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Abstract 

We present an exact algebraic solution to model waterbomb tessellations. Given the design parameters 
of a single waterbomb cell we can determine the global geometry of the tessellated shell directly. 

Thereby the preliminary design of thin-walled folded shells with load carrying function can be 
streamlined. The primary focus of the paper is on symmetric folding with first steps taken to consider 

asymmetric folding. 
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1. Introduction 

The ability of origami folding to transform parameterized planar tessellations into spatial structures 
unlocks an enormous potential for the design and construction of modern, lightweight engineering 
structures such as thin concrete shells reinforced with carbon fabrics. The waterbomb tessellation 
represents a traditional origami crease pattern that has been widely studied in the past. Its kinematics 
provide the possibility to produce statically relevant folded shapes. In particular, its global curvature can 
be adjusted independently from its effective cross-sectional height. This flexibility makes the 

waterbomb tessellation very attractive for innovative design approaches exploiting the synergy between 
the structural shape and non-linear material behaviour of high-performance cementitious composites. In 
contrast to previous work on folded carbon concrete shells, where the simulation of the folding process 
was implemented using numerical form-finding methods employing optimization algorithms (Chudoba 
and Brakhage [2]), in this paper, we focus on an exact algebraic description of the folding kinematics of 
a waterbomb cell. Based on this description, a direct relation between the parameters of the base and 
statically relevant characteristics, i.e. global curvature and local cross-sectional height, is established. 
The paper also investigates the possibility to relax the currently assumed symmetries of the waterbomb 

base and of the folding kinematics to further enhance the design options for generally shaped shell 
structures. First, the symmetric folding is described, leading to a cylindrically curved surface. 
Asymmetric folding of a base cell is presented as a generalization that could allow tessellations with 

non-uniform curvature and variable cross-sectional height. 
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Figure 1: Waterbomb cell configuration 

Related work algebraically describing the waterbomb cell kinematics has been presented in Chen et al. 
[1] demonstrating that in certain situations two possible symmetric folding paths can be followed. Even 
though general efficient numerical approaches to simulation of rigid origami have been presented during 
the past two decades (Zhao et al. [3], Liu and Paulino [4]), exact solutions for particular design questions 
are desirable to provide direct mappings between the parameters of the origami tessellation and the 

designed shapes.  

The development of closed form descriptions of the folding kinematics and geometric characteristics 
presented in this paper aims to establish direct mappings between the waterbomb cell parameters on the 
one hand, and global curvature and effective cross-sectional height on the other. By providing statically 

relevant geometrical parameters, this description serves as a support of innovative design and 
manufacturing methodology using high-performance composite materials that combine foldable fabric 
reinforcement, i.e. carbon, glass and basalt, to produce customizable thin-walled folded concrete shells 

(Van der Woerd et al. [7], Van der Woerd et al. [8]). 

2. Modelling the waterbomb base cell 

We assume that the base region consists of rigid material and is composed of two trapezoids as depicted 

in Figure 1(a) and that the lengths , , and  as indicated in the figure are all positive. When the base 

region is placed flat in the -plane such that the centre is the point and the  two sides of 

length  are parallel to the -axis, we can observe that the pattern admits two symmetries, namely a 

reflection along the -axis and a reflection along the -axis. The mountain fold lines are on the -axis 

(red line) and the valley folds on the lines  and  (dashed blue lines), see Figure 1(a). 

As shown in Figure 1, the folding state is controlled by the angle  between the -axis and each of the 

mountain fold lines. In the unfolded state, . We define the following special points, which we 

will refer to as the vertices, of the unfolded base region: 

 

and identify the vertices with vectors in EUCLIDean 3-space. 

In this paper we consider two scenarios. In Section 3 we assume that the pattern remains symmetric with 
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respect to the -plane as well as with respect to the -plane during the entire folding process. In 

Section 6 we treat the more general case in which we drop the hypothesis that the pattern remains 

symmetric about the -plane, but we assume that it retains either a rotational symmetry about the 

origin or a reflectional symmetry about the -plane. Our aim is to give an accurate algebraic 

description of the positions of the points on the base region indicated above when the base region is 

folded. 

To describe the situation, we let  denote the angle between the two mountain fold lines of the folded 

pattern. As we assume that the pattern remains symmetric with respect to the -plane, we denote by 

 

the positions of the vertices of the base region in EUCLIDean 3-space when the folding angle between 

the -axis and each of the mountain fold lines is . When . the pattern is flat in the -plane. 

3. Waterbomb base kinematics with four parameters 

In this section we assume that the base region remains symmetric with respect to the -plane as well 

as with respect to the -plane during the entire folding process. Hence, we can determine   

and  from  and  by symmetry as depicted in Figure 1(c). Their coordinates result from the 

equations given in Table 1. As the material is rigid, these can be derived from the fact that the angles 

between adjacent valley and mountain fold lines ( ) and angles between adjacent valley fold lines  

( ) as well as distances of the corners to the origin are preserved ( ). As the positions of the base 

region are known for  we now assume  takes values in , whence . 

 Table 1: Equations for the waterbomb pattern 

, 

, 

, 

 

Subtracting  from  yields  and Equation  immediately yields  namely 

 (1) 

 

(2) 

Adding  and  yields , thus the positive solution reads 

 

(3) 

Thus, the entire folding kinematics of the symmetric waterbomb cell is described. 
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4. Generation of a waterbomb tessellation 

Using the kinematics of the waterbomb cell, we construct the tessellated folded shell geometry. To 
achieve this, compatibility between cells must be ensured. The kinematics of the master cell described 
in Section 3 based on symmetry assumptions, enforces that the tessellated waterbomb shell is curved 

only in the -plane. This fact is exploited in the derivation of the rotation and translation operators 

which have to be applied to the master cell to obtain the tessellated shell geometry. 

The master cell has six adjacent cells (see Figure 2(a)), two of which have their origin in the -plane. 

The other four cells are shifted in the -direction. In the folded state, the first two cells can be obtained 

from the master cell by rotation around the -axis by an angle . The remaining four cells are 

obtained from the master cell by rotation around the -axis by angle of  followed by a shift . 

 

Figure 2: Cylinder shell tessellation constructed as a foldable assembly of waterbomb cells 

To define the rotation operator, the angle  needs to be expressed as a function of the design parameters 

 and folding angle . Observe that  is the angle between the planes  containing  

and  containing . It can be determined as follows. Let 

 

and 

 

denote vectors perpendicular to  and , respectively. Thus, the equations for the planes are 

. The angle between  and  can be determined using 

and the above expression for  as follows 

 

(4) 
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For  in the maximally folded state this implies that . Note that for 

 this implies that in the totally folded state all points  and  lie in 

one plane. 

Moreover, the centre  of rotation is the point on the -axis at the same distance from the 

midpoints of the lines connecting  and  and   and . Hence,  satisfies 

 

that is  Using again that  and solving for  

yields: 

 

Thus, the radius is: 

 

With regard to Equation (1), the value of the shift  parallel to the -axis is obtained as 

 
(5) 

With the help of the parameters  and  defined as functions of the cell design parameters  and 

folding parameter  an arbitrarily large tessellation can be computed exactly without numerical 

methods. In contrast to existing numerical rigid origami models (Tachi [5], Tachi [6]), in the derived 
algebraic approach the positions of each cell within a shell tessellation are determined independently of 

all other cells, solely from the position and kinematic folding state of the master cell. The algebraic 
model has been implemented using the support of computer algebra systems Maple (Maple 2020[10]) 
and Sympy (Meurer et al. [4]), using the possibility to transform the algebraic expressions automatically 
to executable code. The interactive application of the model has been provided within the Jupyter 
environment based on the Python ecosystem of packages for scientific computing. An example of a fine 

shell tessellation with 400 cells is shown in Figure 3. 

 

 

Figure 3: Two views of a tessellated shell with 20×20 cells (design parameters , , ) 
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5. Geometric characteristics of the folded shell 

With the algebraic description of the kinematics, closed form formulas can be derived that characterize 
the shape of folded waterbomb shells in view of their potential load carrying function. The curvature of 

the shell represented by the angle  as derived in Equation (4) is depicted in Figure 4 for normalized 

design parameters  and . For selected design parameters , the tessellated shells 

are visualized together with the corresponding planar form of their base. While the design parameter  

defines the vertical slenderness of the base, choosing the parameter  renders the waterbomb base 

with tailored shape and choosing  results in bulbous shape. The study proves that folded shells 

with both positive and negative curvatures can be achieved. Moreover, the line of zero curvature  

( ) indicates the possibility to fold the crease pattern into a flat panel with a two-dimensional 

pattern of ribs. 

 

Figure 4: Cell shape parameters and corresponding shell geometry with evaluated curvatures 

To construct structural elements with a sufficient local bending moment capacity, the height of the cross 

section, that is , is a relevant design parameter. An appealing feature of the waterbomb 

tessellation is the possibility to adjust the effective cross sectional height in a certain range independently 

of the global shell curvature by appropriately changing the base parameters . 

Table 2: Equations for the waterbomb pattern 

, 

, 

, 
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6. Waterbomb cell kinematics with five parameters 

We again consider the setup of Section 2. In this section we assume that the base region retains either a 

rotational symmetry about the origin or a reflectional symmetry about the -plane, but not necessarily 

with respect to the -plane during the entire folding process. Thus  and  are determined by  

and . Similar to Section 3, we obtain the equations in Table 2 for the coordinates of the vertices 

because the material is rigid. More precisely, angles between adjacent valley and mountain fold lines  

( ) and angles between adjacent valley fold lines ( ) are preserved as well as distances of the 

corners to the origin are preserved ( ), where again we assume that . 

Equations  and  immediately yield 

 

Inserting the expressions for  and  into  and  and solving for  and  yields: 

 

Rearranging and squaring Equation  yields 

 

Finally, inserting the expressions for  and  into Equation  and rearranging according 

to powers of  yields 

 

where ,  and  are expressions involving , namely 

 

Treating  as a quadratic equation in  yields the solutions: 

 

In particular, this allows us to express  in terms of the parameters  and . 
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Figure 5: Asymmetrically folded waterbomb cell controlled by the displacement of  exemplified for three 

combinations of design parameters  and control angle  

The kinematics of the asymmetrically folded cell is controlled by the values of  and . Examples of 

the folding process for three selected combinations of the design parameters  and angle  are 

shown in Figure 5 for decreasing values of . The mountain fold lines are fixed within the -plane 

at the prescribed value of  as highlighted in red. 

7. Conclusions 

An algebraic description of the waterbomb folding kinematics has been derived to support the design 

of thin-walled folded concrete shells made reinforced with textile fabrics. 

The algebraic description allows us an exact identification of the cell vertices at any state of folding, 
both symmetric and asymmetric, as functions of the design and control parameters. Moreover, in the 
symmetric case, it facilitates the exact compatible generation of waterbomb tessellations with 

arbitrarily many cells from a single base cell. The assumption of facet rigidity in combination with 
symmetric folding induce a cylindrical geometry allowing for a construction of vault shells. The 

asymmetric case will be examined in future work. 

With the obtained algebraic solution, statically relevant design parameters, i.e. shell curvature and 
effective cross-sectional height, can be directly evaluated and used in a preliminary shell design. The 
generated geometries serve as input for the analysis of structural behaviour of folded textile-reinforced 

concrete shells. 
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