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Using stochastic approximation and self-adjusted mixture sampling for molecular design:
Some collected notes
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We collect some notes on using stochastic approximation with multiple self-adjusted mixture sampling

simulations for molecular design problems.
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MAXIMIZING LIGAND BINDING AFFINITY FOR A PROTEIN

Suppose we are trying to design a ligand that maximizes

s the binding affinity to a target protein. Let the index j; €
w {1,...,m} denote the ligand identity.
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We define two systems with associated probability densi-

1 ties:
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Suppose we have a protein:ligand:solvent system with

probability density

pij(z) =eligij(z) , j=1,....m (1

where we note the dimensionality of + may depend on the
index j.

We also have a ligand:solvent system with probability den-

sity

poj(x) = eC;J’qgj(a:)j =1,...,m (2)
Consider the expanded ensembles
(G, 2)1 ~ Qu(Cr, G2) = m13(Cr, G2)e W ayi(x)  (3)
(s )2 ~ Q2(C1, G2) = m2;(Cr, a)e™ ga;(x)  (4)
To identify ligands with high binding affinity for a protein,

z» we propose to design a chain with the limiting marginal dis-
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30 {Cu,...

tribution proportional to the binding affinity

P1js Doj ox Kj = 42 ¢ (5)

To do this, we allow the 7 to depend on (; =
aClm} and CQ = {421, Ceey CQm} such that

w1y = o = m;(C1, C2) (6)

« Specifically, we propose

Cos=Cry _ e62i —C1j )
Z?:l e62k—C1k

TT25 = €
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(n)
ing 7; (1, C2)-

THE ALGORITHM

The algorithm is as follows: At iteration n,

e Sample from the expanded ensemble defined by @,

and Q- for the current ( {"‘1)7 é”—l)).
00~ @) ®
(0, 2)2 ~ Qal ) o

« Update estimates of (¢{" ™%, ¢{"=1).

n n— — 5(l1)

C{ L) = § L 1) + n ! n—J n— (10)
ro m(¢ Y, )
(n) _ An=1) | 1 d;(l2)

Goi” =Cy; M — — (11)
ro (¢ )

set (i} = Gy =0.

NOTE: It may simplify things to break out the update of
into an explicit recursion step instead of explicitly writ-

NOTE: It would be best if we can abandon using 7; and

instead work in log space as g; = — log 7; instead, since any
implementation involving 7; directly will run into numerical
underflow/overflow issues otherwise.

See a simple example of this algorithm in action for a set of

Gaussian distributions at this link.

ANOTHER POSSIBILITY

Set 15 (Cl, CQ) o %21 =61 but 7T2]'(C17 Cz) ox 1.
With this choice, we have

(G, 2)1 ~ Q1(C1, () = e gy (x)
(G, 2)2 ~ Qa2(C1, () = e goj()

The corresponding algorithm is as follows: At iteration n,

(12)
(13)
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51 e Sample (I, z), from the expanded ensemble defined by
2 Qs for the current ¢{" .
(I,z)2 ~ Q2(C1, (o) = e ¥ g () (14)
= e Update estimate of ¢{" ).
P =¢ Y (Sm(li) (15)
“ set¢{M = 0.

55 e Sample (I, z); from the expanded ensemble defined by
5 Q1 for the current ¢{™

(l,z)1 ~ Q1(C1,G) = e ¥ () (16)

57 GENERALIZATION OF THE DESIGN PROBLEM

ss  More generally, consider we have s different probability
s» densities

pij(x):egjqij(x) ,i1=1,...,8 , 7=1,....m (17)

« and we desire to design a chain where the marginal distribu-
« tions of all s chains are

szO(H€ i = exp [—

i'=1
« where the design vector © = {0, ..., 0} specifies how dif-
«s ferent targets and antitargets are used in weighting the design
64 constraints.

iesc;j] Vi=1

i'=1

s We impose super-detailed balance:

Maia)P[TIA[T] =

W(xcorea Lold
82

T(Tcore Toldy Mora) P(M

s We postulate that we can do this by defining 7;(Z) for Z =
66 {Cl, .. .,CS} as

pi;(Z]©) o exp [ Z(‘) C”] (19)

67 THE SAMPLING SCHEME

e Suppose we are proposing a transition from a molecule
60 Moia to Mpew, Where the initial molecule has configuration

© & = (Zeores Told) and the new molecule has configuration
yA— / / .
nT = (:Ecorcv‘rncw)‘
/ /
T : (xcorc; xoldaMold) — (xcorea xnewaMncw) (20)

2 [JDC: We still need to incorporate the stochastic nature in
7 the order of atom and torsion proposals into the ¢ terms.]
74 Hybrid scheme

75 Starting from (Zcore, Told, Mold), the proposal scheme is:
76 1. Mncw ~ P(Mncw|Mold)

77 2. Tnew ~ ¢($new|xcorev Molda Mnew)

78 3. (x;ew7 m(lald“r/core) ~ (I)(a',‘ — x/lMOId — MHGW)
w4 Accept  (Tlore, Thew Mhnew)  With  probability
80 mln{l,A[T]}

( cor67 ‘T/new’ HEW) [7-]"4[7-] (21)

new‘Mold) ¢(xnew|xcorea Molda Mnew) (I)(.’E — x/|Mold — Mnew) A[ﬂ

= ’/T(Iizorea x;evw MHEW) P(MOM‘MHGW) ¢(‘rgld|xéorea MneW7 MOld) (I)(x, — x|MneW — MOld) A[ﬂ (22)
ss Collecting terms to compute the acceptance criteria:
A[ﬂ _ ﬂ-(‘r/corm x;ew7Mnew) P(Mold‘Mnew) (b(x:)}dlx:;ormMnewa Mold) (I)(aj/ — manew — Mold) (23)
.A[ﬂ 7T(Qccmrea Lold Mold) P(Mnew‘Mold) ¢(Irlew|xcorea Mold, Mnew) (I)(.T — 1'/|Mold — Mnew)
_ e~ (Teore Thew Muew) +9(Muew) P(Moia|Mnew) ¢(2h14]%, ores Mnews Mola) o~ DSz | Mata— Maew] (24)
eiu(ajcore’wOld’MOld)ng old) ( ncwlMold) (xncw‘xcorc; Molda ncw)
_ e (@ corerThew Muew) +9(Maew) P(Moia|Mnew) o(z 01d|xCOI’e7MneW7MOId) e~ wlr—a'[A=0-1] e eA=0) (25)
e u(xcole7mold7Mold)+g(Mold) P( newlMold) (xnew‘xcoreaMoldy new) e_u(x“)‘:l)
[
8 Two-stage scheme " 1. Mpew ~ P(Mhpew|Moia)

e Starting from (Zeore, Zold, Moid ), the proposal scheme is:

87 2. (mgldﬂ m/core) ~ Dgelete (T — CC/|~/\/101d)



88 3 Thow ~ O(Thew|Thoorer Mold, Muew) o 5. Accept (X e, Thew> Mnew)  With  probability

91 mln{l,A[T]}

89 4. (xgewﬂ ‘T/C/ore) ~ Pingert (2 — 2" Mupew)

2 We impose super-detailed balance:

7T(‘T"Corea Lold MOld)P[ﬂA[ﬂ = ﬂ-(w::/orm xgew7 MHSW)P[ﬂA[ﬂ (26)

93

7T(xcorm Lold, Mold) P(Mnew|Mold) (I)delete(aj — $/|Mold) (b(x;ew‘xéorea M01d7 Mnew) (I)insert (LL'/ — x//|Mnew) A[ﬂ
= W(x:;,orcv ff;/cw, Mnew) P(Mold|Mnew)(I)delete(xH — 1'/|Mnew) ¢(xgld|x/co1rcv Mnewa Mold) (I)insert ((E/ — x|Mold) A[ﬂ

(27)
9 Collecting terms to compute the acceptance criteria:
A[7~'}
AlT]
_ 7T($/c/0r67 x;]/ev\n Mnew) P(Mold|Mnew) (I)delete(x/l — xl|Mnew) ¢($gld|$lcore, MneW7 Mold) q)insert(-r/ — x‘Mold) (28)
'/T(:Ccorm Zold, Mold) P(Mnew|Mold) (pinsert (ZE/ — 1’”|Mnew) ¢(x;1ew|x:;orev Molda Mnew) (pdelete(x — x,|Mold)
67u(xcorevznew7MncW)+g(MnCW) P(Mold|MﬂeW) —ASinsert [IIHZE”‘Mncw] qﬁ(x(’)ldkz:éore, Mnew, Mold) e*ASdelere[l"?f‘M@)

€
e_u(xcoreaxold7Mold)+g(Mold) P(MneW|Mold) ¢($;1€W|’ré0re7 M01d7 Mnew)

e UTCore Tnew Mucw)+9 (Mauew) P(Mo1a|Mnew) ¢(xf)1d‘xlcoreaneW7Mold)
eiu(xcom’m(’ld’MOld)Jrg(MOld) P(MneW|M01d) ¢($/ |$l Mol(thew)

new core?

’ ’
_u(xcore Thew iMnew ,A=0) —u(Tcore,Told;Mold,A=1)

—Winsert [#' =2 | Mpew] € —wWaelete [z [Mora] €

e = U@ Tl iMoo A1) © oo g Mora A=0) (30)
— eg(M"eVV) P(M01d|Mnew) ¢(mg]d|xéore7Mn€W7Mold) e_winsert[wlﬁmﬁanew]e_wdclctc[$_>m/|Mold]
e9(Mona) P(Mnew|M01d) (b(x/new‘x/core? Moia, Mnew)
e_u(x:;/oreym;,/ewyMnew) e_“(mcore7mold;Mold7>\:1) €_7L(ftéore7m:)ew;MneW7>\:0)
X U oo Mo A=]) o (@eoreora Mod) o= Ul(Thora T iMora A=0) (31
[
95 SAMPLING SCHEME IMPLEMENTATION 105 e The chemical proposal probabilities, which are com-
106 puted by the ProposalEngine:
96 Hybrid scheme
P(Ma|M
I | tati log Pchemical = 10g ( 01d| HeW) (36)
97 mplementation P(Myew| Maoia)
s We break the hybrid acceptance criteria (Eq. 25) into the
9 following components: 107 e The geometry proposal probabilities, computed by the
108 GeometryEngine:
100 e The stationary probability from the initial and
101 final chemical states, which is computed in the o(z! ’
, x |fE 7Mnew; Mold)
ExpandedEnsembleSampler: log P = log oldZcore (37)
” P P geometry ¢(xnew|xcorea Mold7 Mnew)
efu(fr;ore,Z;ew,Mncw)Jrg(Mncw) = log Preverse —log Pforward (38)
log PStationary = log e—U(ZcoresTold, Mold)+9(Mo1a) (32) hich H ‘
. ¢ .
= log Py — 10g Pyiiad (33) ™ which we further decompo.s.e.lnto reverse and forward
10 geometry proposal probabilities:
103 which we further decompose into the initial and final . ,
104 log probabilities of chemical states: 10g Preverse = 108 #(261a]Teores Muew, Moia) — (39)

IOg Pforward = IOg (b(xnew ‘xcorea M01d7 Mnew) (40)
10g Pﬁnal = _u(xlcore’ ‘/I";evw Mﬂew) + g(Mnew> (34)
log Pipitial = —U(Zcore, Tolds Mold) + g(Mora)  (35) m and finally the NCMC component, computed by the
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NCMCEngine:
log Pnene = log e~ A= [Mola— Muew] (41)
[ A=051] e—u(m,/\zo)
_ —wl[rz—x’ [ A=0—
- IOg € efu(a:’,)\ZI) (42)
= IOg Pwork + log Penergy (43)

which we further decompose into work and energy
change contributions

(44)
(45)

work = —w[z = ' |A=0—1]
=u(z’, A =1) —u(z, A =0)

log P
1Og Pcncrgy
JDC: Check that the energy component here is really the
reduced potential for both GHMC and VV, rather than
the total reduced energy.

ws With this definition of terms, the overall acceptance proba-
o bility is therefore given as

120
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IOg Paccept = 10g Pﬁnal - 1Og Pinitial + log Pchemical

+ 1Og Preverse - log Pforward

+ 1Og Pwork + lOg Penergy (46)

Testing

We use several kinds of tests to ensure that the quantities
described above are computed correctly.
check_alchemical_null_elimination: This test ensures that
e the NCMC work is computed correctly by performing a
s hull transformation in which the overall free energy change
16 Should be zero. We can show that the expectation of the ex-
= ponentiated work should be given by the exponentiated free
s energy difference (due to Jarzynski [1]):

Eo_1 [6

7w[m~>x'|)\:0—)1]]

Z Poﬁl[x—>£L’l]€_w[w_>x/‘>\=0_>1]
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We can test the log P, component using the one-sided
EXP estimator

Afo1 = —log Eo—1 [explog P o (48)

Note that we are only testing the work contribution here. The
differential path action (log AS = log P + 10g Pepergy)
obeys different statistics. [JDC: Is there a similar test we could
apply to log AS?]

The EXP estimator can produce heavily biased estimates,
making the uncertainty estimates unreliable [2], so instead
use the bidirectional BAR estimator to estimate switches in
both directions when possible [3]. This also ensures that the
NCMC method obeys the correct symmetry relations when
run forward and backward. In particular, the protocol must
be symmetric unless additional corrections for selecting the
same protocol and its time-reverse are included [4].
check_harmonic_oscillator_ncmc: The same principles as
above, applied to a harmonic oscillator. This scheme
tests only the NCMCIntegrator, rather than the whole
NCMCEngine.

Two-stage scheme
Implementation

We break the two-stage acceptance criteria (Eq 31) into the
following components:

e The stationary probability from the initial and
final chemical states, which is computed in the
ExpandedEnsembleSampler:

e—u(%gm.e 1$:1/ew 7Mnew )+g(Mnew)

(49)
(50)

log Pstationary = log e—U(Tcore, Told; Mora) +9(Mola)

= lOg Pﬁnal - IOg Pinitial

which we further decompose into the initial and final
log probabilities of chemical states:

o TN
- N -
Z 7o(z0) H Ko(@n_1,20)] €™ SN (U (Tn)—un—1(2n)) log Pgpa = *U(flc/orm mﬁcw? Muew) + g(Mhyew) (51)
To TN ln=1 ] log Pinitial = 7u(xcore7 Told, Mold) + g(Mold) (52)
5 177 anlen)
Z 7o(20) H Ky (@n—1,7y) H q”li(;) 156 e The chemical proposal probabilities, which are com-
To TN Ln=1 Jn=1 A0 157 puted by the ProposalEngine:
[ X 1 & Z.ox ()
Kn e " nitn n
Z 7(0(370) 1:[1 (x 1% ) 1:[1 anlﬂ—nfl(xn) log P h ical — IOg —P(Mold|Mnew) (53)
To TN Ln= N_ n= N chemica P(Mnew|Mold)
N 3 mo(en)Ko(zo,21) | [ En(@nrsza) | ] M (@n)
Z enwi ’ o ’ 1 Tl (n)» The geometry proposal probabilities, computed by the
p (1) N N ( 159) GeometryEngine:
N T1(T1 T Ty
— mo(x Ko(zh_ 1,2y _—
Zy Z of 1)7T0($1) lHQ (@n—1 )] li[lﬂnfl(wn) A2l 1q] Tl ores Mnews Moid)
TN n= n= log P yeometry = 108 (54)
ZN & Y ¢(x;1cw|m/corca Moldv MIICW)
_ = e_(fN—fO) — e_Af()A)l (47) . 1 P 1 P
ZO = 108 Freverse — 108 Frorward (55)



160

161

162

163

164

165

79

which we further decompose into reverse and forward
geometry proposal probabilities:

(56)
(57)

10g Preverse = log ¢(gj:)1d |‘T::ore7 Muew, Mold)
IOg Pforward = log ¢(x/new|x/core7 Mold, Mnew)

and finally the NCMC components, computed by the
NCMCEngine, where there are now two stages (delete
and insert):

—ASgelete[t—2" | Moal

1Og Pdelete = log € (58)

—u {L’,MD ,)\:1
= log |:€wdclcm[$~>:13/|/\/101d] e ( 1d ) }

e—u(m/,/\/lold 7)\:0)
(59)
(60)

— (2, Myew,A=0)
— log e_winsert [1/_)w”|Mnew] e e
efu(:v”,./\/lr,cw,)\zl)

= IOg Pdelete work + IOg Pdelete energy

_ —ASinsert [t =@ [Mhnew
log Pinsert - IOg € il ! ev]

= log Pinsert work + 10g Pinsert energy (61)

which we further decompose into work and energy
change contributions for the separate delete and insert

167

NCMC stages:

= —Welete[T = T'|Mod] (62)
’U,(.I‘l, Mg, A = 0) - u(a:, Mo, A = 1)

= —Winsert [" = T [Mpeuw] (63)
= u(z", Muow, A = 1) — u(2’, Mpew, A = 0)

lOg Pdelete work

IOg Pdelete energy
IOg Pinsert work
log Pinsert energy
JDC: Check that the energy component here is really the
reduced potential for both GHMC and VV, rather than
the total reduced energy. ski
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m With this definition of terms, the overall acceptance proba-
w2 bility is therefore given as

log Paccept = log Pﬁnal - IOg Pinitial + IOg Pchemical
+ IOg Pdelete work + IOg Pdelete energy
+ IOg Preverse - log Pforward

+ IOg Pinsert work + IOg Pinsert energy (64)
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