Magnetic Reconnection

Lorenzo Sironi (Columbia) Foundations of CR Astrophysics, Varenna 2022

Reconnection blah blah blah

Reconnection blah blah blah

What is magnetic reconnection?

- The Sweet-Parker model of magnetic reconnection.
- The regime of relativistic reconnection.
- The physics of particle acceleration in relativistic reconnection.

What can magnetic reconnection do?

- Where/How do reconnection layers form?
- UHECRs from relativistic reconnection.
- Hard and fast flares from relativistic reconnection.
- It allows you to build a career in plasma astrophysics.

What is magnetic reconnection?

R. Kulsrud at his 90th birthday party: "Enrico Fermi told me to study reconnection for my PhD thesis, nearly 70 years ago. We have yet to understand it."

What is magnetic reconnection?

R. Kulsrud at his 90th birthday party: "Enrico Fermi told me to study reconnection for my PhD thesis, nearly 70 years ago. We have yet to understand it."

What is magnetic reconnection?

What is magnetic reconnection?

- A change in the macroscopic topology of the B field due to microscopic plasma effects.
- This is often accompanied by explosive energy release.

Reconnection in the Sun

Reconnection in Earth's magnetosphere

Three million-dollar questions

What is magnetic reconnection?

- A change in the macroscopic topology of the B field due to microscopic plasma effects.
- This is often accompanied by explosive energy release.

Three key questions:

- The *rate* problem: how fast does the field dissipation proceed?
- The *particle acceleration* problem: how does reconnection partition energy between B field, ions and electrons (thermal and non-thermal)?
- The onset problem: how does the system evolve towards reconnection?

Why does the field topology change?

From Maxwell to ideal MHD

$$abla imes {f E} = - rac{\partial {f B}}{\partial t}$$

Faraday's law

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{V} \times \mathbf{B})$$

Induction equation in ideal MHD

What did I use? Ohm's law in ideal MHD:

$$\mathbf{E} + \frac{\mathbf{V} \times \mathbf{B}}{c} = 0$$

Ohm's law in ideal MHD:

$$\mathbf{E} + \frac{\mathbf{V} \times \mathbf{B}}{c} = 0$$

Ideal Ohm's law leads to *flux freezing* (Alfven theorem): magnetic field lines must move with (are *frozen* into) the plasma.

BUT: Reconnection implies breaking the frozen-field constraint,

i.e., we need to go beyond ideal MHD.

Ohm's law in resistive MHD:

$$\mathbf{E} + rac{\mathbf{V} imes \mathbf{B}}{c} = \eta \mathbf{J}$$

Ohm's law in resistive MHD:

$$\mathbf{E} + \frac{\mathbf{V} \times \mathbf{B}}{c} = \eta \mathbf{J}$$

Induction equation in resistive MHD (for uniform resistivity):

$$\frac{\partial \mathbf{B}}{\partial t} = \underbrace{\nabla \times (\mathbf{V} \times \mathbf{B})}_{\text{advection}} + \underbrace{D_{\eta} \nabla^{2} \mathbf{B}}_{\text{diffusion}} \qquad D_{\eta} \equiv \frac{\eta c^{2}}{4\pi}$$
Lundquist number: $S \equiv \frac{L_{0} V_{A}}{D_{\eta}}$ Alfven speed: $V_{A} \equiv \frac{B}{\sqrt{4\pi\rho}}$

Resistive MHD and reconnection

The last term becomes important not because the resistivity is large, but because B gradients (i.e., currents) are large \rightarrow current sheets

Ideal MHD is ok in most of the volume, but not in current sheets

In astro, the mean free path to collisions is enormous: ~kpc in supernova remnants, ~Mpc in galaxy clusters. So, the plasma is ~ *collisionless.*

What can violate the frozen-in condition and mediate reconnection?

The generalized Ohm's law:

$$\mathbf{E} + \frac{\mathbf{V} \times \mathbf{B}}{c} = \eta \mathbf{J} + \underbrace{\frac{\mathbf{J} \times \mathbf{B}}{en_e c}}_{\text{Hall}} - \underbrace{\frac{\nabla \cdot \mathbf{P}_e}{n_e ec}}_{\text{elec. pressure}} + \underbrace{\frac{m_e}{n_e e^2} \frac{d \mathbf{J}}{d t}}_{\text{elec. inertia}}$$

This introduces new (microscopic) length scales:

$$d_i\equiv rac{c}{\omega_{pi}}=\sqrt{rac{c^2m_i}{4\pi n_iZ^2e^2}}\qquad d_e\equiv rac{c}{\omega_{pe}}=\sqrt{rac{c^2m_e}{4\pi n_ee^2}}.$$

► ISM: $n \sim 1 \text{ cm}^{-3} \Rightarrow d_i \sim 200 \text{ km}$, $d_e \sim 5 \text{ km}$

- ▶ Solar corona: $n \sim 10^9~{
 m cm^{-3}} \Rightarrow d_i \sim 7$ m, $d_e \sim 20~{
 m cm}$
- ► Solar wind : $n \sim 10 \text{ cm}^{-3} \Rightarrow d_i \sim 70 \text{ km}$, $d_e \sim 2 \text{ km}$

(credit: Murphy)

The Sweet-Parker model in resistive MHD

Lundquist number:

$$S \equiv \frac{L_0 V_A}{D_\eta}$$

The SP model: the rec rate

The dimensionless reconnection rate scales as

$$\frac{V_{in}}{V_A} \sim \frac{1}{S^{1/2}} \tag{7}$$

The Lundquist number S is the ratio of the resistive diffusion time scale to the Alfvén wave crossing time scale:

$$S \equiv \frac{LV_A}{D_\eta} = \frac{\tau_{res}}{\tau_{Alf}} \tag{8}$$

Typically S is somewhere between 10^9 and 10^{20} in astrophysics

The Sweet-Parker model predicts slow reconnection

Galaxy Lab 10⁴ **Protostellar disks** Basic plasma experiments $10 - 10^4$ 10¹⁶ **Fusion experi** 10²⁰ S tends to be large Solar system 10¹⁵ 10¹³ Geomagnetic tail AGN disks 10¹² 10²³ Solar wind AGN disk coronae 10^{14} 10²⁹ Solar corona Jets

Note: S here is computed using the collisional (Spitzer) resistivity

(credit: Murphy)

The SP model: issues

It predicts solar flares should last ~ months. Instead, they last ~ minutes.

So?

1. Most astro plasmas are *collisionless*, so we need to include kinetic effects, which may generate a higher *effective* resistivity.

$$\mathbf{E} + \frac{\mathbf{V} \times \mathbf{B}}{c} = \eta \mathbf{J} + \underbrace{\frac{\mathbf{J} \times \mathbf{B}}{en_e c}}_{\text{Hall}} - \underbrace{\frac{\nabla \cdot \mathbf{P}_e}{n_e ec}}_{\text{elec. pressure}} + \underbrace{\frac{m_e}{n_e e^2} \frac{d \mathbf{J}}{d t}}_{\text{elec. inertia}}$$

Kinetic effects can be studied with particle-in-cell (PIC) simulations. [much more on this later]

The SP model: issues

It predicts solar flares should last ~ months. Instead, they last ~ minutes.

So?

- 1. Most astro plasmas are *collisionless*, so we need to include kinetic effects, which may generate a higher *effective* resistivity.
- 2. Still, some systems (interiors of stars and accretion disks, solar chromosphere) should be collisional enough, that resistive MHD applies.

Is the SP model actually correct?

Is the SP model actually correct?

It seemed so for a long time...

Elongated current sheets are susceptible to the plasmoid instability!

The plasmoid instability

Long current sheets ($S > S_c \sim 10^4$) are violently unstable to multiple plasmoid formation.

(Shibata & Tanuma '01)

• Current layers between any two plasmoids are themselves unstable to the same instability if

$$S_n = L_n V_A / D_\eta > S_c$$

• Plasmoid hierarchy ends at *the critical layer*:

$$L_{c} = S_{c} D_{\eta} / V_{A} ; \ \delta_{c} = L_{c} S_{c}^{-1/2}$$
$$c E_{c} = B_{0} V_{A} S_{c}^{-1/2}$$

• $N \sim L / L_c$ plasmoids separated by near-critical current sheets.

The plasmoid instability: rec rate

The reconnection rate levels off at $\frac{V_{in}}{V_A} \sim 0.01$ for $S \gtrsim 10^4$ The Sweet-Parker model is not applicable to astrophysical reconnection!

 $v_{\rm in} \sim v_A / \sqrt{S_c} \sim 0.01 v_A$

$$t_{\rm rec} = L/v_{\rm in}$$

Plasmoids: solar flares

LASCO

Plasmoids: lab experiments

(Hare et al., PRL '17)

Plasmoids in reconnection: PIC sims

(LS, Giannios & Petropoulou 16)

The PIC method

Particle-in-Cell (PIC) method:

It is the <u>most fundamental way</u> of capturing the interplay of charged particles and e.m. fields.

The computational challenge:

The *microscopic* scales resolved by PIC simulations are much smaller than *astronomical* scales.

Typical length (c/ω_p) and time $(1/\omega_p)$ scales are:

$$\frac{c}{\omega_p} \simeq 5.5 \times 10^5 \left(\frac{n}{1 \,\mathrm{cm}^{-3}}\right)^{-1/2} \mathrm{cm} \qquad \frac{1}{\omega_p} \simeq 1.8 \times 10^{-5} \left(\frac{n}{1 \,\mathrm{cm}^{-3}}\right)^{-1/2} \mathrm{s}$$

$$\omega_p = \omega_{pe}$$
 ; $\omega_{pi} = \omega_{pe} \sqrt{m_e/m_i}$

Hereafter: relativistic kinetic reconnection in collisionless plasmas

High-energy astro sources are our best "laboratories" of relativistic plasma physics

Relativistic reconnection

- Reconnection electric field (out-of-plane): $E_{\rm rec} \simeq 0.1B_0 \rightarrow \frac{v_{\rm in}}{v_A} = \frac{E_{\rm rec}}{B_0} \sim 0.1$
- "Guide" (out-of-plane) uniform magnetic field Bg

The physics of particle acceleration in relativistic reconnection

LS 2022, PRL, 128, 145102 Zhang, LS & Giannios 2021, ApJ, 922, 261

The physics of particle acceleration in relativistic reconnection

LS 2022, PRL, 128, 145102 Zhang, LS & Giannios 2021, ApJ, 922, 261

PIC simulation of σ =10 (<u>relativistic</u>) reconnection

The reconnection layer breaks into a chain of magnetic islands / plasmoids

The three stages of any accelerator

- Injection
- Power-Law Formation
- Maximum Energy (cutoff)

Injection

Particle injection

How can the inflowing cold particles be promoted to $\gamma \sim \sigma/2$ and above?

 $\eta_{\rm rec} \sim 0.1$ B_q

reconnection rate

guide field (along electric current)

 $\sigma = \frac{B_0^2}{4\pi\rho c^2} \gg 1$

Particle injection

$({\rm B}/{\rm B_{0}})^{2}$

Particle injection

- The spectrum of E<B particles peaks at $\gamma \sim 1$
- The spectrum of E>B particles peaks at $\gamma \sim \sigma$
- \Rightarrow The high-energy end is dominated by E>B particles.

Particle injection fraction

How to kill particle injection?

Testparticles: like regular particles, but they do not contribute to the current.

Dot-dashed: testparticles whose energy is fixed at γ~few while in E>B regions.

Dotted: E<B particles.

Dot-dashed: testparticles evolved without E_{//}

(LS 22, PRL)

 \Rightarrow Injection by non-ideal fields is a <u>necessary prerequisite</u> for further acceleration.

Why should we care about injection?

• To emphasize that studies of test-particle acceleration in MHD simulations need to properly include non-ideal effects.

Because reconnection-accelerated particles may not get much beyond the injection stage.

Injection

• Maximum Energy (cutoff)

The spectral cutoff in 2D

The highest energy particles in 3D

• In 3D, lucky particles escape from plasmoids (Dahlin+15) and wiggle "free" around the layer.

The highest energy particles in 3D

• In 3D, lucky particles escape from plasmoids (Dahlin+15) and wiggle "free" around the layer.

• They get accelerated linearly in time, $\gamma \propto t$, by the large-scale (ideal) electric field in the upstream.

The energy gain rate approaches

$$\sim e E_{\rm rec} c_{\rm rec}$$

 $E_{\rm rec} \simeq 0.1 B_0$

• AGN jets are able to accelerate UHECRs.

⁽Zhang, LS, Giannios 21)

- Injection
- Power-Law Formation
- Maximum Energy (cutoff)

The injection stage gives hard spectra

This holds in electron-positron, electron-proton and electron-positron-proton plasmas.

Theory of post-injection power-law

• In steady state,

$$\frac{\partial}{\partial\gamma} \left(\frac{\gamma}{t_{\rm acc}} f\right) + \frac{f}{t_{\rm esc}} = Q_0 \delta(\gamma - 3\sigma)$$

assuming injection at
$$\gamma=3\sigma_{
m s}$$

• If t_{acc} and t_{esc} depend linearly on γ , the solution is

$$f \propto \gamma^{-t_{
m acc}/t_{
m esc}}$$

- What is the acceleration time t_{acc} = $\gamma/\dot{\gamma}$?
- What is the escape time t_{esc} ?

A new 3D theory of power-law formation

A new 3D theory of power-law formation

- Active acceleration only in the "free" state while particles are in the upstream.
- Acceleration ceases when particles are captured by plasmoids (escape term).

Acceleration and escape times

Acceleration time t_{acc}
$$=\gamma/\dot{\gamma}$$

Escape/trapping time tesc

The two timescales are comparable, so

$$f_{\rm free} = \frac{dN_{\rm free}}{d\gamma} \propto \gamma^{-t_{\rm acc}/t_{\rm esc}} \propto \gamma^{-1}$$

Free vs trapped vs all

Free vs trapped vs all

In steady state:

rate of free particles getting trapped = rate of trapped particles being advected out

$$f_{\rm trap} = f_{\rm free} \frac{t_{\rm adv}}{t_{\rm esc}} \propto f_{\rm free} \gamma^{-1} \propto \gamma^{-2}$$

At $\gamma \gtrsim 3\sigma$ 3D reconnection leads to a universal (σ -independent) slope of *p*=2.

The outcome: a broken power law

At $\gamma \lesssim 3\sigma$ injection in reconnection leads to σ -dependent slopes, as hard as p=1.

At $\gamma \gtrsim 3\sigma$ 3D reconnection leads to a universal (σ -independent) slope of p=2.

Relativistic reconnection vs relativistic shocks (as UHECRs accelerators)

The highest energy particles in 3D

• In 3D, lucky particles escape from plasmoids (Dahlin+15) and wiggle "free" around the layer.

• They get accelerated linearly in time, $\gamma \propto t$, by the large-scale (ideal) electric field in the upstream.

The energy gain rate approaches

$$\sim e E_{\rm rec} c_{\rm rec}$$

 $E_{\rm rec} \simeq 0.1 B_0$

• AGN jets are able to accelerate UHECRs.

⁽Zhang, LS, Giannios 21)

Relativistic shocks in GRBs

JET COLLIDES WITH AMBIENT MEDIUM (external shock wave) X-RAYS, VISIBLE LIGHT,

RADIO

WAVES

external

shocks

Gamma-ray burst external shocks:

- γ₀~a few hundreds
- weakly magnetized: $\sigma \sim 10^{-9}$

quasi-perpendicular shocks

(Gehrels et al 02) 🛛 🖡

AFTERGLOW

Weakly magnetized shocks

Mediated by the Weibel instability, that generates small-scale sub-equipartition magnetic fields.

2D PIC simulation of $\sigma=0$ $\gamma_0=15$ e⁻-e⁺ shock

The Fermi process in low-σ shocks

Particle acceleration via the Fermi process in self-generated turbulence, for initially unmagnetized (i.e., $\sigma=0$) or weakly magnetized flows.

GRB shocks accelerate non-thermal particles

Conclusions are the same in 2D and 3D, for electron-positron and electron-ion plasmas

GRB shocks are slow accelerators

By scattering off small-scale Weibel turbulence, the maximum energy grows as $\gamma_{max} \propto t^{1/2}$. Instead, most models of particle acceleration in shocks assume $\gamma_{max} \propto t$ (Bohm scaling).

