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Abstract

Deploying deep learning models in time-critical applications with limited

computational resources, for instance in edge computing systems and IoT

networks, is a challenging task that often relies on dynamic inference meth-

ods such as early exiting. In this paper, we introduce a novel architecture

for early exiting based on the vision transformer architecture, as well as

a fine-tuning strategy that significantly increase the accuracy of early exit

branches compared to conventional approaches while introducing less over-

head. Through extensive experiments on image and audio classification as

well as audiovisual crowd counting, we show that our method works for both

classification and regression problems, and in both single- and multi-modal

settings. Additionally, we introduce a novel method for integrating audio

and visual modalities within early exits in audiovisual data analysis, that

can lead to a more fine-grained dynamic inference.
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1. Introduction

Over the past decade, deep learning has shown tremendous success across

various fields, such as computer vision and natural language processing [1].

However, deep learning models are by definition composed of many layers of

interconnected neurons, even reaching billions of parameters, which makes

them computationally expensive. This has sparked a great deal of research

in order to make deep learning models more lightweight, for which many ap-

proaches have been proposed, for instance, model compression methods [2]

such as quantization [3], pruning [4], low-rank approximation [5] and knowl-

edge distillation [6].

More and more emerging internet of things (IoT) applications are in-

tegrating deep learning models, such as video surveillance, voice assistants,

augmented reality and cooperative autonomous driving, which are often time-

sensitive and require inputs to be processed within specific deadlines [7, 8].

The heavy computational burden of deep learning becomes problematic for

these time-critical IoT applications, due to resource-constrained IoT devices.

Edge computing is a promising computing paradigm for addressing this issue,

in which the deep learning task is offloaded to edge servers in the proximity

of IoT devices.

Since edge computing systems introduce computation offloading over a

communication network and involve multiple nodes working collaboratively

in order to complete the task in a timely manner, transmission time has to

be taken into account in addition to the deep learning computation time.

However, transmission time may vary greatly over time and across different
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channels. Consequently, deep learning models running on edge computing

systems and IoT networks should be capable of anytime prediction, meaning

they should be able to provide a valid response even if they are interrupted

before traversing the entire neural network, although the model is expected

to provide a better answer if it is allowed to run for longer time.

Dynamic inference approaches [9] modify the computation graph based

on each input during the inference phase in order to fit the time constraints.

A dynamic inference approach that particularly suits anytime prediction is

early exiting [10], also referred to as multi-exit architectures or auxiliary clas-

sifiers in the literature. In multi-exit architectures, one or more early exit

branches are placed after some of the intermediate hidden layers of the back-

bone network. The goal of each of these branches is to provide an early

result similar to the final result of the neural network using only the fea-

tures extracted up to that particular branch location. These early results

are inevitably less accurate than the final result of the network. In order to

achieve anytime prediction using early exiting, the latest early result can be

used whenever the execution is interrupted, for instance, whenever a hard

deadline is reached. Computation time can be further decreased by applying

model compression techniques on the backbone of multi-exit architectures.

Besides anytime prediction, early exiting can also be used in budgeted batch

classification where a fixed amount of time is available in order to classify

a set of input samples. In such a setting, the result of earlier branches can

be used for “easier” samples whereas the result of later branches or the final

result can be used for “harder” ones. The difficulty of each sample can be

determined based on the confidence of the network about its output [11],
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although other approaches exist in the literature [10].

Early exit branches are expected to have a low overhead in terms of the

extra computation they introduce, since a high overhead would defeat the

purpose. Therefore, they often contain only a handful of layers. Ideally,

we want the accuracy of the early results to be close to that of the final

result, since a higher accuracy for early exit branches means that the overall

reliability of the system increases. However, the low-overhead constraint

makes it quite challenging to achieve a high accuracy since the early exit

branches have significantly less trainable parameters compared to the rest of

the network. Several approaches for increasing the accuracy of early exits

such as knowledge distillation [12], curriculum learning [13] and architectures

designed specifically for early exit branches [14] have been suggested. In this

paper, we propose a novel architecture in order to obtain more accurate early

exits for convolutional neural network (CNN) backbones.

A neural architecture called vision transformer (ViT ) [15] has been re-

cently introduced for image classification which is radically different from

convolutional neural networks. The building blocks of Vision Transformer

have been used for early exits placed on Vision Transformer backbones [14],

however, using Transformer-based early exit branches on CNN backbones is

not intuitive and requires additional steps and architectural modifications.

We use a modified version of this architecture instead of the usual convolu-

tion and pooling layers in early exit branches and show that our method can

significantly increase the accuracy of early exits compared to conventional
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architectures by fusing local and global receptive fields1. The contributions

of this paper can be summarized as follows:

• We propose a novel architecture for early exit branches in multi-exit

architectures based on vision transformers, called single-layer vision

transformer (SL-ViT ). We compare our method with conventional

CNN-based early exit architectures across 27 scenarios involving differ-

ent datasets, branch locations and backbone networks and show that

our method is significantly more accurate in 26 of these scenarios, while

having less overhead in terms of number of parameters and floating

point operators (FLOPS). To the best of our knowledge the fusion of

global and local scope in early exits has never been used in multi-exit

architectures before.

• We show that our method is a general purpose approach that works

across different modalities as well as multi-modal settings by investi-

gating image classification, audio classification and audiovisual crowd

counting scenarios. We also show that our method works for both

classification and regression problems.

• We introduce a novel way of integrating audio and visual features in

early exits using vision transformers. To the best of our knowledge, this

is the first time early exits have been studied in multi-modal settings.

• We provide insight into why our method achieves better results com-

pared to conventional CNN-based architectures by investigating the

1Our code will be available at https://gitlab.au.dk/maleci/sl_vit.
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role of attention and receptive field.

• We introduce a fine-tuning strategy for SL-ViT called copycat single-

layer vision transformer (CC-SL-ViT ) which is based on the copycat

strategy developed for CNNs [16] and show that this method can fur-

ther increase the accuracy of SL-ViT early exits. To the best of our

knowledge this is the first time the copycat strategy is used for vision

transformers or early exits.

The rest of this paper is organized as follows: Section 2 provides an

overview of the relevant literature; Section 3 describes our proposed method

in detail; Section 4 explains the details of our experiments; Section 5 show-

cases the experiment results; and, finally, Section 6 briefly discusses the re-

sults and concludes the paper.

2. Related Work

This section provides the necessary prerequisites for understanding our

method and experiments. We start by describing the particulars of multi-exit

architectures. Subsequently, we provide the details of the vision transformer

architecture, which is the foundation of the proposed method. Then, we

briefly touch on how audio classification is normally carried out, which is

included in several scenarios in our experiments. Finally, we explain another

scenario investigated in our experiments, i.e. crowd counting, and how it can

be approached in a multi-modal manner.
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2.1. Multi-Exit Architectures

In order to describe multi-exit architectures, we use the same notation as

Scardapane et al. [10] where a neural network is formulated as a function

f(X) = fL(fL−1(...f1(X))). In this formulation L signifies the total number

of layers in the network and fi is the operator corresponding to layer i, which

can be a convolutional layer, a fully-connected layer, a normalization layer,

or any other differentiable operator. hi = fi(hi−1) denotes the output of layer

i, where h0 is the input X. Finally, θi symbolizes the trainable parameters

of layer i.

Equation (1) formulates the training process for the neural network which

is achieved by tuning its parameters using an optimization algorithm on the

landscape defined by a loss function. In this equation, the parameters of the

neural network are denoted by θ =
⋃L

i=1 θi, the training samples are signified

by {(Xn, yn)}Nn=1, and l(·, ·) is the loss function.

f ∗ = arg min
θ

N∑
n=1

l(yn, f(Xn)) (1)

Extending this notation to multi-exit architectures, B ⊆ {1, .., L} signifies

the set of selected branch locations after which early exit branches will be

placed. cb(hb) = yb is the classifier or regressor representing the early exit

branch at each branch location b, where yb denotes the early result at that

location. The schematic illustration of a multi-exit architecture is presented

in Figure 1. However, since there are multiple outputs, and thus multiple

loss signals in a multi-exit architecture, its training is not as straightforward.

Three different approaches for training multi-exit architectures exist in

the literature [10, 17, 13]. In the first approach, called end-to-end training,
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Figure 1: Schematic illustration of a multi-exit architecture with two early exits.

the loss signals of all exits are combined and backpropagated through the

network at the same time. With end-to-end training, the contribution of

each loss signal to the total loss is expressed with weight values, which are

therefore hyper-parameters of the model.

The second approach, called layer-wise training, first trains the network

up to and including the first exit branch. Subsequently, the part of the

network that has been trained so far is frozen, meaning its parameters are not

modified any further, and the remainder of the network up to and including

the second exit branch is trained. This process continues until the entire

network is trained. Note that with this approach, there is no guarantee that

the accuracy of the final exit remains unchanged.

In the final approach, called classifier-wise training, the backbone net-

work is completely frozen and each branch is trained independent of the

rest of the network and other branches, meaning the parameters θ are not

modified and only the parameters of the classifers/regressors {cb}, b ∈ B are

trained. With this approach, no new hyper-parameters are introduced and

the backbone remains unchanged. However, the early exit branches affect a

lower number of trainable parameters compared to the other approaches.

In this paper, we choose to follow the classifier-wise training approach
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due to its practical importance. This is because with classifier-wise training,

early exit branches can be easily added on top of existing backbone net-

works without the need for re-training and hyper-parameter optimization,

which can be computationally expensive and time consuming. Furthermore,

with end-to-end and layer-wise training strategies, the number of branches

and their placement can lead to further trade-offs and affect the overall per-

formance of the model. Since branches are independently trained in the

classifier-wise strategy, any number of branches can exist and a branch can

be placed at any location without affecting the performance of other branches

or the backbone.

It is important to mention that branches placed later in the backbone

network do not necessarily result in a higher accuracy compared to branches

placed earlier. The usage of such branches would therefore not be sensi-

ble since earlier branches exist that require less computation and provide

more accurate results. We hereby use the term impractical to refer to such

branches.

As previously mentioned, there are several methods that try to improve

the accuracy of early exits. The method in [12] uses the combination of the

distillation loss from the final exit and the loss signal from ground truth labels

to train more accurate early exits using in the end-to-end training setting.

The method in [18] expands on this idea by adding a third loss signal based on

the difference between features of the latest early exit with earlier exits. The

method in [19] proposes a technique called gradient equilibrium to combat

the problem of gradient imbalance that surfaces when using the end-to-end

strategy, which is when the variance of the gradients becomes very large when
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loss signals from multiple exits are combined, leading to unstable training.

Moreover, this paper introduces forward and backward knowledge transfer

that aims to encourage collaboration among different exits. The method in

[20] improves the accuracy of later exits by reusing predictions from earlier

exits. The method in [21] circumvents the problem of impractical branches by

adaptively selecting the exit location based on time budget and the specific

input. The method in [22] simplifies the design of multi-exit architectures

by removing the hyper-parameters of the end-to-end training strategy that

specify the contribution of each loss signal.

Besides efficient inference, early exits can prove useful in several other

applications, for instance, the method in [23] allows for parallel training of the

segments of the DNN that exist between early exits, by training each segment

based on the loss signal of the next segment obtained in the previous training

stage. Moreover, early exits can be added to the network during the training

in order to increase the accuracy of the backbone network and discarded after

the training phase, for instance, the widely used Inception model [24] was

trained in this way.

Besides early exiting, several other approaches exist for dynamic infer-

ence, for instance, layer skipping [25, 26, 27, 28] where the execution of some

of the layers of the DNN are skipped, and channel skipping [29] where less

impactful channels of convolutional neural networks are ignored and their

computation is skipped during the inference phase. However, unlike early ex-

its, these approaches cannot provide an output if the execution is interrupted

due to a strict deadline, as these methods need to perform the computations

until the very last layer.
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2.2. Vision Transformer

The transformer architecture was first introduced by Vaswani et al. [30]

for natural language processing, and it has recently been adapted for solving

computer vision problems by Dosovitskiy et al. [15]. Vision transformer was

originally developed for the problem of image classification, however, varia-

tions of vision transformer have since been applied to many computer vision

problems, such as object detection, depth estimation, semantic segmenta-

tion, image generation and action recognition, as well as multi-modal data

analysis tasks such as text-to-image synthesis and visual question answering

[31, 32, 33].

In order to describe the vision transformer architecture, we first explain

the self-attention layer. The input of this layer is in the form of a sequence

X = (x1, . . . , xn) where X ∈ Rn×d and d is the embedding dimension to

represent each entity. Its output is in the form of Z = (z1, . . . , zn) where

Z ∈ Rn×dv . The goal of self-attention is to capture the interaction between

the entities in the sequence. For this purpose, each vector xi in the sequence

is transformed into three separate vectors: the query vector qi ∈ Rdq , the key

vector ki ∈ Rdk and the value vector vi ∈ Rdv , where dq = dk. To construct

the output vector zi that corresponds to the input xi, for each vector xj in

X (including xi itself), the scalar aij is calculated by the inner product of

qi and kj. Output vector zi is then calculated by summing the value vectors

v1, . . . , vn weighted by their corresponding scalars, that is, zi =
∑n

j=1 aijvj.

The scalar aij basically specifies how much attention the i-th entity should

pay to the j-th entity, since aij determines the contribution of vj to the

combined output zi. In practice, the scalars are normalized by
√
dk and
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converted into probabilities using the softmax function.

If the key, query and value vectors are packed into matrices Q = XWQ,

K = XWK and V = XW V , where WQ, WK and W V are learnable weight

matrices, the above operation can be rephrased as follows:

Z = softmax

(
QKT

√
dk

)
V (2)

In order to enable the model to capture more than one type of relationship

between the entities in the sequence, self-attention is extended to multi-head

attention by concatenating the output of h different self-attention blocks

Z1, . . . , Zh each with its own set of learnable weight matrices, into a single

matrix Z ′ = [Z0, . . . , Zh] ∈ Rn×h.dv , which is then projected using a weight

matrix W ′ ∈ Rh.dv×d.

A transformer encoder is constructed by passing the input sequence into

a normalization layer, a multi-head attention layer, a second normalization

layer and a multi-layer perceptron (MLP), respectively. Two residual con-

nections are added, one by adding the input sequence to the output of the

multi-head attention, and the other by adding the output of the multi-head

attention to the output of the MLP.

Putting it all together, a vision transformer is created by first splitting

the input image into patches. Subsequently, the sequence of patches is pro-

jected into a sequence of vectors and a positional embedding is added to

the corresponding vector of each patch. An additional learnable embedding

called classification token is added to the beginning of the sequence. The

sequence then passes through L transformer encoders. Finally, the first vec-

tor in the output of the last transformer encoder, which corresponds to the

classification token, is passed to a MLP which outputs the final classification
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result. The architecture of vision transformer is depicted in Figure 2.

Figure 2: The vision transformer (ViT) architecture for image classification.

ViT-EE is a method which uses transformer encoders for early exits

placed on ViT backbones [14]. ViT-EE uses the exact same layer as the

ViT backbone. Using the building blocks of the backbone network for early

exit branches is simple and intuitive, and it is the reason why so far, mostly

convolutional layers have been used for early exiting CNN backbones. How-

ever, as we show in this work, carefully designing the architecture of early

exit branches can lead to significant improvements. Using Transformer-based

early exit branches on CNN backbones is not intuitive, and requires addi-

tional steps such as converting tensors to patches, dealing with the classifica-

tion token and fine-tuning the architecture parameters including patch size,

attention heads, embedding representation, the size and number of layers
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for MLP, and dropout. Moreover, we show that removing the last residual

connection in the transformer encoder can improve the performance in some

cases.

Furthermore, ViT backbones have a global receptive field in every layer,

this means that ViT-EE is not necessarily ideal for early exits at all layers,

as it adds too much overhead without providing improvements in terms of

receptive field. On the other hand, CNN backbones have a limited receptive

field particularly in earlier layers, therefore fusing this receptive field with a

global one leads to improvements.

2.3. Audio Classification

Similar to image classification, audio classification is the problem of cat-

egorizing a given audio waveform into one of several predetermined classes.

For instance, the given audio waveform could be a musical recording, and the

goal could be to specify which genre of music it belongs to. To represent the

input features, spectrograms obtained by applying short-time Fourier trans-

form (STFT) and Mel spectrograms are commonly used [34], although raw

audio waveforms can been used as well [35]. Mel spectrograms are spectro-

grams that are constructed using the Mel scale which is a nonlinear trans-

formation of the frequency scale designed based on domain knowledge about

the human auditory system. Various deep learning models for audio classifi-

cation exist in the literature, including models that are commonly used for

image classification, namely ResNet [36], DenseNet [37] and Inception [38],

which have been shown to be quite effective for audio classification as well

[39]. Conveniently, the same three networks have previously been used as

backbone networks when investigating early exiting for image classification
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[13]. Therefore we use these backbone networks for both image and audio

classification in our experiments.

2.4. Audiovisual Crowd Counting

Crowd counting refers to the problem of identifying the total number of

people present in a given image. Crowd counting has many applications such

as safety monitoring, disaster management, design of public spaces, intelli-

gence gathering and analysis, creation of virtual environments and forensic

search [40]. With many of these applications, it is vital for the model to per-

form in near real-time. However, the input images in these scenarios often

have high resolutions, such as HD or Full HD. Moreover, many of the avail-

able methods contain an immense number of parameters [41]. This means

that crowd counting models are often very computationally expensive, there-

fore, dynamic inference methods such as early exiting and other lightweight

deep learning methods become essential in real world applications.

Although the main objective of this task is to obtain a single count from

an image, many methods treat this problem as dense prediction where the

output is a density map depicting the density of the crowd across the input

image, and the total count is calculated by the sum of all values in the density

map. Therefore, in most crowd counting datasets, such as Shanghai Tech

[42] and World Expo ’10 [43], the locations of the heads of individuals in the

image are annotated and provided as targets. A ground truth density map

can then be obtained from these head annotations using Gaussian kernels or

more complicated and specialized methods [41]. Figure 3 shows an image

from the Shanghai Tech dataset and the ground truth density map that was

generated from the provided head annotations using the method presented in
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Figure 3: An example image from the Shanghai Tech dataset and its corresponding ground

truth density map.

Zhang et al [42]. In crowd counting, Mean Absolute Error (MAE ) is usually

used as a measure of accuracy whereas Mean Squared Error (MSE ) is used

as a measure of robustness [44].

Many crowd counting methods exist in the literature [41], however, most

of these methods are applied in a single-modal fashion where the input is

an image or a video frame. In contrast, AudioCSRNet [45], a multi-modal

extension of the widely-used CSRNet model for crowd counting [46], takes

as input the ambient audio of a scene in addition to its image. The authors

show that the ambient audio improves the result in situations where the

image quality is not ideal, for instance, low image resolution, presence of

noise, occlusion and low illumination.

In CSRNet, the features extracted from the input image by the first 10

layers of a VGG-16 [47] network pre-trained on the ImageNet dataset [48]

are passed through 6 dilated convolution layers and a 1×1 convolution layer

in order to obtain the density map. AudioCSRNet extends this architecture

by converting each of the dilated convolution layers into a fusion block. The

architecture of AudioCSRNet is depicted in Figure 4. First, a Mel spectro-
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gram is obtained from the raw audio waveform. Subsequently, in each fusion

block, the features extracted from the input Mel spectrogram by the first 6

layers of a VGGish [49] network pre-trained on the AudioSet dataset [49] are

projected to two vectors called γ and β which represent the multiplicative

and additive aspects of the audio features. The γ and β vectors are then

tiled in order to match the size of the visual features. Finally, the output of

the dilated convolution is element-wise multiplied by γ and added to β.

The fusion operation can be summarized as

vl+1 = Fl(γl ⊙Dl(vl) + βl), (3)

where vl ∈ RCl×Wl×Hl is the output of the l-th fusion block, Fl denotes an

activation function, γl and βl are the tiled vectors and Dl represents the l-th

dilated convolution.

Figure 4: Architecture of AudioCSRNet.

In practice, a batch normalization layer [50] is added immediately after

each dilated convolution. Furthermore, the height and width of the interme-

diate features remain unchanged by using padding in the convolution oper-

ations, meaning Hl = Hl+1 and Wl = Wl+1. Additionally, since the first 10
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layers of VGG-16 decrease both height and width by a factor of 8 via several

pooling operations, the final result of the network needs to be upsampled by

a factor of 8 in order to match the resolution of the input image. It is im-

portant to preserve the total sum of the density map during this upsampling

operation, since it represents the total count.

3. Single-Layer Vision Transformers for Early Exits

We assume a pre-trained and high performing backbone network is al-

ready available. Due to time constraints arising from the particular appli-

cation, it is desirable that the network provides a result within the specific

deadline rather than not providing a result at all, even though this result may

be less accurate than it would be if time constraints did not exist. Therefore,

the backbone needs to be augmented with early exit branches to allow for

dynamic inference and anytime prediction. As previously mentioned, we use

the classifier-wise approach for training the early exit branches since it re-

sults in “plug-and-play” branches that can easily be added to the backbone

network without any re-training or hyper-parameter tuning.

3.1. SL-ViT

Typically, the architecture of early exit branches starts with one or more

convolution layers, although some may have no convolutions at all. After-

wards, they may have a pooling layer, which may be global pooling, and one

MLP [51, 11]. Here, as a baseline, we choose to utilize the architecture de-

picted in Figure 5 with one 3×3 convolution, followed by a 2×2 max pooling

layer and finally a MLP. The size of the max pooling layer is increased to

4 × 4 for crowd counting since the input images have a very high resolution.
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Additionally, we use dropout [52] inside the MLP to avoid overfitting. We

use a single convolution since early exits with two or more convolution layers

have a high overhead and may even lead to lower accuracy [11]. Early exits

without convolutions are sometimes used very late in the network, however,

since they are straightforward and leave no room for modifications, we do

not apply our method for such cases. The resulting architecture is a common

setup within the literature, and is effectively the same architecture used for

earlier exits by Hu et al. [51].

Figure 5: Architecture of CNN early exit branches. Size of the flattened feature vector

depends on the dimensions of the features at the specific branch location. For branches

placed on the AudioCSRNet backbone, max pooling size is increased to 4x4 since the input

images have a high resolution. Figure created using the NN-SVG tool [53].

Our method called single-layer vision transformer or SL-ViT for short, is

an alternative architecture for early exit branches that can achieve a higher

accuracy compared to the aforementioned baseline, while having less over-

head in terms of the number of parameters as well as floating point opera-

tions per second (FLOPS). Our proposed architecture is based on the vision

transformer architecture introduced in section 2.2, where instead of the input

image, we split the intermediate features at the branch location into patches
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(sub-tensors) and pass them to a vision transformer.

The choice of vision transformer architecture is primarily due to its global

receptive field. Receptive field is crucial in many deep learning problems,

including ones studied in this work. The receptive field of state-of-the-art

CNNs developed for image classification has steadily increased over time

and is correlated with increased classification accuracy [54]. Additionally, in

audio classification using spectrograms, each location relates to a different

frequency band in a different window of time. It is reasonable to assume that

processing combinations of frequencies and windows that are not necessarily

adjacent could be of importance. Moreover, many crowd counting methods

have made use of global information through visual attention mechanisms

and dilated convolutions [41]. Since the receptive field is particularly limited

in early layers of CNN backbones, choosing an architecture for early exit

branches with a global receptive field could be beneficial.

Many other designs strive to increase the receptive field in their building

blocks, for instance, the pyramid pooling module (PPM) in PSPNet [55] or

atrous spatial pyramid pooling (ASPP) in DeepLab [56]. However, they all

fall short in comparison with the global receptive field of transformers. PPM

increases the receptive field through aggregating different levels of pooling,

which means far locations have only access to coarse representations of each

other, and ASPP has holes in its receptive field.

It is important to mention that the local receptive field of convolutional

layers is not fundamentally bad. On the contrary, it plays a key role in

representation learning and extracting local information, especially in the

early layers of the network where the receptive field of the convolutional filters
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is small. Filters in successive convolutional layers have increasingly larger

receptive fields, therefore, final layers in a CNN architecture have filters of

large enough receptive fields that can effectively aggregate information from

the entire input image to provide a proper response. However, this process

of cascading local receptive fields of increasing size requires the number of

layers in the CNN to be large, or at least all the layers in the network to

be traversed in order to provide the network’s response. When an early

exit is added at an early layer, this chain of increasingly larger receptive

fields is broken, and an early exit that has a local receptive field may not be

able to effectively aggregate all required information in the image to provide

a suitable response. This situation is the motivation behind the proposed

branch architecture, which fuses the local receptive field of the layer in the

network where the early exit branch is attached, with the global receptive

field of the early exit, in order to effectively aggregate information from the

entire input and provide a more accurate response. Indeed, the original

Vision Transformer paper [15] attributes the success of their model to the

combination of local and global receptive fields and shows that even in very

early layers, this ability to integrate information globally is indeed used by

the model.

There are some crucial differences between the original vision transformer

and the architecture in our method. First, in order to introduce a low over-

head for early exit branches, we only use a single transformer encoder layer

instead of the original 12 to 36 layers, meaning that L = 1 in our case.

Secondly, we do not utilize a separate classification token and instead pass

the entire output of the transformer encoder layer to the MLP head. This
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is possible because the width and height of tensors are generally reduced

throughout CNN backbones by pooling operations, and thus the number of

patches in our architecture is lower than that of the original vision trans-

former. In addition to the number of patches, the size of the embedding

dimension (d) is also reduced in our proposed architecture, introducing far

less parameters when passing the entire output of the last transformer en-

coder layer to the MLP head, even with high-resolution inputs such as in our

crowd counting experiments. Variations of our architecture have 5× 5, 7× 7

or 16 × 9 patches and embedding dimensions of 32 or 36, whereas different

versions of the original vision transformer have 14 × 14 or 16 × 16 patches

and embedding dimensions of 768, 1024 or 1280. We empirically found that

using the entire transformer encoder output instead of just one classification

token can increase the accuracy, perhaps because in a single-layer version,

there are not enough layers for the classification token to learn to properly

summarize other patches. Our proposed architecture is shown in Figure 6.

It is also important to note that the MLP head used in our architecture is

exactly the same as the MLP in the CNN early exit architecture.

Our model has several hyper-parameters, namely the size of each patch,

the embedding dimension d and the number of attention heads h in multi-

head attention. The patch size creates a trade-off where smaller patches

result in a more fine-grained attention mechanism while increasing the total

number of parameters in a bi-quadratic fashion. Therefore, similar to the

original vision transformer, we choose the size of the patch to be close to the

square root of the height and width of the input features. We also make sure

that the size of the patch can divide the size of the input features to avoid
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Figure 6: Architecture of SL-ViT early exit branches. Unlike typical vision transformers,

only a single transformer encoder layer is used, extra learnable classification token is not

added to the sequence and the entire output of the transformer encoder is passed on to

the MLP head. The MLP head is the same as CNN early exit branches.
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padding, for instance, a patch size of 4× 4 for input features of size 28× 28.

We perform a grid search to find the values of d and h that result in the

highest accuracy, while keeping the total number of parameters less than or

equal to that of the CNN early exit counterpart.

At a first glance, it might seem like the SL-ViT architecture introduces

more hyper-parameters than the conventional CNN architecture, however,

the CNN architecture includes many design choices as well, such as the num-

ber of filters, filter size, padding, dilation, stride, pooling type and pooling

size. The design choices for CNN architectures might seem simpler since they

have been studied more extensively compared to vision transformers which

were introduced more recently.

3.2. Audiovisual SL-ViT

With audiovisual backbones such as the AudioCSRNet model for audio-

visual crowd counting, described in section 2.4, it is desirable to have audio-

visual early exits that use both visual and audio features in order to achieve

a higher accuracy. The simplest way to have such branches is to add the

branches after the blocks where the fusion of visual and audio features take

place. However, with our proposed SL-ViT architecture, it is also possible to

include audio features as one or more patches alongside other patches, and

directly fuse the features in the early exit. The advantage of this approach is

that since in vision transformers, any of the patches can pay attention to any

other patch, the visual features can be fused with the audio features without

being directly impacted and modified. In contrast, since convolutional filters

only take the immediate vicinity into account, the audio features must be

present in every location. One option is to concatenate the visual features
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and the tiled audio features along the depth. However, that would greatly

increase the amount of computation for each fusion operation, therefore in-

trusive operations such as element-wise multiplication and addition are used

instead.

3.3. Copycat SL-ViT

Finally, we introduce a fine-tuning strategy for SL-ViT branches that can

further increase their accuracy. Correia-Silva et al. [16] developed a method

called copycat CNN where they create a “fake” dataset by taking images

from another domain, giving them as input to a network trained on the

target domain, and recording the output of the network as labels for these

images. For instance, images from the ImageNet dataset [48] can be given

to a network trained on the CIFAR-10 dataset [57], where the image of a

camel may be labelled as a “dog” since there are no labels for “camel” in

CIFAR-10. This fake dataset is then combined with a dataset for the target

domain and used to train a new network. We use this strategy to fine-tune

an already trained SL-ViT branch and obtain a copycat single-layer vision

transformer (CC-SL-ViT ). Note that the ratio of the fake data mixed with

the available dataset is a hyper-parameter of this fine-tuning strategy.

4. Experimental Setup

In this section, we provide the details of our experiments. We begin by

giving a short summary of the datasets as well as the training details for the

backbone networks. We then lay out the details of the branch architectures,

their training procedure and their placement on the backbone networks, and

finally explain how the copycat strategy was used to fine-tune the branches.
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A total of 27 different scenarios were tested in our experiments. For both

image and audio classification, two datasets, three backbone networks and

two different branch locations on each backbone were tested. In addition,

three different branch locations for the audiovisual crowd counting backbone

network were covered. All experiments were repeated 5 times and the average

accuracy as well as the standard deviation were recorded. 4 × Nvidia 2080Ti

GPUs were used for the training of our models.

4.1. Datasets

4.1.1. CIFAR-10 and CIFAR-100

These are widely-used datasets for image classification [57]. Both datasets

consist of 60,000 color images of size 32 × 32 pixels and their corresponding

class labels. The images in CIFAR-10 and CIFAR-100 are categorized into

10 and 100 different classes, respectively. We use 40,000 examples for train-

ing, 10,000 for validation and another 10,000 for testing. Since our backbone

networks are pre-trained on ImageNet which consists of 224 × 224 pixel im-

ages, we resize each image to these dimensions before passing them into the

network.

4.1.2. Speech Commands (SC)

A well-known audio dataset of spoken words [58]. It consists of 100,503

1-second audio clips with a sampling rate of 16kHz, each labelled as one

of 12 classes: 10 different spoken words such as “Yes”, “No”, “Down” and

“Stop” as well as one class for background noise and another for unknown

words. We use 85,511 examples for training, 10,102 for validation and 4,890

for testing. We convert the raw audio waveforms into spectrograms using
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short-time Fourier transform (STFT) with a window size of 255 samples and

step size of 128 samples, and resize the resulting spectrograms to 224 × 224

before passing them into the network.

4.1.3. GTZAN

It is the most widely-used dataset for music genre recognition [59]. The

original dataset consists of 10 genres such as “Pop” and “Rock” and 100

30-second audio clips per genre with a sampling rate of 22,050Hz. We follow

the common approach to split each audio clip into 10 separate 3-second clips

in order to increase the size of the dataset to 10,000. We use 8,000 examples

for training, 1,000 for validation and another 1,000 for testing. Following

the approach of Palanisamy et al. [39] where different spectrograms with

different parameters are placed in each channel of the input image, we use

one spectrogram obtained from STFT with window size of 512 samples and

step size of 256 samples as well as two Mel spectrograms with 128 bins

and window sizes of 100 and 50 milliseconds, and step sizes of 50 and 25

milliseconds, respectively.

4.1.4. DISCO

An audiovisual dataset for crowd counting which contains 1,935 images

of Full HD resolution (1920× 1080) [45]. For each image, a corresponding 1-

second audio clip of ambient sounds with a sampling rate of 48kHz, starting

0.5 seconds before the image was taken and ending 0.5 seconds afterwards,

exists as well. The labels are provided in the form of head annotations in

the image. At the time of this writing, DISCO is the only publicly available

dataset for audiovisual crowd counting. We use 1435 examples for train-
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ing, 200 for validation and 300 for testing. The input image is resized to

1024× 576 pixels to reduce memory and computation requirements. Similar

to Hershey et al. [49], the input audio waveform is transformed into a Mel

spectrogram with 64 bins, window size of 25 milliseconds and step size of

10 milliseconds. Following Hu et al. [45] the ground truth density maps are

obtained by convolving the head annotations with a 15× 15 Gaussian kernel

K ∼ N (0, 4.0).

4.2. Backbone networks

Transfer learning is used to train the ResNet152, DenseNet201 and In-

ceptionV3 backbone networks for both image and audio classification. The

backbone networks are all pre-trained on the ImageNet dataset and the top

layer is replaced. We found that instead of adding just one dense layer at the

top, as is common in transfer learning, using two dense layers and a dropout

layer in between leads to a higher accuracy in our case. The resulting network

is then trained using the Adam optimizer [60] with a learning rate of 10−4

and categorical cross-entropy loss function. The learning rate is reduced by

a factor of 0.6 on plateau with a tolerance of 2 epochs, and an early stopping

mechanism with a tolerance of 5 epochs is used.

The audiovisual crowd counting backbone is trained in two stages. We

first train a network with the AudioCSRNet architecture described in Section

2.4 for 100 epochs. L2 norm is used as loss function and AdamW [61] with

a learning rate of 10−5 and weight decay of 10−4 is used as optimizer, where

the learning rate is multiplied by a factor of 0.99 each epoch. This is the

same training procedure used in the original paper [45]. Subsequently, in

order to convert the problem from dense prediction to regression, a dense
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layer with an output size of one is added after the last layer of the trained

AudioCSRNet. This layer is initialized as a sum, meaning the initial weights

are all equal to one and no bias is used. Then the entire network is re-trained

for another 100 epochs using MAE as loss function instead of the previous

L2 loss, a learning rate of 10−6 and weight decay of 10−5. The learning rate

is similarly multiplied by a factor of 0.99 every epoch. The resulting model

achieves a MAE of 13.63 which is even lower than the MAE of 14.27 reported

in the original paper. However, the output of the network is just a single

number representing the total count instead of a density map. The final

accuracy of all trained backbones can be seen in Table 1.

When training the backbone networks, in order to fit the limitations of

our available computational resources, the batch sizes are adjusted and some

layers of the backbone networks are frozen. All backbone networks were

trained with a batch size of 32 except AudioCSRNet which has a batch size

of 4 as well as InceptionV3 when trained on CIFAR-10 and CIFAR-100 which

has a batch size of 64. All layers of the backbone networks were trained,

except in the case of ResNet152 and DenseNet201 when trained on CIFAR-

10 and CIFAR-100 where only the batch normalization layers were trained.

We found that training only the batch normalization layers is sufficient to

achieve a high-performing backbone network in these cases [62].

4.3. Branches

All branches were trained from scratch using the He initialization method

[63] and the Adam optimizer with a learning rate of 10−4 where the learning

rate is reduced by a factor of 0.6 on plateau with a tolerance of 2 epochs,

and an early stopping mechanism with a tolerance of 5 epochs is utilized.
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Table 1: Performance of backbone networks on each dataset

Backbone CIFAR-10 Acc. CIFAR-100 Acc. SC Acc. GTZAN Acc. DISCO MAE

ResNet152 95.36% 82.25% 95.85% 91.29% -

DenseNet201 96.48% 82.53% 96.36% 92.09% -

InceptionV3 96.56% 83.80% 94.93% 87.79% -

AudioCSRNet - - - - 13.63

The branches on classification backbones use a categorical cross-entropy loss

function whereas the branches on the audiovisual crowd counting backbone

use mean absolute error loss. The training batch size for branches were 64

in scenarios involving CIFAR-10, CIFAR-100 and Speech Commands, 32 in

scenarios involving GTZAN and 4 in scenarios involving DISCO.

Table 2 shows the location of the branches placed on each backbone net-

work. For the AudioCSRNet backbone network, branch V1 uses only the

output of the VGG-16 layers, therefore, it only has access to the visual fea-

tures. Branch AV1 uses the outputs of both VGG-16 and VGGish, therefore

it has access to both audio and visual features. In this branch location, the

fusion of audio and visual features is performed as described in Section 3 for

the SL-ViT architecture, and similar to the fusion blocks in AudioCSRNet

for the CNN architecture, however, without dilation. Finally, branch AV2

is placed after the first fusion block in AudioCSRNet, therefore audio and

visual features have already been fused and thus fusion operation is not re-

quired within the branches. Adding branches after the second fusion block

or later would not be reasonable since more than 85% of the computation

of the backbone is carried out before that point, and thus the acceleration
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resulting from early exits would be negligible.

Table 2: Placement of branches for each backbone betwork

Backbone BN∗ Branch Placed After

DenseNet201 1 Transition Layer 1

2 Transition Layer 2

ResNet152 1 12th Convolution

2 36th Convolution

InceptionV3 1 First Filter Concat

2 Second Filter Concat

AudioCSRNet V1 Last Layer of VGG

AV1 Last Layers of VGG and VGGish

AV2 First Fusion Block

∗Branch Number

4.4. SL-ViT and CC-SL-ViT Parameters

Table 3 summarizes the hyper-parameters used for the SL-ViT branches

in each scenario. “Patch Size” shows the width and height of each image

patch, “Patches” denotes the resulting number of patches across width and

height of the input image, d is the size of embedding dimension and h is the

number of heads in multi-head attention.

For copycat SL-ViT, images from the Tiny ImageNet dataset, which are

the images from ImageNet down-sampled to 32×32, were given to the Incep-

tionV3 backbone trained on CIFAR-10, and the outputs were used to create

the fake dataset. Then the fake dataset was mixed with CIFAR-10 with a

2-to-1 ratio and used for re-training.

31



Table 3: Hyper-parameters of SL-ViT for different backbone networks and branches

Backbone Dataset BN∗ Patch Size Patches d h

DenseNet201 all all 4x4 7x7 32 12

ResNet152 SC 2 4x4 7x7 32 24

GTZAN 2 4x4 7x7 32 24

Other 4x4 7x7 32 12

InceptionV3 CIFAR-100 all 5x5 5x5 36 8

Other 5x5 5x5 32 12

AudioCSRNet DISCO all 8x8 16x9 32 12

∗Branch Number

5. Results

The results of our experiments are presented in Tables 4 to 8. In these

Tables, the final accuracy, the total FLOPS of the model up to and includ-

ing the branch and the number of parameters of just the early exit branch

are compared between the CNN architecture and the SL-ViT architecture.

Higher accuracies, lower errors, lower number of parameters and lower total

FLOPS are highlighted in these tables. Furthermore, the acceleration caused

by SL-ViT early exits, defined as the total FLOPS of the backbone network

divided by the total FLOPS of the model up to and including the SL-ViT

branch, is also provided.

Several observations can be made about these results. First, in all sce-

narios except one, SL-ViT early exits achieve a significantly higher accuracy.

Even in the one exceptional scenario, namely branch 2 of ResNet152 in Table

6, the accuracy of SL-ViT is very close to its CNN counterpart. Secondly,

while in some cases SL-ViT branches have an equal number of parameters
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compared to CNN branches, in all scenarios, the total FLOPS of SL-ViT

branches is lower, therefore SL-ViT branches are always more lightweight.

Thirdly, in one scenario, namely branch 2 of ResNet152 in Table 7, removing

the last residual connection in the SL-ViT architecture significantly improved

the accuracy of the SL-ViT branch. Finally, in the AV2 branch location in Ta-

ble 8, both CNN and SL-ViT are impractical branches since earlier branches

with higher accuracies exist. This is perhaps due to the intrusive fusion

operation in the first fusion block which might initially make the intermedi-

ate features more obscure. Nonetheless, even in this case, SL-ViT is more

accurate.

Table 4: Comparison of different early exit architectures on the CIFAR-10 dataset

Backbone Branch Accuracy Branch Params Total FLOPS Acceleration

CNN SL-ViT CNN SL-ViT CNN SL-ViT SL-ViT

ResNet152 1 66.74 ± 0.57% 70.79 ± 0.72% 0.78M 0.59M 1.66B 1.64B 13.77

2 79.31 ± 0.81% 81.18 ± 0.52% 0.83M 0.79M 5.33B 5.26B 4.29

DenseNet201 1 71.27 ± 0.36% 76.38 ± 0.33% 0.78M 0.59M 2.55B 2.53B 3.39

2 80.64 ± 0.29% 83.53 ± 0.37% 0.80M 0.66M 4.21B 4.17B 2.06

InceptionV3 1 77.27 ± 0.58% 79.99 ± 0.20% 0.61M 0.56M 2.17B 2.14B 2.65

2 79.55 ± 0.24% 81.72 ± 0.53% 0.61M 0.56M 2.53B 2.49B 2.28

Table 9 shows the result of applying the copycat fine-tuning strategy

to SL-ViT branches for the CIFAR-10 dataset. Observe than in all cases,

the accuracy is significantly increased compared to SL-ViT, which itself was

more accurate than CNN based on Table 4. We also tested this strategy

for the CIFAR-100 dataset with 10-to-1, 2-to-1 and 1-to-1 ratios of fake and

real data, however, neither improved the overall accuracy. Perhaps another
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Table 5: Comparison of different early exit architectures on the CIFAR-100 dataset

Backbone Branch Accuracy Branch Params Total FLOPS Acceleration

CNN SL-ViT CNN SL-ViT CNN SL-ViT SL-ViT

ResNet152 1 34.93 ± 0.52% 38.59 ± 1.40% 0.80M 0.61M 1.66B 1.64B 13.77

2 47.39 ± 0.65% 53.93 ± 0.68% 0.86M 0.81M 5.33B 5.26B 4.29

DenseNet201 1 33.91 ± 1.00% 42.50 ± 0.69% 0.80M 0.61M 2.55B 2.53B 3.39

2 47.22 ± 0.45% 50.76 ± 1.01% 0.82M 0.68M 4.21B 4.17B 2.06

InceptionV3 1 43.18 ± 0.69% 46.86 ± 0.57% 0.63M 0.63M 2.17B 2.14B 2.66

2 44.87 ± 0.83% 49.07 ± 0.55% 0.63M 0.63M 2.53B 2.50B 2.28

Table 6: Comparison of different early exit architectures on the Speech Commands dataset

Backbone Branch Accuracy Branch Params Total FLOPS Acceleration

CNN SL-ViT CNN SL-ViT CNN SL-ViT SL-ViT

ResNet152 1 75.80 ± 0.73% 84.05 ± 0.31% 0.78M 0.59M 1.66B 1.64B 13.77

2 89.78 ± 0.24% 89.63 ± 0.52% 0.84M 0.84M 5.33B 5.26B 4.29

DenseNet201 1 72.78 ± 0.64% 87.94 ± 0.85% 0.78M 0.59M 2.55B 2.53B 3.39

2 86.56 ± 0.61% 90.93 ± 0.52% 0.80M 0.66M 4.21B 4.17B 2.06

InceptionV3 1 84.64 ± 0.88% 87.62 ± 0.65% 0.61M 0.56M 2.17B 2.14B 2.65

2 87.08 ± 1.11% 88.33 ± 0.92% 0.61M 0.56M 2.53B 2.49B 2.28

34



Table 7: Comparison of different early exit architectures on the GTZAN dataset

Backbone Branch Accuracy Branch Params Total FLOPS Acceleration

CNN SL-ViT CNN SL-ViT CNN SL-ViT SL-ViT

ResNet152 1 67.01 ± 1.11% 73.27 ± 0.91% 0.78M 0.59M 1.66B 1.64B 13.77

2∗ 80.26 ± 2.07% 81.56 ± 1.57% 0.83M 0.83M 5.33B 5.26B 4.29

DenseNet201 1 70.65 ± 1.23% 76.38 ± 1.94% 0.78M 0.59M 2.55B 2.53B 3.39

2 81.72 ± 0.62% 84.00 ± 1.67% 0.80M 0.66M 4.21B 4.17B 2.06

InceptionV3 1 77.86 ± 0.90% 79.42 ± 0.99% 0.61M 0.56M 2.17B 2.14B 2.65

2 78.90 ± 0.90% 79.90 ± 0.79% 0.61M 0.56M 2.53B 2.49B 2.28

∗The last residual connection in the SL-ViT architecture was removed in this case

Table 8: Comparison of Different Early Exit Architectures on the DISCO Dataset

Backbone Branch MAE Branch Params Total FLOPS Acceleration

CNN SL-ViT CNN SL-ViT CNN SL-ViT SL-ViT

AudioCSRNet V1 16.99 ± 0.28 15.04 ± 0.71 2.50M 2.35M 329.77B 328.72B 1.49

AV1 17.00 ± 0.23 14.58 ± 0.64 2.52M 2.36M 331.37B 330.31B 1.48

AV2 17.90 ± 0.25 17.03 ± 1.04 2.50M 2.35M 374.86B 373.81B 1.31
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mixing ratio, choice of dataset and network to generate the fake dataset, opti-

mizer or hyper-parameters such as learning rate may result in improvements

for CIFAR-100.

Table 9: Effect of Copycat strategy demonstrated on the CIFAR-10 dataset

Backbone Branch Accuracy

SL-ViT CC-SL-ViT

ResNet152 1 70.79 ± 0.72% 71.61 ± 0.45%

2 81.18 ± 0.52% 83.41 ± 0.15%

DenseNet201 1 76.38 ± 0.33% 78.34 ± 0.31%

2 83.53 ± 0.37% 84.89 ± 0.43%

InceptionV3 1 79.99 ± 0.20% 80.78 ± 0.23%

2 81.72 ± 0.53% 82.20 ± 0.40%

Table 10: Comparison of improvements gained by SL-ViT with gains from knowledge

distillation for the CIFAR-10 dataset.

Backbone Branch CNN (Baseline) CNN with KD SL-ViT (Ours)

ResNet152 1 66.74 ± 0.57% 69.31 ± 0.28% 70.79 ± 0.72%

2 79.31 ± 0.81% 78.79 ± 0.61% 81.18 ± 0.52%

DenseNet201 1 71.27 ± 0.36% 73.93 ± 0.15% 76.38 ± 0.33%

2 80.64 ± 0.29% 81.56 ± 0.12% 83.53 ± 0.37%

InceptionV3 1 77.27 ± 0.58% 78.37 ± 0.34% 79.99 ± 0.20%

2 79.55 ± 0.24% 80.41 ± 0.43% 81.72 ± 0.53%

Even though other early exit methods focus on improving the training

procedure and can be used in combination with our proposed architecture,

comparing the improvements gained by utilizing such methods with improve-
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ments gained from our approach can still provide insights into the significance

of architecture design for early exits. Table 10 contains comparisons with

knowledge distillation-based training similar to the method in. [12] for the

CIFAR-10 dataset. Observe that in all cases, SL-ViT obtains a significantly

higher accuracy compared to knowledge distillation.

5.1. Ablation Studies

Table 11 showcases the effect of using different architectural parameters

on the accuracy of both SL-ViT and CNN branches. Where not specified,

the CNN early exits have a 3 × 3 kernel size with no dilation, and the SL-

ViT early exits have 12 attention heads, which are the baselines presented

in previous tables. Other parameters such as the number of convolutional

filters and padding size are adjusted accordingly in order to keep the number

of parameters close to the baselines.

These results support our hypothesis that the improvements of SL-ViT

are due to the fusion of local and global receptive fields. First, by increasing

the number of attention heads in SL-ViT, the accuracy increases significantly

while the parameters only slightly increase, hinting that learning multiple

types of attention plays a major role in SL-ViT. Secondly, by increasing the

CNN kernel size from 3× 3 to 15× 15 the accuracy is improved, yet it is still

lower than that of SL-ViT. This is because even a large filter size does not

provide a global receptive field. On the other hand, adding dilation to CNN

decreases its accuracy compared to the CNN baseline. This is because dilated

convolutions create holes in the receptive field, which increases the receptive

field yet loses important local information. Thirdly, using two CNN layers

also improves the accuracy compared to the CNN baseline, however, a higher
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gain in accuracy was achieved using a larger kernel size. Moreover, two SL-

ViT layers still obtain a higher accuracy compared to two CNN layers while

having a lower overhead in terms of parameters. Finally, we show that even

if the backbone is not pre-trained on ImageNet and is trained completely

from scratch, SL-ViT still obtains a higher accuracy compared to CNN.

Table 11: Ablation studies: the effect of the number of attention heads, number of layers,

dilation, kernel size and backbone pre-training on the accuracy of early exits placed on

the first branch location of a ResNet152 backbone trained on the CIFAR-10 dataset

Architecture Params Accuracy Branch Params FLOPS

SL-ViT (1 head) 67.92 ± 0.86% 0.55M 1.64B

SL-ViT (2 heads) 68.65 ± 0.90% 0.55M 1.64B

SL-ViT (4 heads) 69.08 ± 1.07% 0.56M 1.64B

SL-ViT (8 heads) 69.85 ± 1.12% 0.58M 1.64B

SL-ViT (12 heads) 70.79 ± 0.72% 0.59M 1.64B

SL-ViT (16 heads) 70.76 ± 0.40% 0.61M 1.64B

CNN (3 × 3 kernel) 66.74 ± 0.57% 0.78M 1.66B

CNN (11 × 11 kernel) 69.71 ± 1.06 % 0.78M 1.88B

CNN (15 × 15 kernel) 69.90 ± 0.68% 0.79M 2.02B

CNN (dilation 2) 66.61 ± 0.47% 0.78M 1.66B

CNN (dilation 3) 65.43 ± 0.32% 0.78M 1.66B

SL-ViT (2 layers) 71.89 ± 0.75% 0.65M 1.64B

CNN (2 layers) 67.68 ± 1.06% 0.78M 1.66B

SL-ViT (no backbone pre-training) 63.14 ± 0.57% 0.59M 1.64B

CNN (no backbone pre-training) 62.86 ± 0.99% 0.78M 1.66B

Finally, we discovered that removing the second residual connection in

the transformer encoder may lead to an increase in the overall accuracy of

our method. This effect was moderate in most cases, yet quite significant

in others. An example of this effect is shown in Table 12 for the Speech

Commands dataset. We chose to keep the residual connection whenever the
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effect was moderate and only remove it if it leads to a significantly higher

accuracy. Such cases are highlighted in our experiments (Table 7).

Table 12: Ablation studies: the effect of removing the last residual connection in the

transformer encoder for the Speech Commands dataset

Backbone Branch Number Accuracy of SL-ViT Accuracy of SL-ViT without the Last Residual

ResNet152 1 84.05 ± 0.31% 83.67 ± 0.85%

2 89.63 ± 0.52% 85.79 ± 0.58%

DenseNet201 1 87.94 ± 0.85% 88.35 ± 0.24%

2 90.93 ± 0.52% 91.08 ± 0.52%

InceptionV3 1 87.62 ± 0.65% 86.10 ± 0.32%

2 88.33 ± 0.92% 88.21 ± 0.45%

5.2. Early Exit Procedure

Since our method improves the accuracy in all early exit locations, it

provides improvements regardless of which early exit procedure is used. For

instance, suppose a confidence-based method is used where the result of an

early exit branch is selected as the final answer if it is confident enough. In

this setting, our method will lead to faster inference on average, since more

accurate branches lead to higher confidence.

Another example would be the anytime prediction setting explained in the

introduction, for instance, an edge server which receives inputs from many

IoT devices and needs to provide a response for each input within a strict

deadline. The transmission time from the IoT devices to the server changes

over time due to network congestion. Moreover, the computational workload

of the server varies over time, therefore, the time budget available for each
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input is not known beforehand, and the inference can be interrupted at any

moment. In this case, the output of the latest exit is used as the final answer.

In such a setting, our method will lead to more accurate results and faster

inference, since SL-ViT exits are more accurate and have less overhead.

To make this more clear, we have conducted experiments within the any-

time prediction setting, where a random time budget is assigned to each

image in the CIFAR-10 test set. We use the DenseNet backbone and the

two branch locations specified in Table 2. We compare the average accu-

racy and FLOPS between the case where SL-ViT branches are used and the

case where CNN branches are utilized. The results of these experiments are

shown in Table 13. It can be observed that the multi-exit network with SL-

ViT branches achieves a significantly higher average accuracy while having

lower average FLOPS.

Table 13: Comparison of the average accuracy and FLOPS in the anytime prediction

setting between a multi-exit DenseNet with SL-ViT early exits and one with CNN early

exits.

Model Average Accuracy Average FLOPS

Multi-Exit DenseNet with CNN Branches 82.79 ± 0.17% 5.11B

Multi-Exit DenseNet with SL-ViT Branches 85.65 ± 0.21% 5.09B

6. Discussion and Conclusion

We showed that the proposed architecture for early exit branches, namely

single-layer vision transformer (SL-ViT) can consistently obtain a signifi-
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cantly higher accuracy compared to conventional methods while introducing

a lower overhead in terms of FLOPS. We showed that our method works for

both classification and regression problems, in both single and multi-modal

scenarios, and across different backbone networks and branch locations.

As previously mentioned, one possible explanation for why SL-ViT per-

forms better, is the fact that even a single layer of transformer encoder has

a global receptive field since each patch can attend to any other patch, while

a convolutional layer has a limited receptive field and can only access the

immediate vicinity based on its filter size. There are several clues that point

to this explanation. First, Table 11 suggests that the attention mechanism

plays a major role in the accuracy improvements. Secondly, based on Tables

4 to 8, the accuracy improvements are generally higher in earlier branches,

where the receptive field of the backbone network up to the branch location

is lower compared to later branches. Finally, the incorporation of global scale

and global information such as perspective is known to be of great impor-

tance in crowd counting, and many crowd counting methods utilize visual

attention mechanisms and dilated convolution layers to this end [41], which

can explain why our method performs well for this problem.

Moreover, we showed that our fine-tuning strategy, namely Copycat SL-

ViT, has the potential to further increase the accuracy of SL-ViT branches.

It is well-known that with deep learning, more data almost always improves

the final outcome, and this is especially true for vision transformers which are

known to be data-hungry [32]. The copycat strategy can at times artificially

increase the size of the dataset without introducing too much noise and thus

improve the final result.
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Furthermore, we introduced a novel approach for fusing audio and vi-

sual features within early exits using vision transformers. The importance

of fusion inside early exits is that it creates much more options for branch

locations, since a combination of any layer in the visual channel of the back-

bone network with any layer in the audio channel of the backbone can be

selected. This allows for a more fine-grained dynamic inference, meaning a

more recent result is available whenever the inference is interrupted in an

anytime prediction setting, which is likely to be more accurate than earlier

results.
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