal keyboard usage, the use of blank

space as an interface, and a mixture of notations at different levels

of programming liveness [3, 4]. From that starting point, work on

Estuary then returned to an abiding interest in multiple,

heterogenous, text languages, typed with a keyboard, as a key

interface for engaging with the possibilities of live coding.

Estuary’s early evolution into an environment for “multilingual”

live coding was inspired by the recognition that facilitating an

individualized choice of programming interface, within a larger

collaborative setting, would allow people to choose languages that

best suit their purpose or situation, without thereby having to forego

collaborating with others making different choices. A member of a

group might choose to work with a particular language because of

an existing level of comfort or familiarity with it, or they might

choose a language on account of its close fit to a particular result

that is required in a certain moment (eg. choosing a language that

facilitates making drone-like continuous sonic textures, when such

textures are desired), or – since live coding is often not only about

the result but also about the way the code is shared with an audience

– they might choose a language precisely for what it “looks like”

and what it denotes and/or connotes for an audience. At another

level, a multilingual interface producing multilingual performances

(and other forms) of live coding, may help to unsettle all-too-

definitive conceptions of what programming and languages are [5].

The live coding languages available within Estuary have changed

over the years, as languages have been added and removed in

response to specific artistic projects, directions of research, and the

evolution of relationships around the software. At the time of

writing, six different “base” text-based live coding languages are

present within the Estuary platform (MiniTidal, Punctual,

CineCer0, TimeNot, Seis8s, Hydra). However, this number is not

that definitive of the extent of programming language and interface

choices provided by Estuary, as the platform provides for a growing

number of forms of modular extension, including but not limited to

live-coded JSoLangs (see below and [6]), that are user-defined

languages transpiled into other supported languages. Estuary also

provides a View system that allows for very flexible configuration

of the way different programming interfaces are combined, on-

screen, for a particular artist programmer or viewer, and a system

whereby new (or different versions of) base languages are added by

pointing directly to web-located JavaScript libraries (that are

“readily available for”, but not inherently “built in to”, Estuary) is

rapidly emerging (see below, Future Work).

Estuary consists of a browser-based client that communicates with

a server, with almost all of the ongoing communication between

client and server being for the purpose of sharing collaborative user

actions between different clients in the same “ensemble” (ensemble

being the Estuary-specific vocabulary for an environment where

one or more users are able to change live coding programs and other

interfaces, with both their actions and the results of those actions

being shared to all of the other clients connected to the same

ensemble). All of the translation of live coding programs into sonic

and visual “results” is done by the client, working in the context of

the web browser and the APIs it provides (such as the Web Audio

API and WebGL). The server is responsible only for distributing

the minimal information required to keep programs and other

interfaces “in sync” (eg. displaying and rendering the same text

program).

Estuary’s basic model for editing, evaluating, and executing shared

code aims to produce identical (or nearly identical) results as

rendered by different clients/machines. Several aspects of the

model (and the broader ecosystem) contribute to this relative

determinism of the output: (1) The system time at which updated

code (i.e. a “new program”) is evaluated is treated as a significant

aspect of that program, which enables specific languages to use that

information to align results; (2) many of the languages available

through Estuary generate results in deterministic ways given a

“timeline” defined by a prevailing metric grid and the passage of

system time (for example, Punctual’s oscillators are aligned in

specific ways against that timeline depending on the timestamp of

evaluation time, and pseudo-random number generation in

TidalCycles and Punctual is a deterministic function of position

within the timeline); and (3) the evaluation of code is typically

subject to various forms of quantization, so that changes in the

rendered results are, intentionally, deferred into the near future.

Particular clients/machines only need to receive new code

(evaluated by others, elsewhere) before the local, system time at

which that new code would produce different results. This leads to

an interesting situation in which rendered results at different

locations appear to “escape” the effects of network latency, while

latency still (unavoidably) exists in terms of the communicative

interactions between the humans in the system. Synchronization in

Estuary is tied to the operating system’s clock on each machine. In

the case of distributed ensembles, this works very straightforwardly

– because the results are rendered independently at each location,

minor drifts in the clock synchronization will likely be

imperceptible and/or irrelevant. In the co-located case, the system

time is not usually synchronized enough to allow, for example, the

audio output from two co-located machines to “line up” in a given

perceptual frame of reference. This is not usually a limitation,

however, because it is common in co-located uses of Estuary for

one client/machine to be designated as the “rendering machine”,

with all other co-located users/clients disactivating their audio

output completely.

Both the client and the server are developed in the Haskell strict

functional programming language, using the GHCJS compiler and

the reflex-dom library for the browser-based client, and the GHC

compiler for the server. This approach allows code to be reused

across the server and client, and supports integration, on an on-

going basis, with Haskell-based live coding projects like

TidalCycles. Additionally, writing parsers in the style of

“combinatorial parsing” [7] is a pleasure in Haskell, and so our

Haskell-based ecosystem seems well-suited to encouraging play

and experimentation with the design of live coding languages. Two

libraries over the Web Audio API also play a key role: MusicW [8],

which provides a higher-level interface over the Web Audio API ;

and WebDirt [9], which provides a simple interface for

parameterized sample playback (originally based on a not-very-

faithful re-implementation of TidalCycles’ sampling engine’s Dirt

and SuperDirt). A third library, haskellish [10], provides a high-

level interface for parsing languages that are, in some sense, “like”

Haskell, and is used by various configuration notations within

Estuary as well as by quite a few of the live coding languages

available within Estuary. The Estuary source code, as well as that

of all the libraries it uses, is licensed on an open-source basis.

At the time of writing, an up-to-date deployment of Estuary is

maintained continuously at https://estuary.mcmaster.ca for use by

a global audience of live coding artist programmers and learners.

Estuary is produced and maintained using specific (ostensibly

“public”) resources, by specific individuals and through specific

relationships, and in connection with specific territories (including

but not limited to the territories at the south-west end of Lake

Ontario, where McMaster University is situated, where the most

direct work on Estuary’s code base happens, and where the

aforementioned server is located). This situation gives rise to

responsibilities and accountabilities that exceed the simple act of

sharing the software. As currently implemented, Estuary more or

less depends on access to “very good” computers, as the browser

environment is not the most performant place to render computer

music and generative visuals. This in turn implies a kind of

complicity with, or dependency on, “cutting edge”, “disposable”

computing with a further connection to careless or destructive

resource extraction – like any live coding platform Estuary

participates in a “full stack” that runs from mining and minerals up

to interfaces and user effects [11]. As such, ongoing work on the

challenge of making the elements of the platform perform more

efficiently is a key priority: a more efficient platform can be used

by more people, and will contribute less to an unnecessary and

harmful economy of “planned obsolescence”. A goal as the project

moves forward: Estuary should work for today’s computers, for an

increasing number of “yesteryear’s” computers, and should not

require “the computers of tomorrow”.

https://estuary.mcmaster.ca/

Estuary has also emerged at a specific point in the evolution of the

Internet, where the majority of websites visited by users participate

in various forms of user-specific surveillance. Estuary responds, in

this context, with a security model that is based on collectively

shared passwords rather than individually identified “users”. The

aim of this model is to leave it to people, independently, to manage

who they can trust enough to share a collaborative space with (and

how), rather than for the platform to impose a model of who can be

trusted attached to identified users. As Wendy Hui Kyong Chun has

elaborated, the security of Web 2.0 with its database of users, is no

security at all [12]. It remains to be seen how Estuary’s “user-less”

security model will evolve with the platform, but the intention is to

resist, as much as possible, the use of individual user identification

practices to solve trust and safety problems.

2. FROM MUSICAL TO AUDIOVISUAL

LIVE CODING
Estuary development over the past five years has been

characterized by two principal directions: (1) towards supporting

audiovisual live coding (and not merely musical live coding)

through the development and inclusion of languages focused on

visual results, in close connection with musical concepts; and (2)

towards supporting diverse use cases by evolving into a modular

“sandbox” where live coding languages, widgets (including some

focused on intra-ensemble communication), and media resources

are brought together “on-the-fly" in flexible ways. This section

describes Estuary’s growing support for visual, audiovisual,

videomusique (etc) results by introducing three of the current slate

of “base” languages that are strongly oriented towards visual

results: Punctual, CineCer0, and Hydra. There is no particular

instrumental rationale that has driven the choice of these three

languages rather than others. Most simply, these languages have

been “incorporated” into Estuary, during this recent period of work,

because of the specific interests and questions of the people

working on Estuary at the moment (in the future, as relationships

around the language evolve, the selection of languages will

presumably evolve as well; see also the comments below in section

5, Future Work, re: including languages as externally defined exo-

langs). Punctual and Hydra share a common orientation towards 2D

video synthesis, but with quite different notational paradigms.

CineCer0 is focused on the declarative “presentation” of pre-

existing video files and formatted text.

2.1 Punctual
The first visual language to be added to Estuary (after a series of

short-lived experiments with small visual languages based on

HTML canvas operations, anyway) was Punctual, created and

maintained by David Ogborn. Punctual will be given a more

substantial research account elsewhere. However, it is useful to

give a brief account of Punctual in this article both since it has been

a visible part of many audiovisual live coding performances using

Estuary, and because some of its features speak to artistic

possibilities that are specific to collaborative audio-visual live

coding (above all: simultaneous generative visuals by multiple

programmers, with positional differentiation or transparency), and

which will no doubt be unpacked further by various languages,

ensembles, and platforms.

Punctual is a web-based language for audiovisual live coding,

available both within the Estuary platform, and separate from it as

(non-collaborative) web-based standalone [13]. One of Punctual’s

defining features is that it explores the possibilities for a

specifically audiovisual form of creative activity, by proposing

unified notations that are simultaneously translated into both visible

and audible results, realized via WebGL and the Web Audio API,

respectively. Another equally important defining feature of

Punctual is that it proposes notations that facilitate the specification

and combination of multiple channels of information (in both the

sonic and visual domain), both in the form of output layers that

facilitate large numbers of channels of information being treated as

results and in the form of operations that interpret multiple channels

of information as spaces of possibility to be explored

combinatorially. Punctual also grows out of practice with

SuperCollider’s JITLib library [14], which has inspired Punctual’s

notations for controlling how successive versions of a program

succeed one another, and also from the example of live coding

environment The Force (for generative visuals) [15], which like

Punctual involves creating a fragment shader that draws on a flat

surface with connections to analysis of audio input/output.

In the following example of an audiovisual Punctual program (code

displayed together with visual result), a set of 8 low frequency

oscillators (labelled x1, y1, x2, and y2) are used to influence both

the motion of thin, differently coloured lines, and micro

adjustments in the tuning of a dense, chordal drone:

Figure 1. A Punctual program creating audio and animation.

2.2 CineCer0
The next visual language to be added to Estuary was CineCer0,

developed by the Estuary development team. The initial impulse

for the new language was to have a way of live coding the playback

of pre-existing video files, with the ability to control the geometric

positioning/scaling of the videos, as well as the ability to align the

timing of the videos in various ways. The CineVivo project [16],

which allows for the live coding of videos (with a procedural base

syntax, over which various forms of token substitution/macros are

often used in practice) was an important point of reference at the

beginning of work on CineCer0 (a fact memorialized in the

similarity of the names). Currently, CineCer0 supports the playback

and manipulation of video and image files (including but not

limited to SVG files), as well as the display of stylized text

information, within Estuary. It appears to be particularly well-

suited to use in settings where narrative and storytelling are a

priority, although it has been applied in more “abstract” or

improvisational settings as well.

A key early design decision was to make the syntax of the new

language (CineCer0) as declarative as possible. There were

multiple motivations for this emphasis on declarative syntax: (1)

our experience with highly declarative live coding environments

like TidalCycles, Punctual (see above), or arguably SuperCollider’s

pattern library/objects, suggests that declarative programming is

highly suited to artistic settings, particularly fast-moving

improvisational ones; and (2) the relative simplicity with which

declarative semantics can be synchronized/unified over distributed

collaborative ensembles. Simply put, declarative semantics make it

easier to design a system where someone can join once things are

already in process (or rejoin, for example, if they encounter

computing or network problems) and be “guaranteed” to

experience the “same” things as at other locations, because sharing

the “declaration” is enough to produce identical results – one does

not have to share both a procedure (and its history) and also,

somehow, fast-forward to some point in that procedural history.

Figure 2. From Estuary’s CineCer0 tutorial

The core mechanism of CineCer0’s implementation is simply to

add video and image objects, or text “divs”, to the browser’s

document object model, and then to modulate their properties on

the fly. CineCer0 appears to be highly performant with images and

text, but decoding simultaneous video files can be challenging

depending on the file and available computational resources. An

effective workaround strategy for this difficulty is to produce and

use lower resolution video files, and this strategy also tends to work

well with the settings and applications in which CineCer0 tends to

be used – often artist programmers will use CineCer0’s emphasis

on sizing and positioning of videos to present them in only specific

parts of the screen at a time, thus leaving space for code and other

visual results to be visible, and thus not “requiring” the full

resolution videos

2.3 Hydra in Estuary
Hydra is a browser-based live coding environment [17], created by

Olivia Jack, that employs JavaScript to compose networks of video

synthesizers, with a strong orientation towards the results space of

historical analog video synthesis. An energetic global community

has sprung up around the language, freely sharing short programs

that create striking generative visual results. Motivated by a desire

to engage with that community, we decided to add support for

Hydra to Estuary. However, the unique context of the Estuary

environment complicates what might at first glance seem to be a

relatively simple matter... Hydra is a bunch of JavaScript modules,

that run in the web browser, so can’t we just “add” them and stir?

Rather than just use JavaScript’s built-in evaluation features to run

Hydra natively, we have implemented a system where possible

Hydra “programs” are modelled with an abstract syntax tree (AST)

that is then translated (as an effect of Estuary’s rendering engine)

into calls to the “external” Hydra code. This much more indirect

way of using Hydra’s features is essentially a way of protecting

collaborative ensembles against the effects of arbitrary JavaScript

execution. For example, if, in the context of writing a Hydra

program, in a collaborative ensemble, someone were to insert a

never-ending computation, that computation would, effectively,

halt the performance for everyone connected to that ensemble.

Reloading the ensemble would not help – the ensemble would still

contain the “problematic” code. Moreover, it is highly

impracticable (possibly: impossible) to identify such problematic

code analytically and prevent its execution (cf. the halting problem

[18]).

By having a strict (if more limited) model for what the possibilities

of Hydra are, we are able to avoid those that might be

computationally intractable. Unfortunately, the cost of this in the

short-term is that our model does not include some possibilities that

are commonly employed by Hydra users – particularly those that

depend on JavaScript features like providing anonymous functions

as arguments to Hydra functions. The task of extending the model

to provide for this greater level of abstraction, while preserving

some modicum of protection against infinite computations, remains

an open (and large) one.

Memorias is a performance piece by Jessica Rodríguez that

contains six esoteric languages (Escribir, Observar, Leer, Oir, Ver,

Escuchar) or “esolang” [19]. Each language is built over different

audio-visual live coding languages (using Estuary’s JSoLang

feature, see below), and their syntax is inspired by six

autobiographical stories. This produces valid statements that can be

read as poetry but that also trigger sonic or visual events. In the

current version of the piece, one of the esolangs (Oir) is now

parsing Hydra’s functions that focus on screen feedback.

Figure 3. A JSoLang over Hydra, from Memorias by Jessica

Rodríguez.

3. TOWARDS A MODULAR SANDBOX
Estuary is a project that brings together considerable human and

material resources over a period of seven plus years, in the context

of specific territories and a web of relatively specific working and

artistic relationships. One of the responsibilities that comes with

this concentration of resources is to make sure the results of the

project are as useful as possible to other people beyond that web of

relatively specific relationships (but within the basic definition of

what Estuary “is”, still). For this reason, there is a priority placed

on making Estuary extensible and customizable in various ways,

and work on this extensibility and customization has become a

second emphasis of recent years (alongside the abovementioned

shift to audiovisual rather than musical live coding).

The earliest versions of Estuary had support for visual

customization via CSS themes, the capacity to flexibly define the

interfaces used by a particular ensemble (more about this below),

and limited support for localization of the natural language used

throughout the interface. In recent years, work has proceeded on

more fundamental forms of extension of the software, which are

described in the subsections to follow, and include a system for

adding web-located audio samples on the fly, a system for

describing – also on-the-fly – transpiled languages “over” other

already existing languages, and a proliferation of the types and

appearances of the available “widgets” that can be included in

Estuary ensembles (with a particular focus on those that are useful

for intra-ensemble communication).

Fundamentally, the goal of this work on making Estuary as

extensible as possible is to facilitate others making things with the

software that are radically unknown and unforeseen by the research

team and lead maintainer, without requiring a relationship or

agreement or collaboration (as would be the case for things that are

“built-in” to Estuary). Even more fundamentally, this priority is

about an orientation to an unconditional and uncertain (and always

unguaranteed) state of hospitality [20], as an alternative to aiming

for a solipsistic specificity or an unattainable (and authoritarian)

universality.

3.1 On-The-Fly Media Resources
One form of extensibility added to Estuary in recent years is a

system whereby references to web-located audio samples can be

added “on-the-fly" and then used by languages that use WebDirt to

produce “sample playback events” (eg. MiniTidal, TimeNot,

Seis8s). It works as follows: each ensemble has a (collaboratively

editable) list of resource operations. One type of resource operation

adds an association between a URL (eg. where a sound file “lives”

on the Internet), and a “tuplet” consisting of a name (like “bd” or

“gtr”) representing a samplebank, and a number representing a

specific sample within that bank. Another type of resource

operation adds a whole list of such associations from an Internet-

located JSON file (a “reslist” - short for “resource list”). Other

resource operations can manipulate the map of available resources

in various ways (providing aliases, removing entries, etc).

On the basis of this system, it is possible to curate collections of

audio samples at specific Internet locations, storing a “reslist” at the

same location as the samples. A terminal script is provided to make

it easier to auto-generate reslists in this common circumstance. At

that point, a particular “curated” collection of samples can be

added, with a single operation in Estuary’s terminal, and a

particular ensemble may, on a moment-to-moment basis curate

both the samples that are available and – characteristically for live

coding where the way in which things are named is especially

significant – how they are called. Currently these operations are

completed in Estuary’s “terminal” (an interface not unlike a UNIX

shell where commands are typed are textual responses come back)

but the intention is to provide a graphical interface for these

operations, as well as expanded support for scanning and exploring

“community” collections of samples before adding them to a

specific ensemble context. The Estuary wiki (at the project’s main

github repository [21]) currently contains a growing list of sample

collections (“reslists”), most licensed on a CC0 basis (public

domain), that can be immediately added to an ensemble and

explored.

One initiative that has already used the on-the-fly resource system

heavily is the weekly WeekEndJam (WEJ) event, wherein the

sharing and collective exploration of newly available sample

resources is a common occurrence. The WeekEndJam grew from a

desire between three Tidalcycles forum users to play

music/sounds/visuals together remotely, during the height of the

COVID pandemic/lockdowns in January 2021. WEJ has since

enjoyed the patronage of between 30-50 individual live coders,

including people interested in very different styles of music/art, and

with very different durations and histories of engagement with live

coding. A public invitation is sent out each week shortly before

starting (on the Estuary Discord server, among other places), and

there is rarely ever any plan for the hour-long session. All sessions

are streamed live, recorded for review and highlights

extracted/shared for enjoyment. Often the group will explore new

platform features, such as new sample resources that someone has

made available, updates to the available languages, or JSoLangs

(see below). WEJ organizer Bernard Gray notes: “Personally I've

enjoyed the exploration of collaborative free improvisation in a live

coding context, working beyond audio and into visual spaces as

well. When everyone in the band can play every instrument all at

the same time (including the projector), it's fascinating to see how

different people respond to, and work within, that freedom.”

The “resources” that people may wish to curate into lists that can

be used in Estuary’s collaborative ensemble spaces are not limited

to sound resources. Extending the on-the-fly media resource system

to video and image files is an imminent next step in this work, but

not the only way in which this system could be extended. 3D

models could be such resources (see discussion of LocoMotion,

below), for example. Another possibility is to start to include

curated (and searchable) libraries of example programs, akin to the

“Giblets” that were an early and key form of code sharing in Gibber

[22].

3.2 JSoLangs
Another recent form of extensibility that has been added to Estuary

is a system for languages that are defined on-the-fly and transpiled

into other languages supported by the system: JSoLangs

(pronounced Jay-Esso-Langs, a portmanteau of JS for JavaScript

and esolang, for “esoteric programming language”). Estuary’s

JSoLang system [6] uses the Peg.js library for writing recursive

descent parsers using JavaScript. To define a JSoLang, one enters

a Peg.js parser in one of Estuary’s code editing panels, with an

initial header that identifies the name of the new JSoLang.

Thereafter, when code that is identified as being “in” the JSoLang

is evaluated, the Peg.js parser [23] is used to transpile the provided

text into new text code (including, as part of that output, Estuary’s

specific pragmas for identifying a language with which the newly

provided text should be evaluated).

A particularly simple and frequent application of the JSoLang

system has been as a way of tweaking the lexicon of an existing

language, providing lists of translations from specific strings of

characters to other strings of characters. This can support specific

poetic purposes (a way of manipulating the language the

programmer thinks in, and what is shown to an audience) as well

as, more generally, opening up simple pathways for working with

different alphabets included in the Unicode standard. Earlier work

with Estuary had demonstrated the felicity of creating new

languages over existing languages in brief workshop settings [24].

That work involved laboriously incorporating new modules into,

and rebuilding, the Estuary client itself – now, with the JSoLang

system, such “workshop languages” can be created (and

maintained) much more fluidly. Here is an example of how a simple

“text replacement” JSoLang is defined, using peg.js:

##JSoLang text-replacement-example

main = x:allRules* { return "##tidal\n" + x.join("") }

allRules = bassdrum / clap / anyCharacter

anyCharacter = .

bassdrum = "bassdrum"i { return "bd" } // bassdrum will be

replaced with bd

clap = "clap"i { return "cp" } // clap will be replaced with cp

At the time of writing, members of the SuperContinent ensemble,

established in 2018 to explore and benefit from Estuary's utility for

geographically distributed live coding, have begun to explore the

possibilities inherent in using JSoLangs to live code together with

diverse alphabets. The ensemble currently has eight members from

Japan, Canada, India, UK, Colombia, Portugal, and South Africa

who rehearse weekly, exploring and developing inclusive, non-

hierarchical collective-live-coding practices.

Studio//Stage, by Kate Sicchio, is another example of an early

application of Estuary’s JSoLang system. Studio//Stage is

transpiled into CineCer0 code (to control the playback of videos

with precise relationships to time), but the language itself uses

choreographic terminology to code video timings, loops and

playback functions. The aim is to craft movement in the “studio”

while also developing the language, and then to use this vocabulary

on the “stage” during performance. For example, the slowing down

of a video clip to a certain framerate may make the movement

appear heavy. This new slow framerate is now named ‘heavy’ and

is referred to as such during a live coding performance.

Studio//Stage allows for algorithmic choreographies to emerge on

the screen as if a choreographer was working with dancers in the

studio, developing movement phrases and materials.

3.3 Widgets for Intra-Ensemble

Communication

A third significant form of extensibility in Estuary is the ability to

define custom interfaces. Estuary’s “View system” has supported

such custom “views” of “what is happening” in an Ensemble since

its earliest stages. Recent work has focused on proliferating the

available widgets that can be included in such views, with an

emphasis on widgets useful for intra-ensemble communication.

This work is still in an in-progress/alpha stage and has not yet been

used much in practice, so this section will be somewhat briefer than

others.

Examples of new widgets that are already available in Estuary

(while continuing to be refined on an ongoing basis) include:

notepads to which pages can be added and on which ensemble

members can share notes about strategies, concepts, available

resources, etc; calendar widgets which allow information about

upcoming meetings, workshops, or rehearsals to be edited by

ensemble members, with date and time displayed both in local and

universal terms (an important practical consideration for

geographically networked ensembles); widgets that visualize the

prevailing tempo (ie. metric grid) in the ensemble in different ways;

widgets that mark the passage of time by counting down (in

different ways) from preset times, or by counting up from a starting

time; widgets that visualize the computational demands made by

the current code; widgets that facilitate collaborative turn-taking in

ensembles, such as a “roulette” widget designed around the

common live coding practice of roulette (wherein performers take

turns modifying the same code); widgets that augment Estuary’s

longstanding “ensemble-wide” chat system (displayed in a

collapsible terminal at the bottom of the screen) with specific,

separate chats that are displayed in specific locations within a View

(and which might be used, for example, to facilitate conversations

among sub-groups of those participating in an ensemble,cf. the

suggestion of [25] that embedding chat affordances directly

adjacent to shared code could be very helpful in pair/trio

programming and turn-taking). It is also possible to embed arbitrary

web pages as widgets, which can be used, among other things, to

embed web-based video-conferencing applications within what is

displayed, potentially sharing webcam views of performers with

each other, or sharing generative visuals to computers lacking the

computational power (eg. a good graphics card) to render them.

Figure 4. A selection of new and old Estuary widgets

We are also beginning to add alternative formats/display

behaviours to Estuary’s core “code editor”, and see this as a

particularly fruitful area for further development (code, particularly

but not only in live coding, being already a medium for

communication between collaborating humans). The precedent

demonstrated by collaborative live coding environment Troop [26]

shows the promise of using text colouration and moving icons to

provide a visible trace of the activity and presence of specific

individuals in a collaborative live coding ensemble – Estuary could

evolve to provide this behaviour as an option, and then also explore

other ways of making individual activity legible in the potentially

opaque space of screen-based interactions.

An Estuary ensemble contains any number of “Views” which are

definitions of which widgets to display. In the most common cases,

all clients connected to a particular ensemble will display a

“default” view that has been established for that ensemble.

However, it is not necessary for all clients to display the same

View/interface. The same ensemble can be “viewed” by different

Views at the same time – a feature which supports a number of

interesting live coding and network music configurations. For

example, an “audience view” might be composed around specific

decisions regarding what to share with an audience, while specific

performers in an ensemble might use different views that give them

the ability to intervene in the results that are generated (and in the

code that is shared with an audience) while also facilitating

consultation with notes and help, “backchannel” discussions or

decision making processes, tracking of computational load,

compositional plans, etc – all of which may not always need, or be

desired to be, shared with an audience. In another common

application of this flexible, multiple View system, a View without

any widgets might be used to display generative visuals completely

separately (ie. with a separate computer and projector/display) from

the code that generates those visuals, addressing the common

challenge of being able to read code and appreciate large format

generative visuals at the same time.

4. FURTHER APPLICATIONS

In this section, we provide some accounts of interesting situations

in which Estuary has been used, many of which have a connection

to different kinds of educational settings.

4.1 Zero-installation live coding workshops

Estuary’s provision of a multi-lingual live coding environment, in

which all languages are “ready to go” without the installation of

software beyond the web browser itself, is a significant advantage

in many workshop situations. Since 2021, Antonio Roberts has

been delivering regular live coding workshops at Birmingham

Open Media (BOM) in Birmingham, UK, as well as workshops

about Blender, Pure Data, and Imagemagick. When approached

about delivering live coding workshops, there was excitement but

also slight hesitation due to the difficulty of installing common live

coding software packages, which – even when they offer "easy"

installation via single-line terminal commands – still rely on

knowledge of the terminal and the skills needed to fix bugs if the

installation fails somehow. Estuary made this process a lot easier

as all of the software was available in the browser. This meant

easier installation and setup at BOM (all of their computers had a

browser already installed) and workshop participants could easily

practice what they had learnt at home. The workshops were part of

the Pulsar Summer Camp for up to 15 children aged 7 -12. The first

workshop focused on making music using Tidal/MiniTidal and the

second day focused on making visuals using Hydra. Using Estuary

provided a common interface which all could work from, while still

allowing for flexibility and customization. Having a common,

collaborative interface helped when communicating instructions

and also bug fixing/addressing questions as the answers could be

supplied to everyone. Having one interface for both Tidal and

Hydra also provided consistency over the two workshops which

meant less time learning new interfaces. [27,28,29,30]

4.2 Laptop ensembles

For the past two years, Carl Testa has used the Estuary platform in

the context of a burgeoning electroacoustic laptop ensemble at the

high school level, in New Haven, Connecticut, USA. Estuary’s

integration of both TidalCycles (in the form of MiniTidal) and

Hydra Video Synth solved many problems at once in this

educational context. Students being able to see each other's code

contributions meant beginning students could easily learn from

more advanced students. In the context of hybrid learning, being

able to easily incorporate students learning from home with

students learning in class was an immediate boon to the work in

class. Finally, having code being executed and shared across of the

ensemble instead of audio being sent solved issues of audio latency.

For the past year, the work in the class has often been focused on

learning new commands, parameters, and syntax of the MiniTidal

language and then incorporating that knowledge into improvising

as an ensemble. They then review their improvisations and reflect

on moments or strategies that seemed to work compositionally,

finding ways to incorporate that into future practice. [31]

Carl Testa notes: “I've found that Estuary encourages and enables

improvising with orchestration in a way that helps students become

aware of the various roles they can take on in an ensemble context.

Since everyone is playing the same instrument and can contribute

to the music from a plurality of perspectives, methods, and sound

sources, the students must make choices in the moment that enable

them to "find their space in the music". They must adjust their

timing, pitch and register selection, and timbral choices so that they

can hear their contributions and make sure their contributions are

distinct and provide space for everyone to contribute. We are now

taking some of what we've learned about improvisation and

incorporating it into an electroacoustic improvisational context

incorporating trumpet, guitars, Estuary, and live processing with

Sonic Pi.”

4.3 Estuary as an instrument instead of an

environment

The Concordia Laptop Orchestra (CLOrk), a large ensemble of 25-

30 members, utilizes Estuary most often in combination with other

audiovisual creations, conceptualizing Estuary as one instrument

among others in the orchestra rather than (as is more common) the

entire environment or medium for the orchestra’s performance. At

times, Punctual code on Estuary has been used as an audio-

responsive visualization tool in telematic performances, in which

the distributed orchestra’s diverse sound (generated by various

digital, analog, and acoustic instruments and sometimes vocally)

has been collected on one computer and then routed to Estuary via

the browser’s microphone input. In such configurations, visuals

were live-coded in an Estuary ensemble window and shown to

audiences in another (code-invisible) instance of the ensemble, thus

utilizing the Estuary ensemble as a means for visual-performance

remote-control. A recent example of this can be seen in CLOrk’s

movement “Reaching the Karman Line” in CIMaCC’s Nature

Minds! piece at Cambridge Festival 2022. Estuary has also

sometimes been used to set up standalone unattended laptop

performers, where pre-coded algorithms generated sounds as part

of a CLOrk performance. In these instances, the Estuary ensemble

was similarly used as an invisible, easy-access remote-controllable

smart orchestra instrument, not a collective live coding

performance environment. A recent example of this usage can be

seen in Act 4 of lost connection, a mini-opera in collaboration with

the RISE project based on an idea by Juanita Marchand Knight, in

which laptops algorithmically were to converse with each other as

independent futuristic artificial beings.

4.4 Role-playing, world-building, gameplay

Role-playing and narrative design gives users the opportunity to

learn and experiment outside of their normal perception. Similar to

how language is fundamental to human culture, world building in

combination with role playing can be manifested through the

Estuary platform, by allowing different languages to signify

different aspects of the world while actively being both performed

and edited on the fly. This can be used in genres such as sci fi and

Afrofuturism. In February 2021, Kofi Oduro demonstrated this

aspect of Estuary for an Afrofuturism class at Tulane University.

Users were encouraged to engage with a world-building exercise as

inhabitants of external planets. Each panel in a predefined Estuary

View was treated as a different planet or house, and users were

prompted verbally and textually to either add, remove or remix the

code in that panel to match the changes in this jointly created world.

Elements and symbolisms in this particular experience matched the

theme of the class.

Role-playing can also be extended through gameplay as observed

in the coding performances of UrTeam (Barry Wan, Shaun

Bellamy, Tareq Abu-Rahma and D.Andrew Stewart), a Canadian-

Czech-Hong Kongese-Palestinian quartet that embraces Estuary’s

multi-language features for both sound and visual coding. Inspired

by the tradition of improvisation to silent film, UrTeam often

presents their own unique sound and music design to video game

sequences and in some contexts, merges the visual coding

environment of Estuary with live game play. The approach of

UrTeam presents interesting creative challenges that require an

understanding of using sound and music to elaborate and enhance

narratives conveyed through visual media.

5. FUTURE WORK
Some aspects of future work on Estuary involve continuing to

proliferate options and extend capabilities along the lines discussed

above in sections 2 and 3: more widgets that support specific types

of communication, visualization, or decision-making in ensembles;

further evolution in terms of what is supported by the restricted

number of “base” live coding languages; further work on modular,

on-the-fly systems for incorporating media resources beyond sound

samples (such as the images and videos “consumed” by languages

like Punctual, CineCer0, and Hydra) and continuing work on

attempting to reduce the computational demands of Estuary within

the browser context.

The computational demands of Estuary are especially salient (and

challenging) when it is used with larger ensembles, a general

characteristic of systems that involve everyone’s code being

rendered on everyone’s computer [32]. Laptop orchestras and live

coding workshop games might involve ten, fifteen, or more

performers simultaneously working on different audiovisual layers.

The demands of generative visuals in Estuary tend to be

manageable even with larger numbers of performers, assuming the

presence of relatively contemporary accelerated graphics

processing units (GPUs). The demands of generative audio,

however, rendered by the Web Audio API, appear to be a more

common source of “computational stress”, particularly when

Estuary is used with larger ensembles. Many audio results in

Estuary are rendered by the WebDirt library, which uses the Web

Audio API to play back samples using (mostly) built-in audio nodes

of the Web Audio API. The computational demands of this sample

playback engine scale more or less linearly in proportion to the

number of sample events that are present in any given slice of time,

a number that can grow quite rapidly if many people in an ensemble

are triggering events often and/or are triggering events that last for

longer durations. Nonetheless, it appears that, in the current

configuration of the Web Audio API, this computational work is

performed in a single thread running on a single core of the

underlying machine (leaving the few or many additional cores that

the machine may have as an untapped resource). Large ensembles

using Estuary often need to adopt and rehearse strategies to manage

this computational demand, such as preferring shorter samples, or

figuring out through trial and error how musically “busy” the

ensemble can afford to be. Moreover, this computational limit

moves downwards as less powerful machines are used, a factor

which simultaneously makes the platform unacceptably dependent

on “cutting edge” hardware (and the cycles of technological

obsolescence and waste connected to the availability of such

hardware), while also excluding people with less privileged access

to such hardware. One line of investigation in response to this

challenge would be to reimplement WebDirt without using the

standard Web Audio nodes, in favour of doing all sample playback

and processing in an AudioWorkletNode that can run on an

additional available processing core and could be implemented

using WebAssembly. Another line of investigation would be to

produce an alternate machine-code build of Estuary’s client, while

simultaneously continuing to build and maintain the browser-based

version of the client, following a pattern that is also seen with many

mainstream collaboration and telecommunication platforms, and

taking advantage of the fact that the reflex-platform, used to build

Estuary’s client, is already set up to compile to machine code

targets. At the time of writing, this remains an open question for the

project.

A second major direction in which future work on Estuary is

expected to go involves enhanced possibilities for modular

relationships even with what might be thought of as “base”

languages. Hitherto, the base languages in Estuary have involved

substantial Haskell codebases that are compiled at the same time as

the rest of the Estuary client. This requirement to build Estuary

AND its languages at the same time works against modularity. To

address this, a new standard for Estuary-oriented “ExoLangs”

(external or exoteric languages, another pun on EsoLang), is

currently in active development, and allows base languages to exist

as compiled JavaScript code that is “linked” into an ensemble on

the fly, just as media resources and JSoLangs currently are. For the

new language/project, LocoMotion [33], initiated by David Ogborn

and Kate Sicchio, that is intended to exist both within Estuary and

separately, the language is being built with PureScript so that the

compiled JavaScript which results can be added to Estuary in just

this way, as an ExoLang. This will allow new versions of the new

language (which are expected to come fast and furiously) to be used

in Estuary without the rather laborious process of rebuilding and

redeploying the entire platform. This approach will also enable

people to add their languages to an Estuary setting without the need

for discussion and collaboration with either the Estuary research

team or the host of a particular Estuary server – a kind of

unconditional, uncertain hospitality.

6. ACKNOWLEDGMENTS
The development of Estuary has been supported directly by two

grants from the Social Sciences and Humanities Research Council

(SSHRC) of Canada, “Projectional editing for musical live coding”

and “Platforms and practices for networked, language-neutral live

coding.” The development of LocoMotion is supported by an

Exploration grant from the New Frontiers in Research Fund

(NFRF). The Networked Imagination Laboratory at McMaster

University, funded by the Canada Foundation for Innovation (CFI)

and Ontario’s Ministry for Research and Innovation, has been a key

environment for development and application and outreach

activities related to Estuary. Profound thanks to all of the people

who have made Estuary a part of their explorations of live coding,

including but not limited to all of the members of the collaborative

ensembles mentioned in this text, as well as the Cybernetic

Orchestra at McMaster University (which has often been the first

place that new collaborative Estuary features are tried out).

7. REFERENCES
[1] David Ogborn, Jamie Beverley, Luis Navarro del Angel,

Eldad Tsabary, Esteban Betancur, and Alex McLean. (2017)

“Estuary: Browser-based Collaborative Projectional Live

Coding of Musical Patterns.” Proceedings of the

International Conference on Live Coding.

[2] McLean, A. (2014). “Making Programming Languages to

Dance to: Live Coding with Tidal.” Proceedings of the 2nd

ACM SIGPLAN International Workshop on Functional Art,

Music, Modeling & Design. FARM '14. New York, NY,

USA, 63–70. ACM Press. doi:10.1145/2633638.2633647.

[3] Tanimoto, Steven L. 1990. “VIVA: A Visual Language for

Image Processing.” Journal of Visual Languages &

Computing 1 (2): 127–39.

[4] Tanimoto, Steven L. 2013. “A Perspective on the Evolution

of Live Programming.” In 1st International Workshop on

Live Programming (Live), 31–34. IEEE.

[5] Jacques Derrida (1998). Monolingualism of the Other: or,

The Prosthesis of Origin. trans. Patrick Mensah. Stanford:

Stanford University Press.

[6] David Ogborn, Clarissa Littler, Kate Sicchio (2021).

"JSoLangs: ephemeral esolangs in a collaborative live coding

environment." Proceedings of CSDH-SCHN 2021: Making

the Network.

https://hcommons.org/deposits/download/hc:39064/CONTE

NT/jsolangs-paper-csdh-2021.pdf/

[7] Graham Hutton and Erik Meijer (1996). Monadic Parser

Combinators. Technical report NOTTCS-TR-96-4,

Department of Computer Science, University of Nottingham

[8] https://github.com/dktr0/MusicW

[9] https://github.com/dktr0/WebDirt

[10] https://github.com/dktr0/haskellish

[11] Benjamin H. Bratton (2016). The Stack: On Software and

Sovereignty. MIT Press.

[12] Wendy Hui Kyong Chun (2017). Updating to Remain the

Same: Habitual New Media. MIT Press.

[13] https://dktr0.github.io/Punctual

[14] Julian Rohrhuber, Alberto de Campo, and Renate Wieser

(2005). "Algorithms Today: Notes on Language Design for

Just in Time Programming." Proceedings of the International

Computer Music Conference.

[15] Smith, R. Lawson, S. (2018) “Rogue Two: Reflections on the

Creative and Technological Development of the Audiovisual

Duo—The Rebel Scum.” Journal of Electronic Dance Music

Culture 10:1, pp. 63-82, DOI:

https://dj.dancecult.net/index.php/dancecult/article/view/102

6/946

[16] Jessica Rodríguez, Esteban Betancur, and Rolando

Rodríguez (2019). "CineVivo: a mini-language for live-

visuals." Proceedings of the International Conference on

Live Coding.

[17] https://hydra.ojack.xyz/

[18] Turing, A. M. (1937). "On Computable Numbers, with an

Application to the Entscheidungsproblem". Proceedings of

the London Mathematical Society. Wiley. s2-42 (1): 230–

265. doi:10.1112/plms/s2-42.1.230.

[19] Daniel Temkin (2015). "Esolangs as Experiential Art".

Proceedings of the International Symposium on Electronic

Art (ISEA).

[20] Jacques Derrida (2000). Of Hospitality (Anne

Dufourmantelle invites Jacques Derrida to respond). Trans.

Rachel Bowlby. Stanford University Press.

[21] https://github.com/dktr0/Estuary

[22] Charlie Roberts, Karl Yerkes, Danny Bazo, Matthew Wright,

JoAnn Kuchera-Morin (2015). “Sharing Time and Code in a

Browser-Based Live Coding Environment.” Proceedings of

the International Conference on Live Coding, Leeds, UK.

[23] https://pegjs.org

[24] Luis N. Del Angel, Marianne Teixido, Emilio Ocelotl, and

David Ogborn (2019). "Bellacode: localized textual

interfaces for live coding music." Proceedings of the

International Conference on Live Coding.

[25] Anna Xambó, Gerard Roma, Pratik Shah, Takahiko

Tsuchiya, Jason Freeman, Brian Magerko (2018). “Turn-

taking and Online Chatting in Co-located and Remote

Collaborative Music Live Coding.” Journal of the Audio

Engineering Society 66:4, pp. 253-66.

[26] Ryan Kirkbride (2017). “Troop: A Collaborative Tool for

Live Coding.” Proceedings of the 14th Sound and Music

Computing Conference, Espoo, Finland.

[27] https://bom.org.uk/engagement/for-kids/summer-

camp/pulsar-summer-camp-2021/

[28] https://bom.org.uk/how-to-code-live-music-beginners/

[29] https://bom.org.uk/engagement/for-kids/summer-camp/

[30] https://bom.org.uk/how-to-code-live-art-advanced/

[31] https://youtu.be/Jum75_iIXQc

[32] Charlie Roberts, Ian Hattwick, Eric Sheffield, and Gillian

Smith (2022). “Rethinking networked collaboration in the

live coding environment Gibber.” Proceedings of the

International Conference on New Interfaces for Musical

Expression, Waipapa Taumata Rau, Aotearoa.

[33] https://dktr0.github.io/LocoMotion

https://hcommons.org/deposits/download/hc:39064/CONTENT/jsolangs-paper-csdh-2021.pdf/
https://hcommons.org/deposits/download/hc:39064/CONTENT/jsolangs-paper-csdh-2021.pdf/
https://github.com/dktr0/MusicW
https://github.com/dktr0/WebDirt
https://github.com/dktr0/haskellish
https://dktr0.github.io/Punctual
https://dj.dancecult.net/index.php/dancecult/article/view/1026/946
https://dj.dancecult.net/index.php/dancecult/article/view/1026/946
https://hydra.ojack.xyz/
https://github.com/dktr0/Estuary
https://pegjs.org/
https://bom.org.uk/engagement/for-kids/summer-camp/pulsar-summer-camp-2021/
https://bom.org.uk/engagement/for-kids/summer-camp/pulsar-summer-camp-2021/
https://bom.org.uk/how-to-code-live-music-beginners/
https://bom.org.uk/engagement/for-kids/summer-camp/
https://bom.org.uk/how-to-code-live-art-advanced/
https://youtu.be/Jum75_iIXQc
https://dktr0.github.io/LocoMotion

	1. INTRODUCTION
	2. FROM MUSICAL TO AUDIOVISUAL LIVE CODING
	2.1 Punctual
	2.2 CineCer0
	2.3 Hydra in Estuary

	3. TOWARDS A MODULAR SANDBOX
	3.1 On-The-Fly Media Resources
	3.2 JSoLangs
	3.3 Widgets for Intra-Ensemble Communication

	4. FURTHER APPLICATIONS
	4.1 Zero-installation live coding workshops
	4.2 Laptop ensembles
	4.3 Estuary as an instrument instead of an environment
	4.4 Role-playing, world-building, gameplay

	5. FUTURE WORK
	6. ACKNOWLEDGMENTS
	7. REFERENCES

