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MAXIMIZING LIGAND BINDING AFFINITY FOR A PROTEIN13

Suppose we are trying to design a ligand that maximizes14 the binding affinity to a target protein. Let the index j ∈15
{1, . . . ,m} denote the ligand identity.16 We define two systems with associated probability densi-17 ties:18 Suppose we have a protein:ligand:solvent system with19 probability density20

p1j(x) = eζ
∗
1jq1j(x) , j = 1, . . . ,m (1)

where we note the dimensionality of x may depend on the21 index j.22 We also have a ligand:solvent system with probability den-23 sity24

p2j(x) = eζ
∗
2jq2j(x) j = 1, . . . ,m (2)

Consider the expanded ensembles25

(j, x)1 ∼ Q1(ζ1, ζ2) ≡ π1j(ζ1, ζ2)e−ζ1jq1j(x) (3)
(j, x)2 ∼ Q2(ζ1, ζ2) ≡ π2j(ζ1, ζ2)e−ζ2jq2j(x) (4)

To identify ligands with high binding affinity for a protein,26 we propose to design a chain with the limiting marginal dis-27 tribution proportional to the binding affinity28

p1j , p2j ∝ Kj ≡ eζ
∗
2j−ζ

∗
1j (5)

To do this, we allow the π to depend on ζ1 ≡29
{ζ11, . . . , ζ1m} and ζ2 ≡ {ζ21, . . . , ζ2m} such that30

π1j = π2j ≡ πj(ζ1, ζ2) (6)
Specifically, we propose31

π1jπ2j ≡ eζ2j−ζ1j =
eζ2j−ζ1j∑m
k=1 e

ζ2k−ζ1k
(7)
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THE ALGORITHM32

The algorithm is as follows: At iteration n,33

• Sample from the expanded ensemble defined by Q134
andQ2 for the current (ζ

(n−1)
1 , ζ

(n−1)
2 ).35

(l, x)1 ∼ Q1(ζ
(n−1)
1 , ζ

(n−1)
2 ) (8)

(l, x)2 ∼ Q2(ζ
(n−1)
1 , ζ

(n−1)
2 ) (9)

• Update estimates of (ζ
(n−1)
1 , ζ

(n−1)
2 ).36

ζ
(n)
1j = ζ

(n−1)
1j + n−1 δj(l1)

πj(ζ
(n−1)
1 , ζ

(n−1)
2 )

(10)
ζ

(n)
2j = ζ

(n−1)
2j + n−1 δj(l2)

πj(ζ
(n−1)
1 , ζ

(n−1)
2 )

(11)

Set ζ(n)
11 = ζ

(n)
21 = 0.37

NOTE: It may simplify things to break out the update of38
π

(n)
j into an explicit recursion step instead of explicitly writ-39

ing πj(ζ1, ζ2).40
NOTE: It would be best if we can abandon using πj and41

insteadwork in log space as gj ≡ − log πj instead, since any42
implementation involving πj directly will run into numerical43
underflow/overflow issues otherwise.44 See a simple example of this algorithm in action for a set of45 Gaussian distributions at this link.46

ANOTHER POSSIBILITY47

Set π1j(ζ1, ζ2) ∝ eζ2j−ζ1j but π2j(ζ1, ζ2) ∝ 1.48 With this choice, we have49

(j, x)1 ∼ Q1(ζ1, ζ2) ≡ e−ζ2jq1j(x) (12)
(j, x)2 ∼ Q2(ζ1, ζ2) ≡ e−ζ2jq2j(x) (13)

The corresponding algorithm is as follows: At iteration n,50
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• Sample (l, x)2 from the expanded ensemble defined by51
Q2 for the current ζ(n−1)

2 .52

(l, x)2 ∼ Q2(ζ1, ζ2) ≡ e−ζ2jq2j(x) (14)
• Update estimate of ζ(n−1)

2 .53

ζ
(n)
2j = ζ

(n−1)
2j + n−1 δj(l2)

m−1
(15)

Set ζ(n)
21 = 0.54

• Sample (l, x)1 from the expanded ensemble defined by55
Q1 for the current ζ(n)

2 .56

(l, x)1 ∼ Q1(ζ1, ζ2) ≡ e−ζ2jq1j(x) (16)

GENERALIZATION OF THE DESIGN PROBLEM57

More generally, consider we have s different probability58 densities59

pij(x) = eζ
∗
ijqij(x) , i = 1, . . . , s , j = 1, . . . ,m (17)

and we desire to design a chain where the marginal distribu-60 tions of all s chains are61

pij ∝
s∏

i′=1

e−θsζ
∗
i′j = exp

[
−

s∑
i′=1

θsζ
∗
i′j

]
∀i = 1, . . . , s(18)

where the design vector Θ ≡ {θ1, . . . , θs} specifies how dif-62 ferent targets and antitargets are used inweighting the design63 constraints.64

Wepostulate that we can do this by defining πi(Z) forZ ≡65
{ζ1, . . . , ζs} as66

pij(Z|Θ) ∝ exp

[
−

s∑
i′=1

θsζi′j

]
(19)

THE SAMPLING SCHEME67

Suppose we are proposing a transition from a molecule68
Mold toMnew, where the initial molecule has configuration69
x ≡ (xcore, xold) and the new molecule has configuration70
x′ ≡ (x′core, x

′
new):71

T : (xcore, xold,Mold)→ (x′core, x
′
new,Mnew) (20)

[JDC: We still need to incorporate the stochastic nature in72 the order of atom and torsion proposals into the φ terms.]73
Hybrid scheme74

Starting from (xcore, xold,Mold), the proposal scheme is:75

1. Mnew ∼ P (Mnew|Mold)76

2. xnew ∼ φ(xnew|xcore,Mold,Mnew)77

3. (x′new, x
′
old, x

′
core) ∼ Φ(x→ x′|Mold →Mnew)78

4. Accept (x′core, x
′
new,Mnew) with probability79

min {1,A[T ]}.80

We impose super-detailed balance:81

π(xcore, xold,Mold)P[T ]A[T ] = π(x′core, x
′
new,Mnew)P[T̃ ]A[T̃ ] (21)

82

π(xcore, xold,Mold)P (Mnew|Mold)φ(xnew|xcore,Mold,Mnew) Φ(x→ x′|Mold →Mnew)A[T ]

= π(x′core, x
′
new,Mnew)P (Mold|Mnew)φ(x′old|x′core,Mnew,Mold) Φ(x′ → x|Mnew →Mold)A[T̃ ] (22)

Collecting terms to compute the acceptance criteria:83

A[T ]

A[T̃ ]
=
π(x′core, x

′
new,Mnew)

π(xcore, xold,Mold)

P (Mold|Mnew)

P (Mnew|Mold)

φ(x′old|x′core,Mnew,Mold)

φ(xnew|xcore,Mold,Mnew)

Φ(x′ → x|Mnew →Mold)

Φ(x→ x′|Mold →Mnew)
(23)

=
e−u(x′core,x

′
new,Mnew)+g(Mnew)

e−u(xcore,xold,Mold)+g(Mold)

P (Mold|Mnew)

P (Mnew|Mold)

φ(x′old|x′core,Mnew,Mold)

φ(xnew|xcore,Mold,Mnew)
e−∆S[x→x′|Mold→Mnew] (24)

=
e−u(x′core,x

′
new,Mnew)+g(Mnew)

e−u(xcore,xold,Mold)+g(Mold)

P (Mold|Mnew)

P (Mnew|Mold)

φ(x′old|x′core,Mnew,Mold)

φ(xnew|xcore,Mold,Mnew)
e−w[x→x′|λ=0→1] e

−u(x,λ=0)

e−u(x′,λ=1)
(25)

Two-stage scheme84

Starting from (xcore, xold,Mold), the proposal scheme is:85

1. Mnew ∼ P (Mnew|Mold)86

2. (x′old, x
′
core) ∼ Φdelete(x→ x′|Mold)87
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3. x′new ∼ φ(x′new|x′core,Mold,Mnew)88

4. (x′′new, x
′′
core) ∼ Φinsert(x

′ → x′′|Mnew)89

5. Accept (x′′core, x
′
new,Mnew) with probability90

min {1,A[T ]}.91

We impose super-detailed balance:92

π(xcore, xold,Mold)P[T ]A[T ] = π(x′′core, x
′′
new,Mnew)P[T̃ ]A[T̃ ] (26)

93

π(xcore, xold,Mold)P (Mnew|Mold) Φdelete(x→ x′|Mold)φ(x′new|x′core,Mold,Mnew) Φinsert(x
′ → x′′|Mnew)A[T ]

= π(x′′core, x
′′
new,Mnew)P (Mold|Mnew)Φdelete(x′′ → x′|Mnew)φ(x′old|x′core,Mnew,Mold) Φinsert(x

′ → x|Mold)A[T̃ ]

(27)
Collecting terms to compute the acceptance criteria:94

A[T ]

A[T̃ ]

=
π(x′′core, x

′′
new,Mnew)

π(xcore, xold,Mold)

P (Mold|Mnew)

P (Mnew|Mold)

Φdelete(x′′ → x′|Mnew)

Φinsert(x′ → x′′|Mnew)

φ(x′old|x′core,Mnew,Mold)

φ(x′new|x′core,Mold,Mnew)

Φinsert(x
′ → x|Mold)

Φdelete(x→ x′|Mold)
(28)

=
e−u(x′′core,x

′′
new,Mnew)+g(Mnew)

e−u(xcore,xold,Mold)+g(Mold)

P (Mold|Mnew)

P (Mnew|Mold)
e−∆Sinsert[x

′→x′′|Mnew] φ(x′old|x′core,Mnew,Mold)

φ(x′new|x′core,Mold,Mnew)
e−∆Sdelete[x→x′|Mold](29)

=
e−u(x′′core,x

′′
new,Mnew)+g(Mnew)

e−u(xcore,xold,Mold)+g(Mold)

P (Mold|Mnew)

P (Mnew|Mold)

φ(x′old|x′core,Mnew,Mold)

φ(x′new|x′core,Mold,Mnew)

× e−winsert[x
′→x′′|Mnew] e

−u(x′core,x
′
new;Mnew,λ=0)

e−u(x′′core,x
′′
new;Mnew,λ=1)

e−wdelete[x→x′|Mold] e
−u(xcore,xold;Mold,λ=1)

e−u(x′core,x
′
old;Mold,λ=0)

(30)
=
eg(Mnew)

eg(Mold)

P (Mold|Mnew)

P (Mnew|Mold)

φ(x′old|x′core,Mnew,Mold)

φ(x′new|x′core,Mold,Mnew)
e−winsert[x

′→x′′|Mnew]e−wdelete[x→x′|Mold]

× e−u(x′′core,x
′′
new,Mnew)

e−u(x′′core,x
′′
new;Mnew,λ=1)

· e
−u(xcore,xold;Mold,λ=1)

e−u(xcore,xold,Mold)
· e
−u(x′core,x

′
new;Mnew,λ=0)

e−u(x′core,x
′
old;Mold,λ=0)

(31)

SAMPLING SCHEME IMPLEMENTATION95

Hybrid scheme96

Implementation97

We break the hybrid acceptance criteria (Eq. 25) into the98 following components:99

• The stationary probability from the initial and100 final chemical states, which is computed in the101
ExpandedEnsembleSampler:102

logPstationary = log
e−u(x′core,x

′
new,Mnew)+g(Mnew)

e−u(xcore,xold,Mold)+g(Mold)
(32)

= logPfinal − logPinitial (33)
which we further decompose into the initial and final103 log probabilities of chemical states:104

logPfinal = −u(x′core, x
′
new,Mnew) + g(Mnew) (34)

logPinitial = −u(xcore, xold,Mold) + g(Mold) (35)

• The chemical proposal probabilities, which are com-105 puted by the ProposalEngine:106

logPchemical = log
P (Mold|Mnew)

P (Mnew|Mold)
(36)

• The geometry proposal probabilities, computed by the107
GeometryEngine:108

logPgeometry = log
φ(x′old|x′core,Mnew,Mold)

φ(xnew|xcore,Mold,Mnew)
(37)

= logPreverse − logPforward (38)
which we further decompose into reverse and forward109 geometry proposal probabilities:110

logPreverse = log φ(x′old|x′core,Mnew,Mold) (39)
logPforward = log φ(xnew|xcore,Mold,Mnew) (40)
and finally the NCMC component, computed by the111
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NCMCEngine:112

logPNCMC = log e−∆S[x→x′|Mold→Mnew] (41)
= log

[
e−w[x→x′|λ=0→1] e

−u(x,λ=0)

e−u(x′,λ=1)

]
(42)

= logPwork + logPenergy (43)
which we further decompose into work and energy113 change contributions114

logPwork = −w[x→ x′|λ = 0→ 1] (44)
logPenergy = u(x′, λ = 1)− u(x, λ = 0) (45)

JDC: Check that the energy component here is really the115 reduced potential for both GHMC and VV, rather than116 the total reduced energy.117

With this definition of terms, the overall acceptance proba-118 bility is therefore given as119

logPaccept = logPfinal − logPinitial + logPchemical

+ logPreverse − logPforward

+ logPwork + logPenergy (46)

Testing120

We use several kinds of tests to ensure that the quantities121 described above are computed correctly.122
check_alchemical_null_elimination: This test ensures that123 the NCMC work is computed correctly by performing a124
null transformation in which the overall free energy change125 should be zero. We can show that the expectation of the ex-126 ponentiated work should be given by the exponentiated free127 energy difference (due to Jarzynski [1]):128

E0→1[e−w[x→x′|λ=0→1]]

=
∑

x0···xN

P0→1[x→ x′]e−w[x→x′|λ=0→1]

=
∑

x0···xN

π0(x0)

[
N∏
n=1

Kn(xn−1, xn)

]
e−

∑N
n=1(un(xn)−un−1(xn))

=
∑

x0···xN

π0(x0)

[
N∏
n=1

Kn(xn−1, xn)

]
N∏
n=1

qn(xn)

qn−1(xn)

=
∑

x0···xN

π0(x0)

[
N∏
n=1

Kn(xn−1, xn)

]
N∏
n=1

Znπn(xn)

Zn−1πn−1(xn)

=
ZN
Z0

∑
x0···xN

π0(x1)K0(x0, x1)

[
N∏
n=2

Kn(xn−1, xn)

]
N∏
n=1

πn(xn)

πn−1(xn)

=
ZN
Z0

∑
x1···xN

π0(x1)
π1(x1)

π0(x1)

[
N∏
n=2

Kn(xn−1, xn)

]
N∏
n=1

πn(xn)

πn−1(xn)

=
ZN
Z0

= e−(fN−f0) = e−∆f0→1 (47)

We can test the logPwork component using the one-sided129 EXP estimator130

∆f0→1 = − logE0→1 [exp logPwork] (48)
Note that we are only testing thework contribution here. The131 differential path action (log ∆S = logPwork + logPenergy)132 obeys different statistics. [JDC: Is there a similar test we could133 apply to log ∆S?]134 The EXP estimator can produce heavily biased estimates,135 making the uncertainty estimates unreliable [2], so instead136 use the bidirectional BAR estimator to estimate switches in137 both directions when possible [3]. This also ensures that the138 NCMC method obeys the correct symmetry relations when139 run forward and backward. In particular, the protocol must140 be symmetric unless additional corrections for selecting the141 same protocol and its time-reverse are included [4].142
check_harmonic_oscillator_ncmc: The same principles as143 above, applied to a harmonic oscillator. This scheme144 tests only the NCMCIntegrator, rather than the whole145
NCMCEngine.146

Two-stage scheme147

Implementation148

Webreak the two-stage acceptance criteria (Eq 31) into the149 following components:150

• The stationary probability from the initial and151 final chemical states, which is computed in the152
ExpandedEnsembleSampler:153

logPstationary = log
e−u(x′′core,x

′′
new,Mnew)+g(Mnew)

e−u(xcore,xold,Mold)+g(Mold)
(49)

= logPfinal − logPinitial (50)
which we further decompose into the initial and final154 log probabilities of chemical states:155

logPfinal = −u(x′′core, x
′′
new,Mnew) + g(Mnew) (51)

logPinitial = −u(xcore, xold,Mold) + g(Mold) (52)
• The chemical proposal probabilities, which are com-156 puted by the ProposalEngine:157

logPchemical = log
P (Mold|Mnew)

P (Mnew|Mold)
(53)

• The geometry proposal probabilities, computed by the158
GeometryEngine:159

logPgeometry = log
φ(x′old|x′core,Mnew,Mold)

φ(x′new|x′core,Mold,Mnew)
(54)

= logPreverse − logPforward (55)
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which we further decompose into reverse and forward160 geometry proposal probabilities:161

logPreverse = log φ(x′old|x′core,Mnew,Mold) (56)
logPforward = log φ(x′new|x′core,Mold,Mnew) (57)

and finally the NCMC components, computed by the162
NCMCEngine, where there are now two stages (delete163 and insert):164

logPdelete = log e−∆Sdelete[x→x′|Mold] (58)
= log

[
e−wdelete[x→x′|Mold] e

−u(x,Mold,λ=1)

e−u(x′,Mold,λ=0)

]
= logPdelete work + logPdelete energy (59)

logPinsert = log e−∆Sinsert[x
′→x′|Mnew] (60)

= log

[
e−winsert[x

′→x′′|Mnew] e
−u(x′,Mnew,λ=0)

e−u(x′′,Mnew,λ=1)

]
= logPinsert work + logPinsert energy (61)

which we further decompose into work and energy165 change contributions for the separate delete and insert166

NCMC stages:167

logPdelete work = −wdelete[x→ x′|Mold] (62)
logPdelete energy = u(x′,Mold, λ = 0)− u(x,Mold, λ = 1)

logPinsert work = −winsert[x
′ → x′′|Mnew] (63)

logPinsert energy = u(x′′,Mnew, λ = 1)− u(x′,Mnew, λ = 0)

JDC: Check that the energy component here is really the168 reduced potential for both GHMC and VV, rather than169 the total reduced energy. ski170

With this definition of terms, the overall acceptance proba-171 bility is therefore given as172

logPaccept = logPfinal − logPinitial + logPchemical

+ logPdelete work + logPdelete energy

+ logPreverse − logPforward

+ logPinsert work + logPinsert energy (64)
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