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Abstract
Deploying deep neural networks (DNNs) on IoT
and mobile devices is a challenging task due to
their limited computational resources. Thus, de-
manding tasks are often entirely offloaded to edge
servers which can accelerate inference, however,
it also causes communication cost and evokes pri-
vacy concerns. In addition, this approach leaves
the computational capacity of end devices unused.
Split computing is a paradigm where a DNN is
split into two sections; the first section is exe-
cuted on the end device, and the output is trans-
mitted to the edge server where the final section
is executed. Here, we introduce dynamic split
computing, where the optimal split location is dy-
namically selected based on the state of the com-
munication channel. By using natural bottlenecks
that already exist in modern DNN architectures,
dynamic split computing avoids retraining and hy-
perparameter optimization, and does not have any
negative impact on the final accuracy of DNNs.
Through extensive experiments, we show that dy-
namic split computing achieves faster inference
in edge computing environments where the data
rate and server load vary over time.

1. Introduction
The combination of deep learning and Internet of Things
(IoT) has tremendous applications in fields such as health-
care, smart homes, transportation and industry (Ma et al.,
2019). However, deep learning models typically contain
millions or even billions of parameters, making it difficult to
deploy these models on resource-constrained devices. One
solution is to offload the computation to an edge or cloud
server (Wang et al., 2020), as shown in Figure 1 (b). How-
ever, since the size of the inputs to deep learning models can
be massive, particularly images and videos, this approach
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consumes a lot of bandwidth and energy, and leads to delays.
Moreover, even though IoT devices are limited, they still
possess computational capabilities that remain unused when
the entire computation is offloaded, and utilizing these ca-
pabilities would reduce the load on the servers. In addition,
in applications that process personal data such as health
records, or in audio or visual streams with voice activity
or human presence, privacy regulations such as European
Union’s GDPR (European Commission) or United States’
HIPAA (Centers for Medicare & Medicaid Services, 1996)
may apply. These regulations typically forbid direct ac-
cess to non-anonymized data, leaving the options to either
anonymize the data at the cost of additional computation
and higher latency, or process the data at the source.

Split computing, depicted in Fig. 1 (c), alleviates these issues
by splitting the deep model into a head section and a tail
section (Matsubara et al., 2021). The head model is executed
on the device, and its output (the intermediate representation
at that particular layer of the deep network) is transmitted to
the server, then processed by the tail model to obtain the final
output. In a way, split computing is a partial offloading of
the computation, as opposed to the full-offloading approach.
Another benefit of split computing over full-offloading is
that it can be used as a privacy preserving technique since
intermediate representations are being transmitted instead
of the actual inputs, and the original inputs cannot be easily
reconstructed from the intermediate representations (Jeong
et al., 2018). In addition, split computing can be combined
with early exiting in order to obtain an early result on the
device (Scardapane et al., 2020; Matsubara et al., 2021), as
illustrated in Figure 1 (c), which is useful when transmission
takes longer than expected.

Since split computing aims to decrease the communication
cost, natural bottlenecks, which are the layers of the deep
network where the size of the intermediate representation is
smaller than the input size, can be used as splitting points
for deep learning models. In this paper, we show that un-
like older popular models, state of the art models such as
EfficientNet (Tan & Le, 2019; 2021) possess many natural
bottlenecks. Based on this fact, we propose a method called
dynamic split computing where the best splitting point is
automatically and dynamically determined based on input
and channel conditions, as shown in Figure 1 (d). Since the
underlying deep learning model is not modified, dynamic



Dynamic Split Computing for Efficient Deep Edge Intelligence

(a) (b) (c) (d)

Figure 1. Overview of (a) no-offloading; (b) full-offloading; (c) split computing; and (d) dynamic split computing approaches.

split computing can be used as a plug-and-play method,
meaning it can be employed without domain knowledge
about the particular deep learning models that are being
used. It is important to note that dynamic split computing
is a complimentary efficient inference method that can be
used in combination with other approaches, including model
compression techniques such as pruning and quantization
(Choudhary et al., 2020), as well as dynamic inference meth-
ods such as early exiting (Bakhtiarnia et al., 2021).1

2. Related Work
Several approaches for speeding up the inference of deep
neural networks (DNNs) on resource-constrained devices
exist in the literature. Local computing performs the entire
computation on the device, yet modifies the architecture of
the neural network in order to decrease the required com-
putation, while causing a minimal negative impact on the
accuracy. Lightweight models such as MobileNet (Howard
et al., 2017; Sandler et al., 2018; Howard et al., 2019) are
specifically designed to be deployed on such limited de-
vices, whereas model compression techniques (Cheng et al.,
2018) alter existing architectures in order to make them
more lightweight, for instance, pruning removes the less
impactful parameters (weights) of the neural network; quan-
tization uses less bits to represent each parameter (Liang
et al., 2021); and knowledge distillation aims to train a more
compact model to reproduce outputs similar to a given larger
neural network (Gou et al., 2021).

Dynamic inference methods (Han et al., 2021) can alter
the architecture of existing neural networks to adapt their
inference time at the cost of accuracy, meaning they will
produce more accurate outputs the longer they are allowed
to execute. Various approaches to dynamic inference exist,
such as early exiting (Scardapane et al., 2020), where early
exit branches are added after intermediate layers of a DNN
that produce an output similar to the final output; layer
skipping (Graves, 2016; Banino et al., 2021; Wang et al.,
2018), where the execution of some of the DNN layers are
skipped; and channel skipping (Gao et al., 2019), where less
impactful channels of convolutional layers are ignored.

1Our code is available at https://gitlab.au.dk/
maleci/dynamicsplitcomputing.

Even with local computing techniques, many high-
performing DNNs exceed the computational capacity of
devices, especially when the output is expected within a
strict deadline. In such cases, the computation can be of-
floaded to external servers. When the computation of a
DNN is offloaded, the inputs must be transmitted from a
device to a server, yet this can introduce massive delays
during data transmission, particularly when the input size
is large, which may defeat the original purpose of speed-
ing up the computation. This has led to a recent emerging
paradigm called edge computing (Abbas et al., 2018) where
the computation is offloaded to edge servers located much
closer to end devices compared to cloud servers which are
often located in data centers. Even though edge computing
reduces the transmission delay, it still has some drawbacks.
First, since the original inputs are being transmitted over
a network, privacy issues arise. Furthermore, since typi-
cally multiple end devices are connected to the same edge
server, if all of them offload their computation simultane-
ously, the edge server may experience a high load while the
computational resources of each end device remain unused.

Split computing (Matsubara et al., 2021) (also known as col-
laborative intelligence) is an alternative approach that pro-
vides a balance between local computing and full-offloading,
where some layers of the DNN are executed on the end de-
vice and the intermediate output is then sent over to the edge
server where it is processed by the rest of the DNN layers.
When the splitting point is chosen such that the size of the
intermediate representation is lower than the input size, the
transmission delay will consequently be lower than that of
full-offloading.

However, not all deep learning models possess such natural
bottlenecks, and even if they exist, they may be located in
the final layers of the network where the bulk of the compu-
tation has already been carried out, and therefore it would
not be sensible to offload the remaining computation. For in-
stance, widely used models such as ResNet (He et al., 2016)
and Inception (Szegedy et al., 2016) do not contain natural
bottlenecks in their early layers (Matsubara et al., 2021).
In such cases, bottleneck injection can be used, where the
architecture of the network is modified to artificially insert a
bottleneck (Matsubara et al., 2021). However, this approach
requires time-consuming operations such as retraining the
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model and optimizing hyperparameters such as the size of
the inserted bottleneck. Furthermore, there is no guarantee
that the new architecture can obtain an accuracy compara-
ble to that of the original architecture, particularly when a
limitation such as a small bottleneck is imposed. Therefore,
bottleneck injection is far from ideal.

3. Dynamic Split Computing
We assume a trained high-performing DNN is to be de-
ployed on a device with access to a server, where the data
rate of the communication channel and the number of inputs
in the batch (batch size) may vary. The variations in the data
rate may be due to fluctuations in wireless channel state or
traffic congestion, and the variations in batch size may occur
due to a different workload at different times. The goal of
our method is to optimize the end-to-end inference time by
dynamically detecting the best splitting point for a given
DNN based on the communication channel state and batch
size. Since we aim to design our method in a “plug-and-play”
manner, such that it can be deployed in edge computing sys-
tems without creating new trade-offs involving the accuracy
or the hassle of retraining, we avoid altering the underlying
architecture or any lossy compression techniques that may
affect the accuracy of the final result.

Formally, neural networks can be formulated as f(x) =
fL(fL−1(. . . f1(x))) where x is the input, L is the total
number of layers in the neural network and fi is the op-
eration performed at layer i. The intermediate represen-
tation at layer i, which is the output of the i-th layer is
recursively formulated as hi = fi(hi−1) where h0 = x
is the input. Based on this notation, with split comput-
ing at layer j, the head and tail parts of the DNN are
denoted by fh(x) = fj(fj−1(. . . f1(x))) and f t(hj) =
fL(fL−1(. . . fj+1(hj))), respectively, and hj is the inter-
mediate representation that is transmitted.

The first step is to find the natural bottlenecks of the DNN
by calculating the compression ratio cl = |hl|/|x| for each
layer l where |hl| and |x| denote the size of intermediate
representation at layer l and the input size, respectively. If
cl < 1, layer l is a natural bottleneck of the DNN. However,
not all natural bottlenecks are useful in split computing. We
define Th

i,j and T t
i,j as the inference time from layer i up to

and including layer j (i < j) of the deep neural network
measured on the device and the server, respectively. When
layers m and n (m < n) have the same compression ratio,
in other words when cm = cn, the total end-to-end inference
time with split computing at layer m and layer n are

Tm = Th
1,m + cmTFO + T t

m+1,n + T t
n+1,L, (1)

Tn = Th
1,m + Th

m+1,n + cnTFO + T t
n+1,L. (2)

where TFO is the transmission time of the entire input in
full-offloading. Assuming the computational resources

of the server are greater than that of the device, then
Th
m+1,n > T t

m+1,n, thus it is favorable to choose the earlier
layer as splitting point. Consequently, only natural bottle-
necks with compression ratio lower than all previous natural
bottlenecks are useful. We call such bottlenecks compres-
sive. Compressive natural bottlenecks are defined by

C = {j|cj < 1, cj < ci ∀i < j}. (3)

The total end-to-end inference time for a given batch of
inputs when the splitting point of the network is l is

Tl = Th
1,l +

D cl
r

+ T t
l+1,L, (4)

where D is the data size of the original input, cl is the
compression ratio of the intermediate representation at layer
l and r is the data rate of the communication channel. When
inputs are images or video frames, the total load in bytes can
be calculated as D = BWHC, where B is the batch size,
W and H are the width and height of the images, and C is
the number of channels in the images, for instance, C = 3
for color images and C = 1 for grayscale.

We define the end-to-end inference time in case of no-
offloading as TL = Th

1,L and in case of full-offloading as

T0 =
D

r
+ T t

1,L. (5)

Therefore, the optimal splitting point sopt can be determined
by optimizing for

sopt = argmin
l∈{0...L}

(Tl). (6)

Dynamic split computing finds the optimal split location for
a given data rate and batch size based on Eq. (6). When
full-offloading cannot be used, for instance, due to privacy
requirements, the range is Eq. (6) is reduced to {0 . . . L−1}.
Note that based on previous arguments, only compressive
natural bottlenecks need to be investigated, therefore once
all compressive natural bottlenecks are identified, we calcu-
late the optimal splitting point for each batch size and data
rate by measuring the inference time of head and tail models
for each compressive bottleneck. It is important to note
that the relationship between inference time of head or tail
model and batch size is not strictly linear, therefore it needs
to be measured for each batch size. Additionally, when the
data rate is too low, it may not be sensible to use any form
of offloading since it introduces too much delay. Therefore,
dynamic split computing considers the no-offloading option
alongside the optimal splitting point and switches between
split computing and no-offloading when necessary.

Since different applications and environments may have
different ranges for data rate and batch size and a unique
pattern for their variations, we need a method to mea-
sure how beneficial dynamic split computing is in each
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specific case. We define a scenario as a sequence of
the state of the environment throughout time, i.e., S =
((B1, r1), (B2, r2) . . . , (BT , rN )), where Bi and ri are the
batch size and data rate at time step i, respectively. The
relative average gain of dynamic split computing in terms
of end-to-end inference time over a specific method, for
instance, static split computing at a specific location, can
then be calculated by

G =
1

N

∑
1≤i≤N

|Tsopt(Bi, ri)− T SS(Bi, ri)|
T SS(Bi, ri)

, (7)

where Tsopt(Bi, ri) and T SS(Bi, ri) are the end-to-end in-
ference time using dynamic and static split computing, re-
spectively, with batch size Bi and data rate ri.

4. Results
We investigate 14 modern DNN architectures: seven varia-
tions of EfficientNetV2 (Tan & Le, 2021) and seven varia-
tions of EfficientNetV1 (Tan & Le, 2019). All these archi-
tectures were originally designed for image classification
and have since been applied to various other problems such
as speech recognition (Lu et al., 2020). The accuracy of
these architectures on the ImageNet dataset (Deng et al.,
2009) ranges from 77.1% to 85.7%.

First, we find the compressive natural bottlenecks for each
architecture. The number of natural bottlenecks in these
architectures ranges from 15 to 68, three to four of which
are compressive. For comparison, VGG-16 (Simonyan &
Zisserman, 2014), which is an older architecture, has only
5 natural bottlenecks. Subsequently, we find the optimal
splitting point for each architecture in a wide range of states.
We check data rates ranging from 1 MBps to 128 MBps
and batch sizes of 1 to 64. Some larger models such as
EfficientNetV2-L run into memory issues with large batch
sizes, therefore, we reduce the maximum batch size to 32 or
24 in such cases. For the edge server, we use an Nvidia 2080
Ti GPU, and in order to simulate a resource-constrained
device, we underclock the same type of GPU to 300 MHz
(the normal GPU frequency is around 1800 MHz).

The results for the EfficientNetV1-B4 architecture are
shown in Fig. 2, where for each state (data rate and batch
size), the optimal split location derived based on Equation 6
is specified. It can be observed that each compressive bottle-
neck is an optimal split location in several states. Moreover,
no-offloading is the optimal solution in some other states.
Therefore, dynamically switching between split locations
(as well as no-offloading) based on the state of the com-
munication channel improves inference speed. This is also
the case with the other 13 investigated architectures. The
relative gain of dynamic split computing over split comput-
ing at a fixed location (block 10) for the EfficientNetV1-B4

architecture in terms of inference speed is shown in Fig.
3. This figure can be used to derive the gain of dynamic
split computing compared to another method for a specific
scenario based on on Equation 7. Notice that in states where
split computing at block 10 is optimal, dynamic split com-
puting swiches to this method and thus has no advantage
over it, whereas dynamic split computing obtains some gain
everywhere else by switching to a different method.

0 20 40 60 80 100 120
Data Rate (MBps)

0
5

10
15
20
25
30

Ba
tc

h 
Si

ze

No Offloading

Split at
blocks_02

Split at
blocks_06

Split at
blocks_10

Split at
blocks_22

Figure 2. Optimal split location based on batch size and data rate
for the EfficientNetV1-B4 architecture.
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Figure 3. The relative gain of dynamic split computing in terms of
end-to-end inference time over static split computing at block 10
in the EfficientNetV1-B4 architecture.

5. Conclusion
In this paper, we showed that dynamic split computing of-
fers improvements in terms of inference time over both
no-offloading and split computing with a fixed split location.
Moreover, as opposed to full-offloading, dynamic split com-
puting can decrease the computation load on the server by
performing parts of the computation on the device. Finally,
by transmitting intermediate representations instead of in-
puts, dynamic split computing circumvents privacy issues
that arise when using full-offloading.
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