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Notes & Units & Bibliography

* All quantities in these lectures are in C.G.S. units.

* The slides are accompanied by the notes. Full article references can be found in the notes. I
refer to the notes for further details.

Lectures on basic plasma physics :
P.M. Bellan (2008) Fundamentals of Plasma Physics (Cambridge), F.F. Chen (2016)
Introduction to Plasma Physics and Controlled Fusion (Springer), R.O.Dendy (1993) Plasma
Physics : An Introductory Course (Cambridge) , D.R. Nicholson (1983) Plasma Physics : An
Introductory Course (Wiley).

Several monographs are relevant for these lectures :
S. Ichimaru (1968) Basic Principles of Plasma Physics Benjamin Cummings : linear instabilities
and turbulence.
A. Hasegawa (1975) "Plasma Instabilities and non-linear effects" Springer :
macro/microinstabilites, non-linear effects.
N.A. Krall & A.W. Trivelpiece (1973) "Principles of Plasma physics" McGraw Hill : standard
linear analysis of fluid/kinetic theories, some non-linear and inhomogeneous physics.
D.B. Melrose (1986) "Instabilities in space and laboratory plasmas" Cambridge : more specific
to the school related plasmas, a quite self-contained book.
A.B. Mikhailovskii (1973) "Theory of plasma instabilities" Consultant bureau : two volumes
(homogeneous and inhomogeneous instability study), "the russian school".
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Instability nomenclature

A kind of definition : generally speaking an instability results from an exponential growth of a
wave in some peculiar modes (with a specific wavenumber range k) of a plasma.

Some taxonomy : (see Mikhailovskii 1974, book I, Cap 1976)
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Instability nomenclature

A kind of definition : generally speaking an instability results from an exponential growth of a
wave in some peculiar modes (with a specific wavenumber range k) in a plasma.

Some taxonomy : (see Mikhailovskii 1974, book I, Cap 1976)

Macroinstabilities : Macroinstabilities involved a change of the medium in the configuration
space.
Well known macroinstabilities are the Kelvin-Helmoltz or the Rayleigh-Taylor instabilities part
of the (magneto)hydrodynamic (MHD) instabilities, with the magneto-rotational instability, the
thermal instability. In these lectures we discuss the Parker-Jeans instability and how it is
modified by the presence of CRs.
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Instability nomenclature

A kind of definition : generally speaking an instability results from an exponential growth of a
wave in some peculiar modes (with a specific wavenumber range k) of a plasma.

Some taxonomy : (see Mikhailovskii 1974, book I, Cap 1976)

Macroinstabilities : Macroinstabilities involved a change of the medium in the configuration
space.
Well known macroinstabilities are the Kelvin-Helmoltz or the Rayleigh-Taylor instabilities part
of the (magneto)hydrodynamic (MHD) instabilities, with the magneto-rotational instability, the
thermal instability. In these lectures we discuss the Parker-Jeans instability and how it is
modified by the presence of CRs.
Microinstabilities : Microinstabilities usually involved a change of the medium in the velocity
space.
If we account for CRs almost all instabilities addressed are microinstabilities because connected
to anisotropy in the velocity distribution. One well-known example is the beam-driven
instability in unmagnetised 1 plasmas (Tonks & Langmuir 1929, Bohm & Gross 1949). We will
study using a kinetic theory in some details an important microinstability, i.e. the streaming
instability.

1. an unmagnetised plasma has its cyclotron frquencies Ωe/i = |q|B/me/ic→ 0
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Instability analysis : an historical example, the beam-driven instability

A plasma is linearly unstable when its dispersion relation D(ω,~k) = 0 has a solution ω with a
positive imaginary part for any real value of k.

A well-known example is the case of a beam (b) of cold electrons moving at a speed vd in a
stationary (p) plasma, the dispersion relation reads in case losses are weak : 2

1−
ω2

p

ω2
−

ω2
pb

(ω − kvd)2
= 0 ,

It has two complex roots, which vanish if vd = 0 (the source of instability) then
ω2 = (ω2

p + ω2
pb).

Hereafter we will proceed similarly, i.e. deriving the dispersion relation and then looking at
solutions for ω with a positive imaginary part.

However, whatever the amplitude of the growth rate a general criterion exist to isolate if a
system has an instability or not.

2. the plasma frequency ωp =
√

4πnq2/m, where q,n,m are the particle charge, density and mass.
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General condition for a weak instability : the Nyquist theorem

A general argument for a weak instability from the dispersion
relation can be formulated (see the discussion in Hasegawa 1975
§1). Weak means the growth rate to growing mode frequency ratio
Γ
ω
� 1.

For a dispersion relation

D(ω,~k) = 0,

it exists a real frequency ωr for a real k such that
1 Re(D(ωr,~k)) = 0.

2 |Im(D(ωr,~k))| < |ωr∂ωr Re(D(ωr,~k))|
Then the growth rate (obtained by a Taylor expansion) is given by

Γ = ωi = − Im(D(ωr,~k))

∂ωr Re(D(ωr,~k))
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General condition for an instability : the Nyquist theorem

A general argument for an instability from the dispersion relation
can be formulated (see the discussion in Hasegawa 1975 §1). Weak
means the growth rate to growing mode frequency ratio Γ

ω
� 1.

For a dispersion relation

D(ω,~k) = 0,

it exists a real frequency ωr for a real k such that
1 Re(D(ωr,~k)) = 0.

2 |Im(D(ωr,~k))| < |ωr∂ωr Re(D(ωr,~k))|
Then the growth rate (obtained by a Taylor expansion) is given by

Γ = ωi = − Im(D(ωr,~k))

∂ωr Re(D(ωr,~k))

An efficient way to test the presence of an instability is to plot the
Nyquist diagram (see Fig.1) obtained using a mapping in the D plane
of the integral I =

∫
D

dD
D , so looking for poles of D. The Nyquist

theorem stipulates that an instability occurs when the upper contour
in the Im(D) > 0 part enclose the origin.

Analysis of Instability 25 

Imw 

ImD ImD 

ReD 

0) STABLE MAPPING b) UNSTABLE MAPPING 

Fig. 4a and b. Nyquist diagram for (a) stable and (b) unstable cases 

where the integration contour is along the border of the upper half-
plane in the complex w plane, namely, from - 00 to + 00 on the real w 
axis and on an infinite semicircle in the upper half-plane (Fig. 4). If 
D = ° occurs for w with a positive imaginary part, I has a finite value 
according to the Cauchy residue theorem. (D is assumed to have no 
pole. The assumption is shown to be valid for a physical system using 
causality arguments.) Now, the integral I can be transformed into a D 
plane integral such as 

1= f dD/dw dw= J dD 
to D D D 

(1.71) 

where the integration contour is mapped into the D plane. In the D 
plane, the pole occurs at D = 0, hence I has a value when the mapped 
contour in D plane encircles the origin in D plane. In other words, an 
instability results when the mapping into the D plane of the contour 
that encircles the upper half w plane encircles the origin in the D plane. 
This is the Nyquist theorem (cf. Fig. 4). 

FIGURE – Nyquist diagram for a stable
case (left), unstable case (right)
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Dominant sources of energy in the interstellar medium

The interstellar medium (ISM) is a very complex system of gas, dust, magnetic field and
radiation in close interaction. Cosmic Rays are the non-thermal component. They gain energy
from a primary source of energy.
Among processes injecting energy into the ISM let us cite :

Instabilities linked to gravitation, rotation, magnetic fields (Magneto-rotational instability,
Parker instability, shear motions ...)

Processes linked with massive star activities : winds, radiation, HII regions expansion,
supernova explosion.

Young stellar objects jets.
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Dominant sources of energy in the interstellar medium

The interstellar medium (ISM) is a very complex system of gas, dust, magnetic field and
radiation in close interaction. Cosmic Rays are the non-thermal component. They gain energy
from a primary source of energy.
Among processes injecting energy into the ISM let us cite :

Instabilities linked to gravitation, rotation, magnetic fields (Magneto-rotational instability,
Parker instability, shear motions ...)

Processes linked with massive star activities : winds, radiation, HII regions expansion,
supernova explosion.

Young stellar objects jets.

Among these supernova explosions are expected to deposit the most of energy. A simple
calculation gives

ėSN =
σSNηSNESN

πR2
dHd

' 3 10−26 erg
cm3 s

(
ηSN

0.1

)(
ESN

1051 erg/s

)(
σSN

1SNu

)(
Hd

100 pc

)−1 ( Rd

20 kpc

)−2

(1)
ESN is the mechanical energy deposited during a SN explosion, ηSN is the efficiency of the
energy transfer into ISM gas, σSN is the SN rate, with 1 SNu = 1 SN(100 yr−1)
(1010LB/L�)−1, where LB is the blue luminosity of the Galaxy in solar luminosity units, Hd
and Rd are the disc height and radius.
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Cosmic Ray energetics

* Secondary to primary ratio measurements or radioactive elements abundances→ GeV CRs
stay in our Galaxy for about tres ' 15 Myears.
Imparting a fraction of 10% of the energy injected by supernovae into CRs, the CR energy
density in the Milky way is

ECR = 0.1× ė× tres ' 1
eV
cm3

. (2)

CR are in equipartition with magnetic field and gas energy density in the ISM.
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Cosmic Ray energetics

* Secondary to primary ratio measurements or radioactive elements abundances→ GeV CRs
stay in our Galaxy for about tres ' 15 Myears.
Imparting a fraction of 10% of the energy injected by supernovae into CRs, the CR energy
density in the Milky way is

ECR = 0.1× ė× tres ' 1
eV
cm3

. (3)

CR are in equipartition with magnetic field and gas energy density in the ISM.

* Supernova explosions with a rate of about 3 events / century are enough to power the CR
luminosity in our Galaxy,

LCR '
ECRVCR

tres
' 1041 erg/s

(
VCR

4 1067 cm3

)
(4)

VCR is the galactic volume occupied by CRs.
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Cosmic Rays and instabilities : pressure, pressure gradient and current

CRs back react over the background plasma through processes associated to their pressure,
pressure gradient and current density.

Pressure : CR pressure modifies locally the gas equation of state and the local sound speed
(if CR and gas are well coupled), e.g. see the Parker instability (below). CR pressure
anisotropy drives a series of instability (mirror, firehose).
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Cosmic Rays and instabilities : pressure, pressure gradient and current

CRs back react over the background plasma through processes associated to their pressure,
pressure gradient and current density.

Pressure : CR pressure modifies locally the gas equation of state and the local sound speed
(if CR and gas are well coupled), e.g. see the Parker instability (below). CR pressure
anisotropy drives a series of instability (mirror, firehose).

Pressure gradient : CR pressure gradient is a force which can be transferred to the plasma
momentum (see CR-MHD Eqs. below) to produce perturbations (acoustic instability). The
linear growth rate of the streaming instability is proportional to the CR pressure gradient.
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Cosmic Rays and instabilities : pressure, pressure gradient and current

CRs back react over the background plasma through processes associated to their pressure,
pressure gradient and current density.

Pressure : CR pressure modifies locally the gas equation of state and the local sound speed
(if CR and gas are well coupled), e.g. see the Parker instability (below). CR pressure
anisotropy drives a series of instability (mirror, firehose).

Pressure gradient : CR pressure gradient is a force which can be transferred to the plasma
momentum (see CR-MHD Eqs. below) to produce perturbations (acoustic instability). The
linear growth rate of the streaming instability is proportional to the CR pressure gradient.

Current : CR current is a the origin of the so-called non-resonant streaming instability and
some associated ones (filamentation, oblique modes).
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Cosmic Rays and instabilities : pressure, pressure gradient and current

CRs back react over the background plasma through processes associated to their pressure,
pressure gradient and current density.

Pressure : CR pressure modifies locally the gas equation of state and the local sound speed
(if CR and gas are well coupled), e.g. see the Parker instability (below). CR pressure
anisotropy drives a series of instability (mirror, firehose).

Pressure gradient : CR pressure gradient is a force which can be transferred to the plasma
momentum (see CR-MHD Eqs. below) to produce perturbations (acoustic instability). The
linear growth rate of the streaming instability is proportional to the CR pressure gradient.

Current : CR current is a the origin of the so-called non-resonant streaming instability and
some associated ones (filamentation, oblique modes).

One should add that MeV CRs ionise and heat ISM matter and are responsible for
gas-magnetic field coupling. (see S. Gabici lectures ( ?)).

Before turning on these topics we have to derive the model equations used to investigate CR
induced or modified instabilities.
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The Boltzmann - Maxwell system

One of the most fundamental equation in plasma physics is the Boltzmann equation. It
describes the phase space (~r,~p) evolution of the particle distribution function F(~r,~p, t), namely
the number of particles in the phase space element d3~rd3~p is F(~r,~p, t)d3~rd3~p as function of
time. A plasma is composed of different species a, then a Boltzmann equation per species is
necessary to describe their evolution. As charged particles, species a also modify the
electromagnetic fields.
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The Boltzmann - Maxwell system

One of the most fundamental equation in plasma physics is the Boltzmann equation. It
describes the phase space (~r,~p) evolution of the particle distribution function F(~r,~p, t), namely
the number of particles in the phase space element d3~rd3~p is F(~r,~p, t)d3~rd3~p as function of
time. A plasma is composed of different species a, then a Boltzmann equation per species is
necessary to describe their evolution. As charged particles, species a also modify the
electromagnetic fields.
The full system of model equation involve Boltzmann and Maxwell equations :

∂tFa(~r,~p, t) +~v.~∇Fa + qa

(
~E +

~v
c
∧ ~B
)
.∂~pFa = ∂tFa(~r,~p, t)|c [Boltzmann] (5)

~∇.~E = 4π
∑

a

qa

∫
d3~p Fa(~r,~p, t) + 4πρc,ext [Gauss] (6)

~∇∧ ~B =
1
c
∂t~E +

4π
c

∑
a

qa

∫
d3~p~vFa +

4π
c
~Jext [Ampere] (7)

~∇∧ ~E = −1
c
∂t~B [Faraday] (8)

~∇.~B = 0 [Thomson] (9)

∂tFa(~r,~p, t)|c : collisions. External charge density ρc,ext, and current~Jext.
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Equations of Magneto-hydrodynamics

Moments of the Boltzmann Eq. lead to : The continuity equation :
∫

[Eq.5]d3~p, the momentum
equation :

∫
[Eq.5]~pd3~p, the energy equation :

∫
[Eq.5]E(p)d3~p. The fluid equations combined

with the Maxwell equations lead to the equations of magnetohydrodynamics (MHD).
MHD approximation applies under some assumptions : 1) characteristic time much larger than
ion gyroperiod and mean free path time, 2) characteristic scale much larger than ion gyroradius
and mean free path length.
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Equations of Magneto-hydrodynamics

Moments of the Boltzmann Eq. lead to : The continuity equation :
∫

[Eq.5]d3~p, the momentum
equation :

∫
[Eq.5]~pd3~p, the energy equation :

∫
[Eq.5]E(p)d3~p. The fluid equations combined

with the Maxwell equations lead to the equations of magnetohydrodynamics (MHD).
MHD approximation applies under some assumptions : 1) characteristic time much larger than
ion gyroperiod and mean free path time, 2) characteristic scale much larger than ion gyroradius
and mean free path length. For non-relativistic flows one fluid MHD read :

∂tρ+ ~∇.(ρ~u) = 0 , [Continuity] (10)

ρ
(
∂ +~u.~∇

)
~u =

1
c
~J ∧ ~B− ~∇P , [Euler] (11)

~J =
c

4π
~∇∧ ~B , (12)

1
c
∂t~B = −~∇∧ ~E , (13)

~∇.~B = 0 , (14)

~E = −~u
c
∧ ~B , [Ohm] , (15)

The last equation is the ideal Ohm’s law. P is the gas (or plasma) pressure, complemented by an
energy equation or an equation of state P(ρ).
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Cosmic-Ray Magneto-hydrodynamics

A way to account for CR feed back is to treat CR as a fluid. This requires to include CR
pressure and current effects in the momentum equation (Eq.11) and to add another energy
equation from the Boltzmann equation over CRs [Dubois et al 2019, Thomas & Pfrommer
2019, Butsky et al 2020].

pro CR feed back effects easily include into fluid dynamics.

cons Information is lost over the CR distribution.
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Cosmic-Ray Magneto-hydrodynamics

A way to account for CR feed back is to treat CR as a fluid. This requires to include CR
pressure and current effects in the momentum equation (Eq.11) and to add another energy
equation from the Boltzmann equation over CRs [Dubois et al 2019, Thomas & Pfrommer
2019, Butsky et al 2020].

pro CR feed back effects easily include into fluid dynamics.

cons Information is lost over the CR distribution.

∂tρ+ ~∇(ρ~u) = 0 , (16)

∂t(ρ~u) + ~∇.
(
ρ~u~u + Ptot

¯̄I −
~B~B
4π

)
= ρ~g (17)

∂teg + ~∇.(eg~u) = −Pg ~∇.~u− L + H + HCR (18)

∂teCR + ~∇.~FCR = −PCR ~∇.~u− HCR , (19)

eg and eCR gas and CRs energy densities. L,H,HCR : gas cooling, gas heating, heating term due
to CR streaming. ~FCR (see notes, Eq 16) the CR flux depends on the CR diffusion coefficient κ
parallel to the mean magnetic field. Ptot = Pg + Pm + PCR.~g : gravitation.
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How to calculate a growth rate?

The process is uneasy (and it is only a linear analysis) and has several steps.

1 Select a model equation. This means that you consider a model to describe a natural
phenomenon. Hence depending on your choice you will have access to a given level of
information and generality.
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How to calculate a growth rate?

The process is uneasy (and it is only a linear analysis) and has several steps.

1 Select a model equation. This means that you consider a model to describe a natural
phenomenon. Hence depending on your choice you will have access to a given level of
information and generality.

2 Properly define the unperturbed system : geometry, boundary conditions ... Often a
difficult task. It can also have an impact over your result.
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How to calculate a growth rate?

The process is uneasy (and it is only a linear analysis) and has several steps.

1 Select a model equation. This means that you consider a model to describe a natural
phenomenon. Hence depending on your choice you will have access to a given level of
information and generality.

2 Properly define the unperturbed system : geometry, boundary conditions ... Often a
difficult task. It can also have an impact over your result.

3 Write your equations in terms of perturbed quantities. So each variables A entering in your
equations is developed as A = A0 + δA, with A0 the unperturbed quantity and δA� A0
the perturbed one. The linear analysis allows to drop non-linear terms (because of higher
orders in δA).
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How to calculate a growth rate?

The process is uneasy (and it is only a linear analysis) and has several steps.

1 Select a model equation. This means that you consider a model to describe a natural
phenomenon. Hence depending on your choice you will have access to a given level of
information and generality.

2 Properly define the unperturbed system : geometry, boundary conditions ... Often a
difficult task. It can also have an impact over your result.

3 Write your equations in terms of perturbed quantities. So each variables A entering in your
equations is developed as A = A0 + δA, with A0 the unperturbed quantity and δA� A0
the perturbed one. The linear analysis allows to drop non-linear terms (because of higher
orders in δA).

4 Write your perturbed quantities in a Fourier form δA ∝ exp(i(kx− ωt)).
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How to calculate a growth rate?

The process is uneasy (and it is only a linear analysis) and has several steps.

1 Select a model equation. This means that you consider a model to describe a natural
phenomenon. Hence depending on your choice you will have access to a given level of
information and generality.

2 Properly define the unperturbed system : geometry, boundary conditions ... Often a
difficult task. It can also have an impact over your result.

3 Write your equations in terms of perturbed quantities. So each variables A entering in your
equations is developed as A = A0 + δA, with A0 the unperturbed quantity and δA� A0
the perturbed one. The linear analysis allows to drop non-linear terms (because of higher
orders in δA).

4 Write your perturbed quantities in a Fourier form δA ∝ exp(i(kx− ωt)).
5 It often appears that you end with a system of coupled equations, then a matrix analysis.

The matrix eigenvalue analysis leads to an equation linking ω with k : this is the dispersion
relation.
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How to calculate a growth rate?

The process is uneasy (and it is only a linear analysis) and has several steps.

1 Select a model equation. This means that you consider a model to describe a natural
phenomenon. Hence depending on your choice you will have access to a given level of
information and generality.

2 Properly define the unperturbed system : geometry, boundary conditions ... Often a
difficult task. It can also have an impact over your result.

3 Write your equations in terms of perturbed quantities. So each variables A entering in your
equations is developed as A = A0 + δA, with A0 the unperturbed quantity and δA� A0
the perturbed one. The linear analysis allows to drop non-linear terms (because of higher
orders in δA).

4 Write your perturbed quantities in a Fourier form δA ∝ exp(i(kx− ωt)).
5 It often appears that you end with a system of coupled equations, then a matrix analysis.

The matrix eigenvalue analysis leads to an equation linking ω with k : this is the dispersion
relation.

6 Solve for the imaginary part of ω(k) : ωI > 0 leads to an instability, ωI < 0 leads to a
decaying mode. The condition ωI > 0 is the instability criterion, it fixes a subspace in k
where the system is unstable.
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Intermezzi : some vocabulary on waves

We investigate the growth of modes with some wave vector~k and frequency ω, characterised by
electromagnetic perturbed fields decomposed into an electric ~E and a magnetic ~B = c

ω
~k ∧ ~E

component. Usually the plasma is pervaded by a background (large scale) magnetic field ~B0.

Electrostatic / Electromagnetic, Parallel / Perpendicular modes :
Electrostastic mode :~k ‖ ~E,
Electromagnetic mode :~k ⊥ ~E,
Parallel mode :~k ‖ ~B0, (we can have forward k‖ > 0 or backward k‖ < 0 moving waves).
Perpendicular mode :~k ⊥ ~B0.
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Intermezzi : some vocabulary on waves

We investigate the growth of modes with some wave vector~k and frequency ω, characterised by
electromagnetic perturbed fields decomposed into an electric ~E and a magnetic ~B = c

ω
~k ∧ ~E

component. Usually the plasma is pervaded by a background (large scale) magnetic field ~B0.

Electrostatic / Electromagnetic, Parallel / Perpendicular modes :
Electrostastic mode :~k ‖ ~E,
Electromagnetic mode :~k ⊥ ~E,
Parallel mode :~k ‖ ~B0, (we can have forward k‖ > 0 or backward k‖ < 0 moving waves).
Perpendicular mode :~k ⊥ ~B0.

Mode polarisation : Plasma physics defines a mode polarisation as the sense of rotation of
the electric field [Schlickeiser 2002 Springer]. If we consider the background magnetic
field to lie along the z-axis then the polarisation is given by the ratio iEx

Ey
.

In the case iEx
Ey

= ±1 we have a circularly polarised right-handed (+) or left-handed (-)
mode because of the sense of rotation when an observer looks in the direction of the
background magnetic field.
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Intermezzi : some vocabulary on instabilities

Specific to CR-driven instabilities. Resonant / Non-resonant instability.

A resonant instability involves wavenumbers which verify the synchrotron resonance
condition linking the wave frequency ω and the particle gyro-frequency Ω = Ωc/γ, where
γ is the particle’s Larmor radius.

ω − k‖v‖ = ±nΩ

Actually the resonance applies for n harmonics of the particle gyro-frequency, k‖, v‖ are
the parallel component of the wave vector and particle velocity along the magnetic field.
In case of MHD waves, this can be reduced to k‖v‖ = ∓nΩ as ω ∼ kVa � kv, we usually
write it in a simplified way : kRL ' 1 where RL = γmv

qB is the particle Larmor radius.
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Intermezzi : some vocabulary on instabilities

Specific to CR-driven instabilities. Resonant / Non-resonant instability.

A resonant instability involves wavenumbers which verify the synchrotron resonance
condition linking the wave frequency ω and the particle gyro-frequency Ω = Ωc/γ, where
γ is the particle’s Larmor radius.

ω − k‖v‖ = ±nΩ (20)

Actually the resonance applies for n harmonics of the particle gyro-frequency, k‖, v‖ are
the parallel component of the wave vector and particle velocity along the magnetic field.
In case of MHD waves, this can be reduced to k‖v‖ = ∓nΩ as ω ∼ kVa � kv, we usually
write it in a simplified way : kRL ' 1 where RL = γmv

qB is the particle Larmor radius.

A non-resonant instability involves wavenumbers which outside the resonance branch,
either at large or small scales with respect to RL for MHD modes, hence kRL � 1
(long-wavelength) or kRL � 1 (short wavelengths).
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How Cosmic Ray can modify a pre-existing instability?

CR do not contribute to gas inertia (no source terms in Eq. 10 3). CR feed back uses several
channels :

(low energy, E < 1 GeV) CRs can ionise (and heat) partially ionised matter and contribute
to gas-magnetic field coupling. CR can ionise matter up to density columns higher than
U.V. or X-rays.

The term ~∇PCR is a force in the momentum equation. CR pressure gradients can then
induce gas motion.

CR can contribute to the Lorentz force~J ∧ ~B through their current.

3. It may happen that non-thermal particles dominate the plasma content in some contexts, like in central jets of compact
objects or black hole magnetospheres.
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How Cosmic Ray can modify a pre-existing instability?

CR do not contribute to gas inertia (no source terms in Eq. 10 4). CR feed back uses several
channels :

(low energy, E < 1 GeV) CRs can ionise (and heat) partially ionised matter and contribute
to gas-magnetic field coupling. CR can ionise matter up to density columns higher than
U.V. or X-rays.

The term ~∇PCR is a force in the momentum equation. CR pressure gradients can then
induce gas motion.

CR can contribute to the Lorentz force~J ∧ ~B through their current.

We will consider CR-driven instabilities later on. CR can first modify mostly because of their
pressure instabilities which independently exist. Let us cite : the Klevin-Helmoltz instability, the
Rayleight-Taylor instability, the thermal instability, the Magneto-rotational instability and the
Parker-Jeans instability (see notes for references).
Below we discuss the Parker-Jeans instability, in memory of E.N. Parker recently deceased
this March at past 94.

4. It may happen that non-thermal particles dominate the plasma content in some contexts, like in central jets of compact
objects or black hole magnetospheres.
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The Parker instability

Configuration : Uniform disc, magnetic field parallel to
the disc, gravity applies vertically (see Fig. 2).
Unperturbed state : disc in dynamical equilibrium under
the balance of gravity and pressure (thermal and
magnetic). d

dz (Pg + Pm) + ρgext = 0.
2. MODELS

2.1. Assumptions and Basic Equations

We investigate the Parker instability with the effect of CRs
in galactic disks. The basic equations are the MHD equations
combined with the CR energy equation:

@!
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where Pg and Pc are the gas pressure and the CR pressure, I is
the unit tensor, #g and #c are the adiabatic indexes for the gas
and the CRs, $k is the CR diffusion coefficient along the
magnetic field, b is the unit vector of the magnetic field, 6 is
the rotational angular frequency, and the other symbols have
their usual meanings. In this model, self-gravity is ignored. The
centrifugal force is assumed to be balanced by other forces
(e.g., radial gravitational force of the galaxy). For simplicity,

we ignore cross–field-line diffusion of the CRs. As a matter of
fact, the ratio of the perpendicular to the parallel diffusion
coefficient is quite small, for instance, 0.02–0.04 (Giacalone &
Jokipii 1999; Ryu et al. 2003). We normalize these equations
by the physical quantities related to the equilibrium model
described in x 2.2.

The units of density and velocity are the density !0 and
sound speed Cs;0 at the midplane of the galactic disk in the
equilibrium model. The unit of length is the scale height
without the magnetic field and CRs, H0 ¼ C2

s;0=(#ggz), and the
unit of time is the sound crossing time over 1 scale height,
H0=Cs;0. The two-dimensional calculation is carried out in the
Cartesian coordinate system (x, z), where we adopt the ap-
proximation x̂ ¼ f̂ and ẑ ¼ ẑ in the cylindrical coordinate
system (r, %, z) of the galactic disk, as did Mineshige et al.
(1993) (see Fig. 1). Moreover, the calculation is carried out
only in the region over the midplane of the galactic disk.

2.2. Equilibrium Model

We adopted the two-temperature, layered disk equilibrium
model (Shibata et al. 1989) as the initial condition:

T (z) ¼ T0 þ Thalo % T0ð Þ 1
2

tanh
z% zhalo

wtr

! "
þ 1

# $
; ð6Þ

where the disk temperature is T0 ¼ 104 K, the halo tempera-
ture is Thalo ¼ 25& 104 K, the height of the disk-halo interface
is zhalo ¼ 900 pc, and the width of the transition layer is
wtr ¼ 30 pc. The magnetic fields are horizontal initially. The
density, gas pressure, and CR pressure distributions are de-
rived from the equation

d

dz
Pg þ Pc þ

B2(z)

8"

# $
þ !gz ¼ 0; ð7Þ

subsequently, the total gas pressure scale height at z ¼ 0
(midplane of the galactic disk) is H ¼ (1þ & þ ')C2

s;0=(#ggz),

Fig. 1.—Schematic picture of the simulation model and simulation box.
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FIGURE – Unperturbed configuration (from
Kuwabara et al 2004).
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The Parker instability

Configuration : Uniform disc, magnetic field parallel to
the disc, gravity applies vertically. Unperturbed state :
disc in dynamical equilibrium under the balance of
gravity and pressure (thermal and magnetic).

Perturbation : Magnetic field lines oscillate around the
equilibrium case (see Fig. 4). Because of gravity, the gas
loaded onto the field lines slides off the peaks and sinks
into the valleys→ increase of mass loads in the valleys
makes them sink further, while the magnetic pressure
causes the peaks to rise (buoyancy) as their mass load
decreases→ instability.

In its original form Parker (1966) added CR pressure to
the global pressure balance, but no CR diffusion.

FIGURE – Sketch of the Parker instability :
background unperturbed magnetic is horizontal,
gravity is vertical.
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The Parker instability

Configuration : Uniform disc, magnetic field parallel to
the disc, gravity applies vertically. Unperturbed state :
disc in dynamical equilibrium under the balance of
gravity and pressure (thermal and magnetic).

Perturbation : Magnetic field lines oscillate around the
equilibrium case (see Fig. 4). Because of gravity, the gas
loaded onto the field lines slides off the peaks and sinks
into the valleys→ increase of mass loads in the valleys
makes them sink further, while the magnetic pressure
causes the peaks to rise (buoyancy) as their mass load
decreases→ instability.

In its original form Parker (1966) added CR pressure to
the global pressure balance, but no CR diffusion.

Instability grows at large scales (L is the system typical size)
for

k2
crit,PL2 <

(Pg + Pm + PCR)(Pg + Pm + PCR − γg)

2PgPCRγg
− 1

4
.

(21)

FIGURE – Sketch of the Parker instability :
background unperturbed magnetic is horizontal,
gravity is vertical.
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Cosmic-Ray modified Parker instability

Investigation in Kuznetsov & Ptuskin (1983), Ryu et
al (2003), Kuwabara et al (2004), Kuwabara & Ko
(2006, 2020).

Unperturbed system : vertical pressure balance
d
dz (Pg + Pm + PCR) + ρgext = 0, where gext is
due to external sources of gravitation like stars.

Linear perturbation analysis of Eqs. (16-19)
(including Coriolis force), symmetric disk and
appropriate boundary conditions (see Fig. 44)

INTRODUCTION MHD+COSMIC RAYS CR-DRIVEN DYNAMO MODELS GLOBAL DYNAMO MODELS CONCLUSIONS

RELEVANCE OF COSMIC RAYS FOR ISM DYNAMICS

Parker instability in the ISM (Parker 1966, 1967 )

(from Longair 1994,
High Energy
Astrophysics)

Cosmic ray gas: an important ingredient - continuously supplied by
SN remnants (diffusive shock acceleration), lead to strong buoyancy
effects.

Kinetic energy of SN II explosion 1051erg 10 % of ESN

acceleration of cosmic rays - charged particles (protons, electrons)
accelerated in shocks to relativistic energies

∂tρ+ ~∇(ρ~u) = 0 ,

∂t(ρ~u) + ~∇.
(
ρ~u~u + Ptot

¯̄I −
~B~B
4π

)
= ρ~g + ~Ω ∧~u + ~Ω ∧ (~Ω ∧~r)

∂teg + ~∇.(eg~u) = −Pg ~∇.~u− L + H + HCR

∂teCR + ~∇.~FCR = −PCR ~∇.~u− HCR ,
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Cosmic-Ray modified Parker instability

Investigation in Kuznetsov & Ptuskin (1983), Ryu et
al (2003), Kuwabara et al (2004), Kuwabara & Ko
(2006, 2020).

Unperturbed system : vertical pressure balance
d
dz (Pg + Pm + PCR) + ρgext = 0, where gext is
due to external sources of gravitation like stars.

Linear perturbation analysis of Eqs. (16-19)
(including Coriolis force), symmetric disk and
appropriate boundary conditions.

The ratio β = PCR
Pg

has an effect over kcrit for a
diffusion coefficient fixed (see Fig.6, right, Eq.
21). Higher β larger unstable k band and larger
growth rate.

3.3. Result of Linear Stability Analysis

In this analysis, we take the value of the CR diffusion
coefficient !k, the ratio of the CR pressure to the gas pressure
", and the rotational angular frequency ! as parameters. The
value of !k is estimated as !3" 1028 cm2 s#1 (Berezinskii
et al. 1990; Ptuskin 2001; Ryu et al. 2003). In our units,
3" 1028 cm2 s#1 corresponds to 200. We thus take !k ¼ 200,
" ¼ 1, and ! ¼ 0 as a fiducial case, and the ratio of the
magnetic pressure to the gas pressure is taken as # ¼ 1
(initially).

Figure 2 (left) shows the dispersion relations for different
!k-values, where $ is the growth rate and kx is the wave-
number in the direction of the initial magnetic field. We set
ky ¼ 0 for the linear analysis in this paper. In this calculation
we set " ¼ 1 and ! ¼ 0. The growth rate becomes smaller as
!k decreases from the fiducial value, !k ¼ 200. This result
matches well the one given by Ryu et al. (2003). The maxi-
mum growth rate $max for different !k occurs at roughly the
same kx. Figure 2 (right) shows the dependence of the maxi-
mum growth rate $max on !k: $max increases rapidly for 0 <
!k < 20, increases gradually for 20< !k < 80, and finally,
becomes almost constant when !k > 80.

Figure 3 (left) shows the dispersion relations for different ",
where " is the ratio of the CR pressure to the gas pressure. In
this calculation we set !k ¼ 200 and ! ¼ 0. The case of " ¼ 0
is identical to the Parker instability case without the effect of
CRs. As " increases, the maximum growth rate $max increases,

and the wavenumber kx; max, at which the growth rate becomes
maximum, increases as well. Moreover, $max and kx; max

are roughly related linearly. Figure 3 (left) also indicates that
the short-wavelength perturbations become unstable as " in-
creases. Figure 3 (right) shows the dependence of the maxi-
mum growth rate on ": $max increases almost linearly in the
range from " ¼ 0 to 1 and approaches a constant value as "
increases beyond 1.

Figure 4 (left) shows the dispersion relations for different !,
where ! is the rotational angular frequency. In this calculation
we set !k ¼ 200. As ! increases, the growth rate of long-
wavelength perturbations decreases rapidly, and kx; max becomes
larger. Figure 4 (right) shows the dependence of $max on " for
different !.

4. TWO-DIMENSIONAL MHD SIMULATION

4.1. Numerical Procedure and Boundary Conditions

We solve the set of two-dimensional, nonlinear, time-
dependent, compressible ideal MHD equations, supplemented
with the CR energy equation (eqs. [1]–[5]), in Cartesian coor-
dinates. We use the modified Lax-Wendroff scheme with arti-
ficial viscosity for the MHD part and the biconjugate gradients
stabilized (BiCGstab) method for the diffusion part of the
CR energy equation in the same manner as described in
Yokoyama & Shibata (2001). The MHD code using the Lax-
Wendroff scheme was originally developed by Shibata (1983)

Fig. 2.—Left: Dispersion relation for the Parker instability with the effect of CRs at different !k, where $ is the growth rate of perturbation and kx is the
wavenumber along the direction of the magnetic field in the unperturbed state. Right: Dependence of the maximum growth rate $max on !k.

Fig. 3.—Left: Dispersion relation for the Parker instability with the effect of CRs at different ", where " is the initial ratio of the CR pressure to the gas pressure.
Right: Dependence of the maximum growth rate $max on ".
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3.3. Result of Linear Stability Analysis

In this analysis, we take the value of the CR diffusion
coefficient !k, the ratio of the CR pressure to the gas pressure
", and the rotational angular frequency ! as parameters. The
value of !k is estimated as !3" 1028 cm2 s#1 (Berezinskii
et al. 1990; Ptuskin 2001; Ryu et al. 2003). In our units,
3" 1028 cm2 s#1 corresponds to 200. We thus take !k ¼ 200,
" ¼ 1, and ! ¼ 0 as a fiducial case, and the ratio of the
magnetic pressure to the gas pressure is taken as # ¼ 1
(initially).

Figure 2 (left) shows the dispersion relations for different
!k-values, where $ is the growth rate and kx is the wave-
number in the direction of the initial magnetic field. We set
ky ¼ 0 for the linear analysis in this paper. In this calculation
we set " ¼ 1 and ! ¼ 0. The growth rate becomes smaller as
!k decreases from the fiducial value, !k ¼ 200. This result
matches well the one given by Ryu et al. (2003). The maxi-
mum growth rate $max for different !k occurs at roughly the
same kx. Figure 2 (right) shows the dependence of the maxi-
mum growth rate $max on !k: $max increases rapidly for 0 <
!k < 20, increases gradually for 20< !k < 80, and finally,
becomes almost constant when !k > 80.

Figure 3 (left) shows the dispersion relations for different ",
where " is the ratio of the CR pressure to the gas pressure. In
this calculation we set !k ¼ 200 and ! ¼ 0. The case of " ¼ 0
is identical to the Parker instability case without the effect of
CRs. As " increases, the maximum growth rate $max increases,

and the wavenumber kx; max, at which the growth rate becomes
maximum, increases as well. Moreover, $max and kx; max

are roughly related linearly. Figure 3 (left) also indicates that
the short-wavelength perturbations become unstable as " in-
creases. Figure 3 (right) shows the dependence of the maxi-
mum growth rate on ": $max increases almost linearly in the
range from " ¼ 0 to 1 and approaches a constant value as "
increases beyond 1.

Figure 4 (left) shows the dispersion relations for different !,
where ! is the rotational angular frequency. In this calculation
we set !k ¼ 200. As ! increases, the growth rate of long-
wavelength perturbations decreases rapidly, and kx; max becomes
larger. Figure 4 (right) shows the dependence of $max on " for
different !.

4. TWO-DIMENSIONAL MHD SIMULATION

4.1. Numerical Procedure and Boundary Conditions

We solve the set of two-dimensional, nonlinear, time-
dependent, compressible ideal MHD equations, supplemented
with the CR energy equation (eqs. [1]–[5]), in Cartesian coor-
dinates. We use the modified Lax-Wendroff scheme with arti-
ficial viscosity for the MHD part and the biconjugate gradients
stabilized (BiCGstab) method for the diffusion part of the
CR energy equation in the same manner as described in
Yokoyama & Shibata (2001). The MHD code using the Lax-
Wendroff scheme was originally developed by Shibata (1983)

Fig. 2.—Left: Dispersion relation for the Parker instability with the effect of CRs at different !k, where $ is the growth rate of perturbation and kx is the
wavenumber along the direction of the magnetic field in the unperturbed state. Right: Dependence of the maximum growth rate $max on !k.
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FIGURE – Left : the growth rate parallel to the magnetic field
as function of the mode wave number for different values of
the parallel diffusion coefficient with PCR = Pg. Right : the
growth rate parallel to the magnetic field as function of the
mode wave number for different values CR to gas pressure
ratio with κ = 200 (in units of Hcs, H disk height, cs the
sound speed). The other parameters are : Pg = Pm and no
galactic rotation Ω = 0 (Kuwabara et al 2004).
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Cosmic-Ray modified Parker instability

Investigation in Kuznetsov & Ptuskin (1983), Ryu et
al (2003), Kuwabara et al (2004), Kuwabara & Ko
(2006, 2020).

Unperturbed system : vertical pressure balance
d
dz (Pg + Pm + PCR) + ρgext = 0, where gext is
due to external sources of gravitation like stars.

Linear perturbation analysis of Eqs. (16-19)
(including Coriolis force), symmetric disk and
appropriate boundary conditions.

The ratio β = PCR
Pg
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diffusion coefficient fixed (see Fig.6, right, Eq.
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growth rate.
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et al. 1990; Ptuskin 2001; Ryu et al. 2003). In our units,
3" 1028 cm2 s#1 corresponds to 200. We thus take !k ¼ 200,
" ¼ 1, and ! ¼ 0 as a fiducial case, and the ratio of the
magnetic pressure to the gas pressure is taken as # ¼ 1
(initially).

Figure 2 (left) shows the dispersion relations for different
!k-values, where $ is the growth rate and kx is the wave-
number in the direction of the initial magnetic field. We set
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we set " ¼ 1 and ! ¼ 0. The growth rate becomes smaller as
!k decreases from the fiducial value, !k ¼ 200. This result
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mum growth rate $max for different !k occurs at roughly the
same kx. Figure 2 (right) shows the dependence of the maxi-
mum growth rate $max on !k: $max increases rapidly for 0 <
!k < 20, increases gradually for 20< !k < 80, and finally,
becomes almost constant when !k > 80.
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where " is the ratio of the CR pressure to the gas pressure. In
this calculation we set !k ¼ 200 and ! ¼ 0. The case of " ¼ 0
is identical to the Parker instability case without the effect of
CRs. As " increases, the maximum growth rate $max increases,

and the wavenumber kx; max, at which the growth rate becomes
maximum, increases as well. Moreover, $max and kx; max

are roughly related linearly. Figure 3 (left) also indicates that
the short-wavelength perturbations become unstable as " in-
creases. Figure 3 (right) shows the dependence of the maxi-
mum growth rate on ": $max increases almost linearly in the
range from " ¼ 0 to 1 and approaches a constant value as "
increases beyond 1.

Figure 4 (left) shows the dispersion relations for different !,
where ! is the rotational angular frequency. In this calculation
we set !k ¼ 200. As ! increases, the growth rate of long-
wavelength perturbations decreases rapidly, and kx; max becomes
larger. Figure 4 (right) shows the dependence of $max on " for
different !.

4. TWO-DIMENSIONAL MHD SIMULATION

4.1. Numerical Procedure and Boundary Conditions

We solve the set of two-dimensional, nonlinear, time-
dependent, compressible ideal MHD equations, supplemented
with the CR energy equation (eqs. [1]–[5]), in Cartesian coor-
dinates. We use the modified Lax-Wendroff scheme with arti-
ficial viscosity for the MHD part and the biconjugate gradients
stabilized (BiCGstab) method for the diffusion part of the
CR energy equation in the same manner as described in
Yokoyama & Shibata (2001). The MHD code using the Lax-
Wendroff scheme was originally developed by Shibata (1983)

Fig. 2.—Left: Dispersion relation for the Parker instability with the effect of CRs at different !k, where $ is the growth rate of perturbation and kx is the
wavenumber along the direction of the magnetic field in the unperturbed state. Right: Dependence of the maximum growth rate $max on !k.
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In this analysis, we take the value of the CR diffusion
coefficient !k, the ratio of the CR pressure to the gas pressure
", and the rotational angular frequency ! as parameters. The
value of !k is estimated as !3" 1028 cm2 s#1 (Berezinskii
et al. 1990; Ptuskin 2001; Ryu et al. 2003). In our units,
3" 1028 cm2 s#1 corresponds to 200. We thus take !k ¼ 200,
" ¼ 1, and ! ¼ 0 as a fiducial case, and the ratio of the
magnetic pressure to the gas pressure is taken as # ¼ 1
(initially).

Figure 2 (left) shows the dispersion relations for different
!k-values, where $ is the growth rate and kx is the wave-
number in the direction of the initial magnetic field. We set
ky ¼ 0 for the linear analysis in this paper. In this calculation
we set " ¼ 1 and ! ¼ 0. The growth rate becomes smaller as
!k decreases from the fiducial value, !k ¼ 200. This result
matches well the one given by Ryu et al. (2003). The maxi-
mum growth rate $max for different !k occurs at roughly the
same kx. Figure 2 (right) shows the dependence of the maxi-
mum growth rate $max on !k: $max increases rapidly for 0 <
!k < 20, increases gradually for 20< !k < 80, and finally,
becomes almost constant when !k > 80.

Figure 3 (left) shows the dispersion relations for different ",
where " is the ratio of the CR pressure to the gas pressure. In
this calculation we set !k ¼ 200 and ! ¼ 0. The case of " ¼ 0
is identical to the Parker instability case without the effect of
CRs. As " increases, the maximum growth rate $max increases,

and the wavenumber kx; max, at which the growth rate becomes
maximum, increases as well. Moreover, $max and kx; max

are roughly related linearly. Figure 3 (left) also indicates that
the short-wavelength perturbations become unstable as " in-
creases. Figure 3 (right) shows the dependence of the maxi-
mum growth rate on ": $max increases almost linearly in the
range from " ¼ 0 to 1 and approaches a constant value as "
increases beyond 1.

Figure 4 (left) shows the dispersion relations for different !,
where ! is the rotational angular frequency. In this calculation
we set !k ¼ 200. As ! increases, the growth rate of long-
wavelength perturbations decreases rapidly, and kx; max becomes
larger. Figure 4 (right) shows the dependence of $max on " for
different !.

4. TWO-DIMENSIONAL MHD SIMULATION

4.1. Numerical Procedure and Boundary Conditions

We solve the set of two-dimensional, nonlinear, time-
dependent, compressible ideal MHD equations, supplemented
with the CR energy equation (eqs. [1]–[5]), in Cartesian coor-
dinates. We use the modified Lax-Wendroff scheme with arti-
ficial viscosity for the MHD part and the biconjugate gradients
stabilized (BiCGstab) method for the diffusion part of the
CR energy equation in the same manner as described in
Yokoyama & Shibata (2001). The MHD code using the Lax-
Wendroff scheme was originally developed by Shibata (1983)

Fig. 2.—Left: Dispersion relation for the Parker instability with the effect of CRs at different !k, where $ is the growth rate of perturbation and kx is the
wavenumber along the direction of the magnetic field in the unperturbed state. Right: Dependence of the maximum growth rate $max on !k.

Fig. 3.—Left: Dispersion relation for the Parker instability with the effect of CRs at different ", where " is the initial ratio of the CR pressure to the gas pressure.
Right: Dependence of the maximum growth rate $max on ".
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FIGURE – Left : the growth rate parallel to the magnetic field
as function of the mode wave number for different values of
the parallel diffusion coefficient with PCR = Pg. Right : the
growth rate parallel to the magnetic field as function of the
mode wave number for different values CR to gas pressure
ratio with κ = 200 (in units of Hcs, H disk height, cs the
sound speed). The other parameters are : Pg = Pm and no
galactic rotation Ω = 0 (Kuwabara et al 2004).
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Including self-gravity : the Parker-Jeans instability

Done in Kuwabara et al (2006) : add a Poisson equation∇2ψG = 4πGρ to the CR-MHD
system.
The Jeans instability results from an unbalanced effect of gas supporting pressure to gravitation.
If the gas free-fall time gets lower than the sound crossing time a runaway process is triggered.

The analysis is more complex (a system of 4 coupled Eqs. to be solved, with 4 boundary
conditions).

Without any magnetic field, the Jeans instability prevails. CR pressure has an effect over
the critical instability wave number kcrit,J =

√
4πGρ/c2

s , as the effective sound speed is

now cs,t =
√

c2
s + c2

CR, with c2
CR = γCR

PCR
ρ

. But any diffusion will reduce the CR
pressure impact.
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Including self-gravity : the Parker-Jeans instability

Done in Kuwabara et al (2006) : add a Poisson equation∇2ψG = 4πGρ to the CR-MHD
system.
The Jeans instability results from an unbalanced effect of gas supporting pressure to gravitation.
If the gas free-fall time gets lower than the sound crossing time a runaway process is triggered.

The analysis is more complex (a system of 4 coupled Eqs. to be solved, with 4 boundary
conditions).

Without any magnetic field, the Jeans instability prevails. CR pressure has an effect over
the critical instability wave number kcrit,J =

√
4πGρ/c2

s , as the effective sound speed is

now cs,t =
√

c2
s + c2

CR, with c2
CR = γCR

PCR
ρ

. But any diffusion will reduce the CR
pressure impact.

Summary : if κ = 0 CR and gas are tightly coupled and CR pressure adds up to gas one / asap
κ 6= 0 CR diffuse along the magnetic field lines and reduce the effect of CR gradient as
opponent force to gas infall.

Some implications : Magnetic field and self-gravity produce complex behavior. Depending if
Jeans dominates over Parker or vice versa, the matter collapses either perpendicular or parallel
to the magnetic field line (see Kuwabara & Ko 2006, 2020).
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Introduction

� CRs are transported in the ISM because of their interaction with collective charges motions,
or "waves". They scatter off waves and hence their pitch-angle α = (~v, ~B) has a random walk.
If scattering is efficient enough CRs move with waves at typical speed of Va (Alfvén speed).
(See P. Blasi’s lectures, and Skilling 1971).
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Introduction

� CRs are transported in the ISM because of their interaction with collective charges motions,
or "waves". They scatter off waves and hence their pitch-angle α = (~v, ~B) has a random walk.
If scattering is efficient enough CRs move with waves at typical speed of Va (Alfvén speed).
(See P. Blasi’s lectures, and Skilling 1971).

� CR-driven instabilities can be triggered because of CR drift, and or pressure anisotropies.
Instability cases :

If in the wave frame there is a residual anisotropy, this results in the background (ISM) gas
frame as a population of CR drifting. This is the streaming instability (Skilling 1975).
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Introduction

� CRs are transported in the ISM because of their interaction with collective charges motions,
or "waves". They scatter off waves and hence their pitch-angle α = (~v, ~B) has a random walk.
If scattering is efficient enough CRs move with waves at typical speed of Va (Alfvén speed).
(See P. Blasi’s lectures, and Skilling 1971).

� CR-driven instabilities can be triggered because of CR drift, and or pressure anisotropies.
Instability cases :

If in the wave frame there is a residual anisotropy, this results in the background (ISM) gas
frame as a population of CR drifting. This is the streaming instability (Skilling 1975).

CR distribution may be well isotropic in the wave frame BUT, the CR gas itself is moving
in the background gas, as it is the case for shocks. Here again the streaming instability is
expected to occur (Bell & Lucek 2001, Bell 2004). Non-linear evolution can induce in that
case other classes of instabilities like the filamentation instability (Reville & Bell 2012),
or the oblique mode instability (Bykov et al 2011).
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Introduction

� CRs are transported in the ISM because of their interaction with collective charges motions,
or "waves". They scatter off waves and hence their pitch-angle α = (~v, ~B) has a random walk.
If scattering is efficient enough CRs move with waves at typical speed of Va (Alfvén speed).
(See P. Blasi’s lectures, and Skilling 1971).

� CR-driven instabilities can be triggered because of CR drift, and or pressure anisotropies.
Instability cases :

If in the wave frame there is a residual anisotropy, this results in the background (ISM) gas
frame as a population of CR drifting. This is the streaming instability (Skilling 1975).

CR distribution may be well isotropic in the wave frame BUT, the CR gas itself is moving
in the background gas, as it is the case for shocks. Here again the streaming instability is
expected to occur (Bell & Lucek 2001, Bell 2004). Non-linear evolution can induce in that
case other classes of instabilities like the filamentation instability (Reville & Bell 2012),
or the oblique mode instability (Bykov et al 2011).

A strong CR gradient can also drives (compressional) sound waves this is the acoustic or
Drury instability, (Drury 1984).
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Introduction

� CRs are transported in the ISM because of their interaction with collective charges motions,
or "waves". They scatter off waves and hence their pitch-angle α = (~v, ~B) has a random walk.
If scattering is efficient enough CRs move with waves at typical speed of Va (Alfvén speed).
(See P. Blasi’s lectures, and Skilling 1971).

� CR-driven instabilities can be triggered because of CR drift, and or pressure anisotropies.
Instability cases :

If in the wave frame there is a residual anisotropy, this results in the background (ISM) gas
frame as a population of CR drifting. This is the streaming instability (Skilling 1975).

CR distribution may be well isotropic in the wave frame BUT, the CR gas itself is moving
in the background gas, as it is the case for shocks. Here again the streaming instability is
expected to occur (Bell & Lucek 2001, Bell 2004). Non-linear evolution can induce in that
case other classes of instabilities like the filamentation instability (Reville & Bell 2012),
or the oblique mode instability (Bykov et al 2011).

A strong CR gradient can also drives (compressional) sound waves this is the acoustic or
Drury instability, (Drury 1984).

If pressure anisotropy is strong enough, pressure-driven mirror/firehose instabilities can
be triggered (Osipov et al 2017).
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Instability survey in this lecture

We will examine successively :

The general formalism to investigate CR-driven instabilities (we will apply it in Lecture 2).

Three pressure-related instabilities : mirror/firehose/acoustic.

Anisotropy / Current-related instabilities : a rapid introduction to the streaming instability,
description of the filamentation, oblique-mode instability in the context of shocks.

In Lecture 2 we will have a detailed derivation of the streaming instability growth rate and
the environemental effects over its growth.

55/203 Cosmic-Ray and astrophysical plasma instabilities



Preliminaries
Lecture 1 : Astrophysical plasmas instabilities and Cosmic Rays

Lecture 2 : The Cosmic-Ray streaming instability
Conclusions

Instabilities in plasma physics
Cosmic Rays as source of free energy in Astrophysics
Model equations
Cosmic-Ray-modified Instabilities : main classes and one example
Cosmic-Ray-driven instabilities : main classes

The linear instability analysis

We describe in short the procedure to be adopted to investigate kinetic instabilities – instabilities
which require to solve the perturbed Vlasov equation. The process has several steps (see Krall
& Trivelpiece 1973 for all details).

Starting from the Vlasov-Maxwell system (Eqs. 5-9) we decompose the particle
distribution into an unperturbed state Fa and a perturbed state δFa with δFa � Fa.
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The linear instability analysis

We describe in short the procedure to be adopted to investigate kinetic instabilities – instabilities
which require to solve the perturbed Vlasov equation. The process has several steps (see Krall
& Trivelpiece 1973 for all details).

Starting from the Vlasov-Maxwell system (Eqs. 5-9) we decompose the particle
distribution into an unperturbed state Fa and a perturbed state δFa with δFa � Fa.

We proceed as well for the electromagnetic fields : ~E = δ~E, ~B = ~B0 + δ~B, with
B0 � δB, δE.
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The linear instability analysis

We describe in short the procedure to be adopted to investigate kinetic instabilities – instabilities
which require to solve the perturbed Vlasov equation. The process has several steps (see Krall
& Trivelpiece 1973 for all details).

Starting from the Vlasov-Maxwell system (Eqs. 5-9) we decompose the particle
distribution into an unperturbed state Fa and a perturbed state δFa with δFa � Fa.
We proceed as well for the electromagnetic fields : ~E = δ~E, ~B = ~B0 + δ~B, with
B0 � δB, δE.
To obtain the time evolution of δfa, we substract the unperturbed Eqs to the original
system.

We get :

∂tδfa +~v.~∇δfa+qa

(
~v
c
∧ ~B0

)
.∂~pδfa = −qa

(
δ~E +

~v
c
∧ δ~B

)
.∂~pFa

~∇.δ~E = 4π
∑

a

qa

∫
d3~pδfa(~x,~p, t)

~∇∧ δ~B =
1
c
∂tδ~E +

4π
c

∑
a

qa

∫
d3~p~vδfa

~∇∧ δ~E =− 1
c
∂tδ~B, ~∇.δ~B = 0

(22)
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Quasi-linear theory

In order to solve for δfa in Eq. 22 we need to express the perturbed distribution in terms of Fa.
For this we need to integrate the equation over time with a prescription about particles
trajectories. In the quasi-linear theory (QLT) framework these trajectories are the Larmor
motion in the background magnetic field ~B0.
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Quasi-linear theory

In order to solve for δfa in Eq. 22 we need to express the perturbed distribution in terms of Fa.
For this we need to integrate the equation over time with a prescription about particles
trajectories. In the quasi-linear theory (QLT) framework these trajectories are the Larmor
motion in the background magnetic field ~B0.
Hence we can use the method of characteristic to integrate the time evolution along these
trajectories. We have

δfa(~x,~v, t) = − qa

ma

∫ t

−∞
dt′
(
δ~E(~x′, t′) +

~v′

c
∧ ~δB(~x′, t′)

)
unper

.~∇~v′Fa(~x′,~v′)

The primes denote the unperturbed quantities.
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Quasi-linear theory

In order to solve for δfa in Eq. 22 we need to express the perturbed distribution in terms of Fa.
For this we need to integrate the equation over time with a prescription about particles
trajectories. In the quasi-linear theory (QLT) framework these trajectories are the Larmor
motion in the background magnetic field ~B0.
Hence we can use the method of characteristic to integrate the time evolution along these
trajectories. We have

δfa(~x,~v, t) = − qa

ma

∫ t

−∞
dt′
(
δ~E(~x′, t′) +

~v′

c
∧ ~δB(~x′, t′)

)
unper

.~∇~v′Fa(~x′,~v′) (23)

The primes denote the unperturbed quantities. Then wave-like solutions are searched :
δ~E = ~Ek exp(i~k.~x− iωt)
This allows us to calculate the perturbed current in the perturbed Ampère equation in terms of
the perturbed electric field using the conductivity tensor ¯̄σ. We have :
δ~Jk =

∑
a qa

∫
d3~v~vδfk,a = ¯̄σ.~Ek . The final dispersion relation is obtained from a determinant

of a 3x3 matrix. It is written in terms of the different plasma susceptibility Xa :

k2c2

ω2
− 1−

∑
a

Xa = 0 . (24)

So we have a susceptibility for each species : thermal protons, electrons, non-thermal electron,
positrons, protons, Helium nuclei ...
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Cosmic Ray susceptibility

We reproduce here the general expression for the CR susceptibility XCR. We express it in a

slightly simplified form only valid for modes propagating parallel to ~B0, so~k = k
~B0
B0

. It
describes the effect of CRs over circularly-polarised waves.

XCR =
4πq2

ω

∫ pmax

0
dp
∫

dµ
p2v(p)(1− µ2)

ω − kvµ± Ωs

(
∂pFCR(p, µ) + (µ+

kv
ω

)∂µFCR(p, µ)

)
.

The polarisation appears in the ± (+ right / - left) terms in from the synchrotron frequency
Ωs = qB0

γmc . µ = cos(~v, ~B0) is the particle pitch-angle cosine.
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Cosmic Ray susceptibility

We reproduce here the general expression for the CR susceptibility XCR. We express it in a

slightly simplified form only valid for modes propagating parallel to ~B0, so~k = k
~B0
B0

. It
describes the effect of CRs over circularly-polarised waves.

XCR =
4πq2

ω

∫ pmax

0
dp
∫

dµ
p2v(p)(1− µ2)

ω − kvµ± Ωs

(
∂pFCR(p, µ) + (µ+

kv
ω

)∂µFCR(p, µ)

)
.

(25)
The polarisation appears in the ± (+ right / - left) terms in from the synchrotron frequency
Ωs = qB0

γmc . µ = cos(~v, ~B0) is the particle pitch-angle cosine.

* In order to obtain the contribution of CRs to the relation dispersion we need to fix a particular
distribution FCR. The µ dependence encodes the CR driven instabilities. The momentum
distribution encodes the spectrum of growing waves. Different distribution can be chosen :
monoenergetic, power-law, kappa distribution ... etc. In most of the instability studies
mentioned below a power-law is adopted.

In the lecture 2 we will derive this expression, in order then to derive the growth rate of the
streaming instability.
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Cosmic Ray anisotropy

The µ dependence of the unperturbed distribution function FCR is at the heart of the CR-driven
instability triggering.
It is possible to use a quite general formalism using a shperical harmonic development for
F(p, µ, φ), φ is the gyrophase associated with the Larmor motion (see Bell et al 2006). This
approach catches all anisotropic effects and can apriori treats high anisotropy cases at the
expanse of more terms in the development.
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Cosmic Ray anisotropy

The µ dependence of the unperturbed distribution function FCR is at the heart of the CR-driven
instability triggering.
It is possible to use a quite general formalism using a spherical harmonic development for
F(p, µ, φ), φ is the gyrophase associated with the Larmor motion (see Bell et al 2006). This
approach catches all anisotropic effects and can apriori treats high anisotropy cases at the
expanse of more terms in the development.

We below use a simplified form. We assume 1) gyrotropy (no dependence in φ 2) the anisotropy
can be described by the two first terms in µ. Namely,

F(p, µ) =
nCRN(p)

4π

(
1 + 3

ud

c
µ+

χ

2
(3µ2 − 1)

)
. (26)

ud controls the CR drift and is responsible for the streaming instability.
χ controls the CR pressure anisotropy and is responsible for the mirror/firehose instabilities.

Let’s discuss the second ones first.
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The firehose/mirror instabilities : 1. without cosmic rays, criterion

These instabilities are triggered because of an excess of pressure either along the background
magnetic field (firehose) P‖ or perpendicularly P⊥ to the background magnetic field (mirror).
These instabilities can be driven by anisotropic plasma temperatures. Kinetic calculation lead to
the triggering criterion (Hasegawa 1975) 5.

In the firehose case we have :
β‖ − β⊥ > 2 , (27)

In the mirror case we have (
β⊥ − β‖

) β⊥
β‖

> 1 . (28)

5. we note β = 8πnmV2
T/B2 , with VT =

√
kBT/m the thermal speed, hence β = P/Pm .
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The firehose instability : 1. without cosmic rays, physical processes

Firehose (Parker 1958) : In a curved magnetic field tube the
plasma flow along a magnetic flux tube produces a centrifugal
force FR = ρu2

‖/R (R is the curvature radius of the flux tube)
and two restoring forces : the perpendicular thermal pressure
Fp⊥ = |~∇P⊥| ' P⊥

R and the magnetic stress FB = B2

4πR (see
figure 9).

The instability results from the centrifugal force produced by
a train of beads moving along the magnetic field which
amplifies a transversal motion. The centrifugal force
dominates once Eq. 27 is fulfilled.

3.4. FIREHOSE INSTABILITY 51

for instability is that the exponential term in Eq. (3.65) is larger than the first term on
the right-hand side. This yields an implicit equation for the unstable wavenumbers

kd < ln

µ
1 ° 2!gekv0

!2
pe

∂°1/2

(3.66)

The unstable wave grows in the direction of the shear flow. It has the growth rate

∞akh =
!2

pe

2!ge

"
exp(°4kd) °

µ
1 ° 2!gekv0

!2
pe

∂2
#1/2

(3.67)

For a sheet of auroral electrons the rotation of the vortices in the layer produced by the
instability will be counterclockwise when looking against the magnetic field from the
northern hemisphere upward into the aurora. The direction of the vortices agrees with
the sense of gyration of the electrons.

3.4. Firehose Instability
In Chap. 9 of our companion book, Basic Space Plasma Physics, we found that a plasma
can support low-frequency large-scale Alfvén and magnetosonic waves far below the
electron- and ion-cyclotron frequencies, but did not specify which instabilities can ex-
cite these wave modes. One mechanism of generating surface Alfvén waves has been
identified in the Kelvin-Helmholtz instability. We have also demonstrated that these
waves may be further amplified by global resonances in closed magnetic configurations
as the magnetosphere to become bulk modes (cf. Sec. 9.7 of our companion book). An-
other instability which excites bulk Alfvén waves is the firehose instability. It can arise

FR  

B0 

FB 

Fp⊥ 

R 

Fig. 3.7. Mechanism of the firehose instability.

FIGURE – Mechanism of the firehose instability.
The figure is extracted from Treumann and
Baumjohann (1997).
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The firehose instability : 1. without cosmic rays, physical processes

Firehose (Parker 1958) : In a curved magnetic field tube the
plasma flow along a magnetic flux tube produces a centrifugal
force FR = ρu2

‖/R (R is the curvature radius of the flux tube)
and two restoring forces : the perpendicular thermal pressure
Fp⊥ = |~∇P⊥| ' P⊥

R and the magnetic stress FB = B2

4πR (see
figure 9).

The instability results from the centrifugal force produced by
a train of beads moving along the magnetic field which
amplifies a transversal motion. The centrifugal force
dominates once Eq. 27 is fulfilled.

The instability has its maximal growth for parallel
propagation. The growth rate vanishes for perpendicular
propagation.

The firehose instability is non-resonant (does not involve a
match between growing mode wavelength and particle
gyroradius)

3.4. FIREHOSE INSTABILITY 51

for instability is that the exponential term in Eq. (3.65) is larger than the first term on
the right-hand side. This yields an implicit equation for the unstable wavenumbers

kd < ln

µ
1 ° 2!gekv0

!2
pe

∂°1/2

(3.66)

The unstable wave grows in the direction of the shear flow. It has the growth rate
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For a sheet of auroral electrons the rotation of the vortices in the layer produced by the
instability will be counterclockwise when looking against the magnetic field from the
northern hemisphere upward into the aurora. The direction of the vortices agrees with
the sense of gyration of the electrons.

3.4. Firehose Instability
In Chap. 9 of our companion book, Basic Space Plasma Physics, we found that a plasma
can support low-frequency large-scale Alfvén and magnetosonic waves far below the
electron- and ion-cyclotron frequencies, but did not specify which instabilities can ex-
cite these wave modes. One mechanism of generating surface Alfvén waves has been
identified in the Kelvin-Helmholtz instability. We have also demonstrated that these
waves may be further amplified by global resonances in closed magnetic configurations
as the magnetosphere to become bulk modes (cf. Sec. 9.7 of our companion book). An-
other instability which excites bulk Alfvén waves is the firehose instability. It can arise
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Fig. 3.7. Mechanism of the firehose instability.

FIGURE – Mechanism of the firehose instability.
The figure is extracted from Treumann and
Baumjohann (1997).
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The mirror instability : 1. without cosmic rays, physical processes

The mirror instability develops for perpendicular modes
(k = k⊥).
It requires a kinetic treatment to account for particle trapping
in magnetic mirrors : Particles trapped in the mirror get
accelerate towards lower magnetic field regions by the
−µd∇B force [µd = 1/2mv2

⊥/B is the particle magnetic
moment]. (This force can be constructed from the Lorentz
force + ~∇.~B = 0.)

This diamagnetic repulsion enhanced the perpendicular
pressure and excludes the magnetic field further on leading to
an instability once the criterion in Eq. 28 is verified.

58 3. MACROINSTABILITIES

−∇µB 

Fig. 3.10. Magnetic field and plasma density in mirror mode waves.

In the opposite case, when the wave propagates nearly perpendicular to the mag-
netic field, the first term in the brackets dominates, and the condition for instability
excludes the firehose mode and reads

X

s

Ø2
s?
Øsk

> 1 +
X

s

Øs? (3.90)

If this condition is satisfied, mirror instability sets on in an anisotropic plasma. Indeed,
the condition for mirror instability cannot be satisfied at the same time as the condition
for firehose instability. The two instabilities are mutually exclusive.

Both particle species contribute to the condition of instability, but the component
with the strongest anisotropy in the perpendicular direction contributes most. On the
other hand, the growth rate is determined by the ion anisotropy and is greater for greater
parallel ion energies. This can be seen from the expression for the growth rate of the
mirror instability

∞mi =

r
2

º

Øik

Ø2
i?

"X

s

Øs?

µ
Øs?
Øsk

° 1

∂
° 1

#
kkvthik (3.91)

The mirror mode propagates perpendicular to the magnetic field. For growth it requires
that the perpendicular pressure is larger than the parallel pressure. The physical mech-
anism behind it is that the particles become trapped in magnetic mirror configurations

FIGURE – Mechanism of the mirror instability.
The figure is extracted from Treumann and
Baumjohann (1997).
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The firehose/mirror instabilities : 2. with cosmic rays, dispersion relation

If the pressure anisotropy is in the CR component, it can trigger the firehose/mirror instability.
In order to capture the pressure-driven instabilities only, the mean CR distribution function has
to have a quadrupole anisotropy, namely (

∫
dpp2N(p) = 1)

F(p, µ) =
nCRN(p)

4π

(
1 +

χ

2
(3µ2 − 1)

)
, with χ < 1,

The parallel and perpendicular CR pressures are P‖ =
∫

d3~ppvµF(p, µ) and
P⊥ =

∫
d3~ppv(1− µ2) cosφ2F(p, µ) (φ is the gyrophase). We note ∆P(χ) = P‖ − P⊥.
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The firehose/mirror instabilities : 2. with cosmic rays, dispersion relation

If the pressure anisotropy is in the CR component, it can trigger the firehose/mirror instability.
In order to capture the pressure-driven instabilities only, the mean CR distribution function has
to have a quadrupole anisotropy, namely (

∫
dpp2N(p) = 1)

F(p, µ) =
nCRN(p)

4π

(
1 +

χ

2
(3µ2 − 1)

)
, with χ < 1, (29)

The parallel and perpendicular CR pressures are P‖ =
∫

d3~ppvµF(p, µ) and
P⊥ =

∫
d3~ppv(1− µ2) cosφ2F(p, µ) (φ is the gyrophase). We note ∆P(χ) = P‖ − P⊥.

Solving to first order perturbation for the MHD and Vlasov Eqs. one gets the following
dispersion relation (Osipov et al 2017)(

ω4 − ω2(c2
s + V2

a )k2 + V2
a c2

Sk2k2
‖ +

(
ω2 − k2

‖c
2
s

) ∆P(χ)

ρ
(k2
‖ − 2k2

⊥)

)
×
(
ω2 − k2

‖V2
a +

∆P(χ)

ρ
k2
‖

)
= 0 . (30)

This combines both oblique mirror (k⊥ 6= 0) and firehose (k⊥ = 0) cases. Both instabilities
only develop at long wavelengths, i.e. kv� Ωs and ω � Ωs, where Ωs is the relativistic
particles gyro-frequency.

We remind the expressions for the sound speed cs =
√
γP
ρ

and the Alfvén speed Va = B√
4πρ

.
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The firehose/mirror instabilities : 2. with cosmic rays, growth rates

* Firehose mode with k⊥ = 0, the dispersion relation becomes(
ω2 − k2c2

s

)
×
(
ω2 − k2V2

a +
∆P
ρ

k2
)

= 0.

The system is unstable if ∆P > 0 and ∆P
ρ
> V2

a (the other branch being the sonic mode). The
growth rate is

ΓF = k

√
∆P
ρ
− V2

a .
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The firehose/mirror instabilities : 2. with cosmic rays, growth rates

* Firehose mode with k⊥ = 0, the dispersion relation becomes(
ω2 − k2c2

s

)
×
(
ω2 − k2V2

a +
∆P
ρ

k2
)

= 0. (31)

The system is unstable if ∆P > 0 and ∆P
ρ
> V2

a (the other branch being the sonic mode). The
growth rate is

ΓF = k

√
∆P
ρ
− V2

a . (32)

* Mirror mode with k‖ = 0, we get

ω2 − k2(V2
a + c2

s + 2
∆P
ρ

) = 0. (33)

The system is unstable if ∆P < 0 and 2 |∆P|
ρ

> (V2
a + c2

s ). The growth rate is

ΓM = k

√
2
|∆P|
ρ
− (V2

a + c2
s ) . (34)

73/203 Cosmic-Ray and astrophysical plasma instabilities



Preliminaries
Lecture 1 : Astrophysical plasmas instabilities and Cosmic Rays

Lecture 2 : The Cosmic-Ray streaming instability
Conclusions

Instabilities in plasma physics
Cosmic Rays as source of free energy in Astrophysics
Model equations
Cosmic-Ray-modified Instabilities : main classes and one example
Cosmic-Ray-driven instabilities : main classes

Astrophysical interests

These instabilities weren’t among the most investigated but they are interesting.

The instabilities are non-resonant and lead to long-wave length perturbations, i.e in the
regime kRL � 1.

Only a slight anisotropy can produced fast mode grows. A rough calculation gives that for
χ = 10−3, Γf ' 105 s−1 k

cm , for CRs in a background magnetic field of µGauss
amplitude we have

tgrowth ≥ 0.1 year
(

E
1 GeV

)(
B

1 µGauss

)−1

. (35)

If other instabilities can generate some magnetic field in or around CR sources then the
firehose instability can contribute to produce magnetic field at long-wavelengths (impact
over particle scattering).

Mirror instability-induced turbulence can contribute to non-diffusive particle transport
(Lévy flights) at shocks (Bykov et al 2017).
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Another CR pressure related instability : the acoustic or Drury instability

This is instability requires a strong pressure gradient necessary to drive acoustic perturbations.
One interesting region for this is the precursor of shocks including CRs (but not only see
Begelman & Zweibel 1994). There, the CR gradient is able to drive such perturbations (Drury
1984).

~∇PCR is a force exerted over the gas. In case it is non uniform it produces gas velocity
fluctuations which themselves amplify any original density fluctuations.
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Another CR pressure related instability : the acoustic or Drury instability

This is instability requires a strong pressure gradient necessary to drive acoustic perturbations.
One interesting region for this is the precursor of shocks including CRs (but not only see
Begelman & Zweibel 1994). There, the CR gradient is able to drive such perturbations (Drury
1984).

~∇PCR is a force exerted over the gas. In case it is non uniform it produces gas velocity
fluctuations which themselves amplify any original density fluctuations.

Instability criterion (Drury & Falle 1986, Kang et al 1992), using a bi-fluid model (Eq. 16-19)
but without magnetic fields (see Zank et al 1990 for a MHD model) :

1 < k
PCR

|~∇PCR|
< k(1 + βκ)

κ̄

γCRcs
, (36)

βκ =
∂ ln(κ̄)
∂ ln(ρ)

, κ̄ is the mean( integrated over momenta) CR diffusion coefficient,

LCR =
(

PCR
|~∇PCR|

)
is the CR shock precursor size.

Another way to write it in terms of the shock sonic Mach number Ms = ush
cs

and CR diffusive
length Ldiff = κ̄

ush
is :

Ms >
γCR

(1 + βκ)

LCR

Ldiff
.
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Acoustic instability dispersion relation

The dispersion relation reads (Drury & Falle 1986) :

ω3 + iκ̄
ω2

L2
CR

(1− ikLCR)2 − i
kω
LCR

(1− ikLCR)

(
γgPg

ρ
+
γCRPCR

ρ

)

− (1− ikLCR)3

(
i
PCRκ̄(1 + βκ)

L4
CRρ

− γgPg

ρL4
CR

)
= 0
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Acoustic instability dispersion relation

The dispersion relation reads (Drury & Falle 1986) :

ω3 + iκ̄
ω2

L2
CR

(1− ikLCR)2 − i
kω
LCR

(1− ikLCR)

(
γgPg

ρ
+
γCRPCR

ρ

)

− (1− ikLCR)3

(
i
PCRκ̄(1 + βκ)

L4
CRρ

− γgPg

ρL4
CR

)
= 0 (37)

Acoustic instability growth rate Γa as function of
different quantities. In all plots
LCR = 1, ρ = 1, γCR = γg = 5/3. The figure is
extracted from Kang et al (1992).

Develops at high k (u-left)

Lower initial gas pressure leads to higher Γa
(u-right).

Saturates as CR and gas decouple (high κ̄) , but
reduced Γa at high Pcr in the coupling regime
(low κ̄) (l-left/right)
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Fig. 1.—Growth rates of sound waves in the exponential background for L = l,p0 = 1» 7c = Dependence is shown against various parameters, (a) PcO = h 
k0 = 1, and Pg0 = 0.0001 (solid line), 0.01 (dot-dashed line), 0.05 (dashed line), and 0.1 (long-dashed line), (b) Pc0 = 1,k0 = 1, and À = 0.05 (solid line), 0.1 (dot-dashed 
line), 0.2 (dashed line), and 0.5 (long-dashed line), (c) Pgo = 0.1, /I = 0.05, and Pc0 = 1 (solid line), 10 (dot-dashed line), 100 (dashed line), and 1000 (long-dashed line), (d) 
Kq = 1, A = 0.05, Pg0 = 0.001 (solid line), 0.01 (dot-dashed line), 0.1 (dashed line). 

previous section. Finally, Figure Id exhibits the decrease of the 
growth rate as CR pressure becomes infinite, because of 
increased Ptuskin damping. 

5. NUMERICAL RESULTS 
5.1. Two-Fluid Calculations 

We have calculated the evolution of piston driven CR 
shocks using the two-fluid model with p = \,Pg= 10-3, and a 
preexisting CR pressure, Pc = 10“3 far upstream. The piston 
velocity, Up = 1. The assumed values of the specific heats and 
the mean diffusion coefficient areyc = 1.6 and </c> = 1 (/? = 0), 
respectively. The Mach number of the shock driven by this 
piston is about 33. The calculation is done in the frame where 
the piston is at rest, so beginning at i = 0, the uniform, incom- 
ing flow is moving with u — —1 toward the piston standing at 
the left boundary. The sound waves are generated at the right 
boundary with the velocity perturbation, u = Acs0 sin (wi), 
where A and cs0 are the normalized amplitude and unper- 
turbed sound speed, respectively. The Doppler shifted wave 
frequency, w = (2n/2)(up + cs0). The density and gas pressure at 
the right boundary are adiabatically perturbed so that the 
Riemann invariant, R+ = w + 2CJ(yg — 1) = constant (i.e., a 
sound wave moving to the left), where Cs is the Lagrangian 
sound speed. 

In CR modified shocks, the amplitude of the sound wave 
coming from upstream grows while the wave is advected 
downstream through the precursor. After the wave climbs up 
to the peak of CR pressure, it tends to be damped out in the 
postshock region where CR pressure decreases. Therefore, the 
growth time of the instability acting on an individual wave is 
limited to the time during which the sound wave is advected 
downstream through the precursor. This growth time is several 
shock diffusion times (tds = k/m3). In the present simulation the 
diffusion time scale, tds ~ 1. On the other hand, the postshock 
region sometimes can be unstable for sound waves propagat- 
ing from postshock region to the preshock region if the condi- 
tions given in equation (3.1) are satisfied. 

Figure 2 shows the density, gas pressure, gas entropy and the 
CR pressure, and the velocity at i = 100 for a wave with 2 = 2. 
The instability number D in equation (3.2) is plotted for the 
unperturbed case. D is larger than unity in the precursor region 
(29 < x < 39) and peaks at x = 34. The waves are amplified 
inside the precursor and become small-scale shocks, resulting 
in the increase of the gas entropy inside the precursor. Even 
though the gas pressure increases at small scale shocks com- 
pared to the background, the CR pressure shows an almost 
smooth structure, consistent with what we found in § 4. For 
small amplitudes, ^ < 0.01, the advection time across the pre- 
cursor is not long enough for the waves to grow into shocks in 
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The CR-driven acoustic instability and magnetic field amplification

Again, this instability is interesting as it drives wave numbers krL � 1, so large scales. Downes
& Drury (2012, 2014) investigate magnetic field amplification by the acoustic instability (see
Figs. 10, 11, for ush ' 3000 km/s, n ' 100 cm−3, BISM = 3µ Gauss, TISM = 104 K).
Magnetic field amplification by one order of magnitude is possible.

Cosmic ray pressure driven magnetic field amplification 369

Figure 1. Plots of the magnetic field strength for adb-2d-std, adb-3d-std, cool-2d-std, cool-2d-std-hden (Top to bottom) at t = 1015 s. For adb-3d-std, the
image is of a slice of the simulation at z = 0. It is clear that the magnetic field becomes highly distorted and amplified by the turbulence as it propagates through
the precursor region. The units of field strength are G, and the units of distance are 2.5 × 1014 cm (i.e. grid zone size).

k ≤ 15, the results from adb-2d-std and adb-2d-std-hr are similar,
as expected. Figs 6 and 7 illustrate the inverse cascade seen in 2D
as opposed to 3D: the slope of the power spectrum in Region B
(4.375 × 1017 cm < x < 5 × 1017 cm) is steeper around k = 10 than
it is in Region A (1.875 × 1017 cm ≤ x ≤ 2.5 × 1017 cm) for adb-2d-
std, while the reverse is true for simulation adb-3d-std. Hence, as the
turbulence develops in the precursor region, energy is transported
across length-scales in very much the way one would expect from
a naive extension of incompressible hydrodynamic turbulence.

In summary, though, the dimensionality of the simulations, while
clearly influencing the nature of the turbulence, only has a minor
impact on the degree of magnetic field amplification achieved. This
is largely in agreement with the conclusion of Brüggen (2013) who
detected no difference in amplification factors between 2D and 3D.
As described above, however, one would expect a qualitative differ-
ence in the morphology of the amplified field, and a small quantita-
tive difference in the degree of amplification achieved, between 2D
and 3D.

4.2 Angle of magnetic field

We now turn our attention to the influence of the direction of the
magnetic field on the amplification achieved. In Paper I, and for our
standard simulations presented here, we start with a magnetic field
which is oriented perpendicular to the shock normal – i.e. we model
a perpendicular shock. Clearly, this is the most favourable configu-
ration for magnetic field amplification: the differential acceleration

resulting from the interaction of the ISM with the cosmic ray pres-
sure gradient immediately begins to shear the magnetic field lines,
leading to amplification. If we consider the other extreme, where
we model a parallel shock, the differential acceleration (at least
initially) has no impact at all on the magnetic field strength.

Fig. 8 shows plots of the magnetic field amplification as a function
of distance for simulations adb-2d-b00, adb-2d-b30, adb-2d-b60
and adb-2d-std. It is very clear that the angle between the initial (i.e.
mean) magnetic field and the direction of flow has a large impact on
the field amplification achieved. The results here are not unexpected.
To see this, let us make the somewhat radical simplification that only
the transverse component of the initial magnetic field contributes to
the amplification. Then,

B0 = B0 cos α ı̂ + B0 sin α Ĵ (13)

and

Bf = B0 cos α ı̂ + FB0 sin α Ĵ, (14)

where Bf is the final magnetic field, α is the angle of the field to
the normal of the shock and F can be measured from adb-2d-std (in
which α = π

2 ). We thus find that F ≈ 15 and, defining B0 ≡ |B0|
and Bf ≡ |Bf |, so

Bf

B0

∣∣∣∣
α=60◦

≈
[
0.75 + 0.25F 2]1/2 = 7.54 (15)
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upstream precursor

FIGURE – Magnetic field amplitude maps for 2 and 3D
adiabatic (no radiative losses) runs. The figure is extracted
from Downes & Drury (2014).

370 T. P. Downes and L. O’C. Drury

Figure 2. As Fig. 1, but for vorticity (normalized by the flow time across the domain: L/U0). For adb-3d-std, the magnitude of the vorticity is plotted for the
slice of the simulation at z = 0. The vorticity tends to peak towards the centre of the domain, then falls off as the ISM flows towards the right boundary.

Figure 3. Plots of the magnetic field amplification, averaged over 0 ≤ y ≤
L
8 , for simulations adb-2d-std and adb-3d-std. Note that the 3D simulation
achieves slightly lower amplification than the 2D one.

Bf

B0

∣∣∣∣
α=30◦

≈
[
0.25 + 0.75F 2]1/2 = 13, (16)

which is indeed roughly what is seen in Fig. 8.
Thus, our radical simplification does indeed appear to reflect

something of the reality of the system: the transverse component of
the magnetic field dominates the effective amplification achieved.
Of course, there are clearly inaccuracies in this approximation:

Figure 4. Plots of the power spectrum of the velocity for the region of the
computational domain defined by 4.375 × 1017 cm < x < 5 × 1017 cm for
simulations adb-2d-std and adb-3d-std.

if there were none, then simulation adb-2d-b00 would exhibit no
field amplification whatsoever. The amplification in this case arises
from the fact that once the differential acceleration has acted on the
inflowing ISM bowshocks form around the denser components as
they plough through the less dense regions. These bowshocks create
a transverse velocity component which, due to flux freezing, then
also creates a transverse magnetic field component. This transverse
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FIGURE – Magnetic amplitude growth with space
(green 2D run), red (3D run), normalised to BISM.
The figure is extracted from Downes & Drury
(2014).
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The streaming instability : basics

The streaming instability is discussed in details in Lecture 2, see Marcowith et al (2021). This
instability is triggered because of a drift motion of the CR population with respect to the
background gas and/or because CR have an anisotropic distribution (of dipole-like)

F(p, µ) =
nCRN(p)

4π

(
1 + 3

ud

c
µ

)
.
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The streaming instability : basics

The streaming instability is discussed in details in Lecture 2, see Marcowith et al (2021). This
instability is triggered because of a drift motion of the CR population with respect to the
background gas and/or because CR have an anisotropic distribution (of dipole-like)

F(p, µ) =
nCRN(p)

4π

(
1 + 3

ud

c
µ

)
.

The instability can develop in different cases :

Shocks : In case CRs are accelerated at shock waves, they remain confine in a small area
upstream the shock front (the CR precursor). This precursor as seen from in the interstellar gas
rest-frame resembles to a charged layer moving at a speed ush which is almost the drift speed
for fast super-Alfvénic shocks. CRs carry then a strong source of free energy through their
streaming which is able to trigger two branches of the instability either the resonant branch or
the non-resonant branch. The streaming instability creates magnetic fluctuations which can be at
the origin of the turbulence in CR mediated shocks (Bell & Lucek 2000).
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The streaming instability : basics

The streaming instability is discussed in details in Lecture 2, see Marcowith et al (2021). This
instability is triggered because of a drift motion of the CR population with respect to the
background gas and/or because CR have an anisotropic distribution (of dipole-like)

F(p, µ) =
nCRN(p)

4π

(
1 + 3

ud

c
µ

)
. (38)

The instability can develop in different cases :

Shocks : In case CRs are accelerated at shock waves, they remain confine in a small area
upstream the shock front (the CR precursor). This precursor as seen from in the interstellar gas
rest-frame resembles to a charged layer moving at a speed ush which is almost the drift speed
for fast super-Alfvénic shocks. CRs carry then a strong source of free energy through their
streaming which is able to trigger two branches of the instability either the resonant branch or
the non-resonant branch. The streaming instability creates magnetic fluctuations which can be at
the origin of the turbulence in CR mediated shocks (Bell & Lucek 2000).

ISM : CR distribution with some anisotropy in the background frame because of the scattering
process with the background plasma turbulence (carried by the background plasma). Historical
set-up : Lerche (1967), Wentzel (1968), Skilling (1971, 1975).
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The two branches of the streaming instability : the resonant branch and
non-resonant branch

The resonant branch is based on the resonance
condition : [ω − k‖v‖]± Ω = 0. Matching between
the wave frequency in a frame moving with v‖ and
the particle gyro-frequency. The sign ± is the
polarisation (+ : right-handed, - :left-handed). It is
resonant as the wavenumbers fulfill kRL ∼ 1.2.6 Physics of the magnetic streaming instability

Figure 2.2: Scheme of the resonant mode. The particle trajectory (red) around the
magnetic field (green) follows the polarized electromagnetic field of the waves (blue).

Ê ≠kÎvÎ±�C = 0 (2.9)
where Ê and kÎ are the frequency and wave number parallel to the magnetic field of the
wave, vÎ1 the parallel component of the resonating particle and �C = qB/m the cyclotron
frequency of the particle of mass m and charge q. The ± sign depends on the polarization
of the wave and shows the presence of two di�erent modes, oppositely polarized, that will
be investigated in the following chapters. Ê ≠kvÎ is the frequency of the wave as seen by
the particle with Doppler e�ect, and when it is equal to the particle cyclotron frequency,
then particle always experiences the same electromagnetic field and the resonance takes
place. This is illustrated in figure 2.2, representing the motion of a particle (red) around
a magnetic field line (green) following the electromagnetic field in the frame of a wave
(blue). Tsurutani and Lakhina 1997 give a more general resonance condition:

Ê ≠kÎvÎ +n�C = 0 (2.10)

with n a positive or negative integer. The case n= 0 corresponds to the Landau resonance
and the cases n= 1 and n= ≠1 are respectively the right and left fundamental resonance
conditions that we will consider in this paper. The right-hand resonant mode (n= 1) has
been widely studied and is believed to be responsible for the waves observed in the solar
wind and mentioned in section 2.2.1 (see Winske and Leroy 1984)

2.6.3 Non-resonant mode
The non-resonant mode, as opposite to the resonant modes, does not require a reso-

nance condition to be fulfilled. It was referred by Gary 1991 and Winske and Leroy 1984
as "firehose-like", which happens when a strong temperature anisotropy along a magnetic
field TÎ/T‹ > 1, with a parallel pressure exceeding the contributions of the perpendicular
and the magnetic pressures —Î > 1. In the case of the streaming instability, they believed
that the role of the pressure was played by the bulk pressure of the beam, associated with
its mean velocity.

17

FIGURE – Sketch of resonant wave-particle interaction.
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The two branches of the streaming instability : the resonant branch and
non-resonant branch

The resonant branch is based on the resonance
condition : [ω − k‖v‖]± Ω = 0. Matching between
the wave frequency in a frame moving with v‖ and
the particle gyro-frequency. The sign ± is the
polarisation (+ : right-handed, - :left-handed). It is
resonant as the wavenumbers fulfill kRL ∼ 1.2.6 Physics of the magnetic streaming instability

Figure 2.2: Scheme of the resonant mode. The particle trajectory (red) around the
magnetic field (green) follows the polarized electromagnetic field of the waves (blue).

Ê ≠kÎvÎ±�C = 0 (2.9)
where Ê and kÎ are the frequency and wave number parallel to the magnetic field of the
wave, vÎ1 the parallel component of the resonating particle and �C = qB/m the cyclotron
frequency of the particle of mass m and charge q. The ± sign depends on the polarization
of the wave and shows the presence of two di�erent modes, oppositely polarized, that will
be investigated in the following chapters. Ê ≠kvÎ is the frequency of the wave as seen by
the particle with Doppler e�ect, and when it is equal to the particle cyclotron frequency,
then particle always experiences the same electromagnetic field and the resonance takes
place. This is illustrated in figure 2.2, representing the motion of a particle (red) around
a magnetic field line (green) following the electromagnetic field in the frame of a wave
(blue). Tsurutani and Lakhina 1997 give a more general resonance condition:

Ê ≠kÎvÎ +n�C = 0 (2.10)

with n a positive or negative integer. The case n= 0 corresponds to the Landau resonance
and the cases n= 1 and n= ≠1 are respectively the right and left fundamental resonance
conditions that we will consider in this paper. The right-hand resonant mode (n= 1) has
been widely studied and is believed to be responsible for the waves observed in the solar
wind and mentioned in section 2.2.1 (see Winske and Leroy 1984)

2.6.3 Non-resonant mode
The non-resonant mode, as opposite to the resonant modes, does not require a reso-

nance condition to be fulfilled. It was referred by Gary 1991 and Winske and Leroy 1984
as "firehose-like", which happens when a strong temperature anisotropy along a magnetic
field TÎ/T‹ > 1, with a parallel pressure exceeding the contributions of the perpendicular
and the magnetic pressures —Î > 1. In the case of the streaming instability, they believed
that the role of the pressure was played by the bulk pressure of the beam, associated with
its mean velocity.

17

FIGURE – Sketch of resonant wave-particle interaction.

The non-resonant modes are triggered by the
Lorentz force~J ∧ δ~B,~J has the amplitude of the CR
current seen in the background plasma frame. It is
non resonant as the wave numbers fulfill krL � 1.

Elements on the magnetic streaming instability

Figure 2.3: Scheme for the non-resonant mode. The perturbed magnetic field (green) acts
on the current with the Lorentz force (red) and there is a reaction on the background
that amplifies the waves (red).

According to Malovichko, Voitenko, and De Keyser 2014, this instability actually has
a current-driven origin which was not identified at the time by Winske and Leroy 1984
and it is identical to the instability described by Bell (Bell 2004). As shown in figure 2.3
(taken from Zirakashvili, Ptuskin, and Völk 2008), the driving force is j0 ◊B1 (in red),
which acts on the beam-induced current, and the reaction to this force (blue) increases
the magnetic perturbation, creating a feedback that enhances the driving force. This
mode does not require an ion-cyclotron resonance to take place. It was in fact initially
studied within a fluid approach in Bell 2004, and only later re-derived within a fully
kinetic description by Amato and Blasi 2009.

2.7 Analytical results

To study analytically the development of the instability we use the linear theory from
the Vlasov equation, which applies while the perturbation is still relatively small (in the
first moments of its development). In this section we present the main equations and
results as well as the underlying hypothesis. The detailed development of these equations
can be found in Montgomery et al. 1976 (original development), Gary 1991 (review of
previous theoretical works) and Gary 1993 (book that summarizes the linear developments
of most of the streaming configurations).

18

FIGURE – Sketch of the non-resonant current instability, the
non-resonant branch of the streaming instability.
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The streaming instability at shocks

We anticipate a bit over Lecture 2 and present the case of the triggering of streaming at fast
shocks.

The streaming instability at fast shocks is triggered because of CR anisotropy and current
as seen by the background ISM.
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The streaming instability at shocks

We anticipate a bit over Lecture 2 and present the case of the triggering of streaming at fast
shocks.

The streaming instability at fast shocks is triggered because of CR anisotropy and current
as seen by the background ISM.

Non-resonant modes grow at scales k1 < k < k2, with (Bell 2004)

k1 = 1/RL,min(z)

k2 =
ξCR

φ
βshM2

a ,

with ξCR = UCR/ρISMu2
sh and βsh = ush/c,φ ' ln(UCR,max/mc2). We assume a p−4 CR

distribution with a minimum CR energy Emin at a distance z from the shock.
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The streaming instability at shocks

We anticipate a bit over Lecture 2 and present the case of the triggering of streaming at fast
shocks.

The streaming instability at fast shocks is triggered because of CR anisotropy and current
as seen by the background ISM.

Non-resonant modes grow at scales k1 < k < k2, with (Bell 2004)

k1 = 1/RL,min(z)

k2 =
ξCR

φ
βshM2

a , (39)

with ξCR = UCR/ρISMu2
sh and βsh = ush/c,φ ' ln(UCR,max/mc2). We assume a p−4 CR

distribution with a minimum CR energy Emin at a distance z from the shock.

The non-resonant branch grows the fastest. Magnetic field is amplified at the shock
precursor. An analytical estimation of the saturation the magnetic field energy density is
obtained for k1 = k2 or

UB =
βsh

2
UCR . (40)
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Streaming instability relatives : I Filamentation instability

The filamentation instability results from the
growth of magnetic loops at the shock precursor
in the non-linear growth phase of the
non-resonant streaming instability (see Fig. 16).

The instability is due to the expansion of
magnetic loops with a polarisation by the return
current whereas the oppositely polarised loops
drop (see Fig. 16).

Cosmic ray filamentation instability 2435

and magnetic tension

∂B
∂t

= ∇ × (u × B), (7)

ρ
du
dt

= − j cr × B, (8)

valid in the long-wavelength approximation. Also, from equa-
tion (7), the vector potential satisfies

∂A
∂t

= u × (∇ × A). (9)

Returning to the 2D analysis of the previous section, i.e. zero gra-
dient in the direction of cosmic ray streaming, it follows that the
parallel component of the vector potential is constant for a particular
fluid element

dA‖

dt
= 0. (10)

This has a number of important consequences. From equation (6),
the cosmic ray current will increase in regions of large A‖. Con-
sidering an idealized axisymmetric system, with maximum A‖, is
centred on the origin, Bθ = −∂A‖/∂r > 0, at least locally. Hence,
the resulting − j cr × B force acts to push the plasma radially out-
wards. This spreads the region of large A‖, thus focusing more
cosmic rays into the filament, leading to a runaway instability. In a
2D slab symmetric geometry, this results in the spreading out of flat
tabletop structures with large A‖ surrounded by regions of negative
A‖, with large gradients in between. This is similar to the picture
presented in Bell (2005, section 3), where the cosmic ray current
was fixed, and the growth rate for the expansion of cavities was
found to be

#nr =
(

jcrBθ

rρ0

)1/2

, (11)

with r the radius of the cavity and Bθ the magnetic field strength
on that scale. Here, the focusing of the cosmic rays into the cavities
will enhance the growth rate as compared with the constant current
case, since jcr is larger in the filaments.

For growth on small scales, the orientation of the magnetic field
must be favourable. Considering a field configuration such that at

early times an equal number of small-scale loops of both polariza-
tions are randomly located within a circle of radius r0, as shown
in Fig. 1, the effect of the cosmic ray current is to expand loops
of one orientation and contract the other. The net result is that the
small-scale loops are predominantly of a single polarization at late
times. This corresponds to a net current in the direction of the cos-
mic ray streaming when averaged over the area enclosed by r0, i.e.
〈∇ × B · x̂〉 '= 0. As the total current enclosed by r0 increases,
the magnetic field Bθ0 on this scale must likewise increase. Unlike
the small-scale fields, however, the growth will be independent of
orientation.

To quantify the above simple picture, we combine equations (6),
(7) and (8), together with the equation ∂A/∂t = u × B, to give the
following expression for the evolution of the filamentation:

∂2jcr

∂t2
= χB2

⊥
ρ

jcr + ([(u · ∇)u] · ∇) jcr − (u · ∇)
∂jcr

∂t
. (12)

The second two terms on the right-hand side of equation (12) rep-
resent the advection of A‖ with the flow. On small scales, where
the velocity gradients are steep, these terms dominate over the first
term. However, since the continued expansion of small-scale loops
is eventually inhibited by neighbouring cavities (Bell 2004; Reville
et al. 2008), on sufficiently large length-scales the first term will
dominate. The ordering of these terms will be verified in Section 4.

Neglecting the last two terms in equation (12), we find the fol-
lowing growth rate for the filamentation instability:

#fil =

√
χB2

⊥
ρ

= η
(ush

c

)2
(

Ucr

ρu2
sh

)1/2
eB rms

⊥
γminm

, (13)

where Ucr is the cosmic ray energy density, γ min = pmin/mc is the
Lorentz factor of the lowest energy cosmic rays driving the insta-
bility (i.e. those satisfying pminc ) eushA‖), and η is a numerical
factor that depends on the shape of the cosmic ray spectrum. For
a spectrum f ∝ p−4 in the momentum interval (pmax > p > pmin),
this parameter is η = 1/

√
ln(pmax/pmin). The growth rate is scale

independent and depends only on the root mean square of the per-
pendicular magnetic field enclosed on that scale, as expected from
the qualitative description above. Since the non-resonant mode dis-
cussed in Bell (2004) has a growth rate that decreases monotoni-
cally with increasing wavelength, the filamentation must dominate

Figure 1. Illustration of the behaviour on different length-scales. j cr is the cosmic ray current, and j ret = (∇ × B)/µ0 − j cr is the return current carried by the
background plasma. The small-scale circles represent the expanding loops of the magnetic field of a particular handedness. At early times (left), the magnetic
field contains loops of both orientations having comparable strength, and the cosmic ray current is approximately uniform. Since only loops with favourable
orientation can grow, in this example counterclockwise, the cosmic rays are focused into these expanding loops, while clockwise loops contract. At later times
(right), the large-scale magnetic field Bθ0 on scale r0 enclosing the smaller expanding loops will have increased.
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FIGURE – Sketch of the filamentation instability. From
Reville & Bell 2012 MNRAS 419 2433
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Streaming instability relatives : I Filamentation instability

The filamentation instability results from the
growth of magnetic loops at the shock precursor
in the non-linear growth phase of the
non-resonant streaming instability (see Fig. 16).

The instability is due to the expansion of
magnetic loops with a polarisation by the return
current whereas the oppositely polarised loops
drop (see Fig. 16).

Magnetic loops concentrate CR in filaments
which locally increase the CR current, etc..

The instability growth rate is (Reville & Bell
2012 ibidem)

Γ = η

(
ush

c

)2
(

UCR

ρu2
sh

)
eδBNR

Emin
(41)

δBNR is the amplitude of the magnetic field
from streaming non-resonant instability. η is a
function of the CR distribution.

Cosmic ray filamentation instability 2435

and magnetic tension

∂B
∂t

= ∇ × (u × B), (7)

ρ
du
dt

= − j cr × B, (8)

valid in the long-wavelength approximation. Also, from equa-
tion (7), the vector potential satisfies

∂A
∂t

= u × (∇ × A). (9)

Returning to the 2D analysis of the previous section, i.e. zero gra-
dient in the direction of cosmic ray streaming, it follows that the
parallel component of the vector potential is constant for a particular
fluid element

dA‖

dt
= 0. (10)

This has a number of important consequences. From equation (6),
the cosmic ray current will increase in regions of large A‖. Con-
sidering an idealized axisymmetric system, with maximum A‖, is
centred on the origin, Bθ = −∂A‖/∂r > 0, at least locally. Hence,
the resulting − j cr × B force acts to push the plasma radially out-
wards. This spreads the region of large A‖, thus focusing more
cosmic rays into the filament, leading to a runaway instability. In a
2D slab symmetric geometry, this results in the spreading out of flat
tabletop structures with large A‖ surrounded by regions of negative
A‖, with large gradients in between. This is similar to the picture
presented in Bell (2005, section 3), where the cosmic ray current
was fixed, and the growth rate for the expansion of cavities was
found to be

#nr =
(

jcrBθ

rρ0

)1/2

, (11)

with r the radius of the cavity and Bθ the magnetic field strength
on that scale. Here, the focusing of the cosmic rays into the cavities
will enhance the growth rate as compared with the constant current
case, since jcr is larger in the filaments.

For growth on small scales, the orientation of the magnetic field
must be favourable. Considering a field configuration such that at

early times an equal number of small-scale loops of both polariza-
tions are randomly located within a circle of radius r0, as shown
in Fig. 1, the effect of the cosmic ray current is to expand loops
of one orientation and contract the other. The net result is that the
small-scale loops are predominantly of a single polarization at late
times. This corresponds to a net current in the direction of the cos-
mic ray streaming when averaged over the area enclosed by r0, i.e.
〈∇ × B · x̂〉 '= 0. As the total current enclosed by r0 increases,
the magnetic field Bθ0 on this scale must likewise increase. Unlike
the small-scale fields, however, the growth will be independent of
orientation.

To quantify the above simple picture, we combine equations (6),
(7) and (8), together with the equation ∂A/∂t = u × B, to give the
following expression for the evolution of the filamentation:

∂2jcr

∂t2
= χB2

⊥
ρ

jcr + ([(u · ∇)u] · ∇) jcr − (u · ∇)
∂jcr

∂t
. (12)

The second two terms on the right-hand side of equation (12) rep-
resent the advection of A‖ with the flow. On small scales, where
the velocity gradients are steep, these terms dominate over the first
term. However, since the continued expansion of small-scale loops
is eventually inhibited by neighbouring cavities (Bell 2004; Reville
et al. 2008), on sufficiently large length-scales the first term will
dominate. The ordering of these terms will be verified in Section 4.

Neglecting the last two terms in equation (12), we find the fol-
lowing growth rate for the filamentation instability:

#fil =

√
χB2

⊥
ρ

= η
(ush

c

)2
(

Ucr

ρu2
sh

)1/2
eB rms

⊥
γminm

, (13)

where Ucr is the cosmic ray energy density, γ min = pmin/mc is the
Lorentz factor of the lowest energy cosmic rays driving the insta-
bility (i.e. those satisfying pminc ) eushA‖), and η is a numerical
factor that depends on the shape of the cosmic ray spectrum. For
a spectrum f ∝ p−4 in the momentum interval (pmax > p > pmin),
this parameter is η = 1/

√
ln(pmax/pmin). The growth rate is scale

independent and depends only on the root mean square of the per-
pendicular magnetic field enclosed on that scale, as expected from
the qualitative description above. Since the non-resonant mode dis-
cussed in Bell (2004) has a growth rate that decreases monotoni-
cally with increasing wavelength, the filamentation must dominate

Figure 1. Illustration of the behaviour on different length-scales. j cr is the cosmic ray current, and j ret = (∇ × B)/µ0 − j cr is the return current carried by the
background plasma. The small-scale circles represent the expanding loops of the magnetic field of a particular handedness. At early times (left), the magnetic
field contains loops of both orientations having comparable strength, and the cosmic ray current is approximately uniform. Since only loops with favourable
orientation can grow, in this example counterclockwise, the cosmic rays are focused into these expanding loops, while clockwise loops contract. At later times
(right), the large-scale magnetic field Bθ0 on scale r0 enclosing the smaller expanding loops will have increased.

C© 2011 The Authors, MNRAS 419, 2433–2440
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/419/3/2433/1068609 by guest on 15 June 2022

FIGURE – Sketch of the filamentation instability. From
Reville & Bell 2012 MNRAS 419 2433
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The oblique mode instability results from a
dynamo process initiated by the magnetic field
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at some angle with respect to the initial B-field
they are driven by the electromotive force
〈~u ∧ δ~B〉 induced by the small scale
perturbations.
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Streaming instability relatives : II Oblique mode instability

The oblique mode instability results from a
dynamo process initiated by the magnetic field
seeds produced by the non-resonant streaming
instability.

Modes propagate at long wavelength kRL < 1,
at some angle with respect to the initial B-field
they are driven partly by the electromotive force
〈~u ∧ δ~B〉 induced by the small scale
perturbations (and some ponderomotive forces
either).

The maximum growth rate reads

Γ =

√√√√π

2

√
〈δBNR〉2

B0

√
kk0

η
Va . (42)

With k0 = 4π JCR
B0c , η = `

rg
, ` particle mean free

path.

44 A. M. Bykov, S. M. Osipov and D. C. Ellison

Figure 1. The figure shows growth rates of the parallel propagating modes
as a function of the wavenumber to illustrate the effect of short-scale turbu-
lence on the long-wavelength instability. Equation (16) was solved numer-
ically to generate the curves. The model parameters are k0rg0 = 100 and
α = 4.0. The solid and dot-dashed curves are simulated for two modes in
the model with short-scale turbulence of ξ = 5 and η = 10 to demonstrate
the behaviour of the modes in the intermediate regime. For comparison, the
dashed and dotted curves are calculated for the model without the short-scale
turbulence, i.e. with NB = 0 and η → ∞ (cf. Bell 2004).

Eichler 1987; Kulsrud 2005) operates in the intermediate magne-
tized regime η−1 < krg0 < 1 in the absence of strong, short-scale
turbulence. This resonant effect in the dispersion equation (15) is
dominated by the imaginary part of the current response function
A(x0) defined by equations (A9) and (A12). The response function
was calculated for a power-law momentum distribution of CRs of
index α as defined in equation (A2). Modes with different circular
polarizations that are distinguished by the sign ∓ in equations (A9)
and (A12) have the same growth rate and with no short-scale turbu-
lence (i.e. αt = 0 and κ t = 0), the frequencies of the two circularly
polarized modes are determined by

ωrg0

va

≈ ± (1 + i)

√
3π

8

(
1

α − 2
− 1

α

)
k0rg0(krg0)(α−2)/2. (19)

This growth rate is plotted as the dashed curve in Fig. 1 for k0rg0 =
100 and α = 4.

Now let us consider the effect of strong, short-scale Bell turbu-
lence on the resonant instability when αt and κ t are non-zero. The
main contribution to the dispersion equation (16) at ξ ∼ 5 is due
to the coefficient d in equation (17). Since the response function
A(x0) ≈ 1 for krg0 < 1, the growth rate can be approximated as

ω = i4π
√

ξNBvak. (20)

For krg0 < 1, only the mode with polarization δb = δb(ex + iey)
is growing while for the case krg0 > 1, Bell’s instability amplifies
the other mode with polarization δb = δb(ex − iey). The ratio of
the kinetic energy density to the magnetic energy density in the
growing mode can be estimated from

|δV (k)|2 ∼ 1
4πρ0

(
3k0rg0(1 + πNB )

64π
√

ξNB

)2

|δb(k)|2. (21)

It should be noted that the helicity of the unstable, long-
wavelength mode studied above is opposite that of the short-scale
Bell mode. This provides, in principle at least, the possibility of

balancing the global helicity of the system by combining short- and
long-wavelength modes. Care must be taken however, since recent
numerical simulations show a high saturation amplitude of the Bell
mode making a non-linear analysis necessary to address the he-
licity balance issue. The estimations given above are valid in the
intermediate regime and provide simple analytical approximations
to the growth rates shown in Fig. 1 for krg0 ! 1. To turn to the
hydrodyamical regime krg0 < η−1 (considered in Section 5.2), one
should just change (1 + κ t/B0) to κ t/B0 in equation (18), so that

c = −k2v2
a ± kk0v

2
aκt [A(x0) − 1] /B0 (22)

and then substitute this in equation (16).
The coefficient given by equation (22) (or more exactly the imag-

inary part of equation A11) dominates the dispersion equation (16)
if x0 ( 1 and η is finite. Because of the + sign in the imaginary part
of equation (A11), both circular polarizations will be growing with
the same growth rate given by

γ ≈
√

πNB

2

√
kk0

η
va. (23)

The transition from the regime described by equation (20) to that
described by equation (23) takes place at

x0 ∼ 1
η

k0rg0

32πξ
√

NB

. (24)

5.2 Long-wavelength current driven modes in
the hydrodynamical regime (krg0 < η−1)

The ponderomotive force 〈( j cr −encrv)× b〉/(cρ) in the mean-field
momentum equation of the background plasma equation (D5), is due
to the momentum exchange between the background plasma and
cosmic rays. Contrary to the short-wavelength regime, the cosmic
ray current response on the magnetic fluctuations is essential in the
long-wavelength regime, krg0 < 1, and results in a non-negligible
ponderomotive force. If the perturbation wavelength is longer than
the CR mean free path, ), or in other words if krg0 < η−1, then the
hydrodynamic approximation can also be applied to the cosmic ray
dynamics. Then, the momentum density P (r) and the momentum
density flux tensor *

(r)
αβ of the CR-fluid, defined as

*
(r)
αβ =

∫
vαpβf (r, p, t)d3p = ρru

(r)
α u

(r)
β + Pcrδαβ , (25)

can be approximately derived in closed form. Here f (r, p, t) is
the CR distribution function. Then, the CR momentum equation,
derived as a moment of the kinetic equation, takes the form

∂P (r)
α

∂t
+ ∇β · *

(r)
αβ = 1

c
[( J cr × B) + encr E]α. (26)

Equation (26), averaged over the fluctuations with scales below the
CR mean free path and taking into account equation (2), has the
form
〈

∂P (r)
α

∂t
+ ∇β · *

(r)
αβ

〉

= 1
c

[( j cr − encrV ) × B +
〈
( j cr − encrv) × b

〉
]α. (27)

The CR distribution in equation (25) is nearly isotropic for scales
larger than the CR mean free path krg0 < η−1. Then, the isotropic
cosmic ray pressure dominates in *

(r)
αβ and using equation (27) one
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FIGURE – The growth rate of long wavelength (here parallel)
mode for η = 10 (continuous and dahsed-dotted show two
circular polarisations). Dashed and dotted curves are
obtained without non-resonant Bell’s modes. From Bykov et
al 2011 MNRAS 410 39
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Why kinetic ? and the procedure

There are several reasons to investigate the kinetic theory :

The resonant branch of the instability can only be obtained using a kinetic theory, because
it involves a resonance between a mode at k and particles at a given Larmor radius :
kRL ∼ 1.

A kinetic approach is necessary also for non-resonant branch if we want to investigate
non-linear growth phase and supply towards longer wavelength and the associated
filamentation (Reville & Bell 2012) and oblique mode (Bykov et 2011) instabilities.

It is also interesting to rederive the non-resonant branch because the CR distribution
function has not necessarily a monoenergetic distribution : power-law, kappa distribution,
Maxwell-Juttner...
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Why kinetic ? and the procedure

There are several reasons to investigate the kinetic theory :

The resonant branch of the instability can only be obtained using a kinetic theory, because
it involves a resonance between a mode at k and particles at a given Larmor radius :
kRL ∼ 1.

A kinetic approach is necessary also for non-resonant branch if we want to investigate
non-linear growth phase and supply towards longer wavelength and the associated
filamentation (Reville & Bell 2012) and oblique mode (Bykov et 2011) instabilities.

It is also interesting to rederive the non-resonant branch because the CR distribution
function has not necessarily a monoenergetic distribution : power-law, kappa distribution,
Maxwell-Juttner...

In order to derive the growth rate we have to proceed with several steps :
1 Linearise MHD Eqs. (as Bell proceeded in 2004)
2 Linearise the Vlasov Eq. in order to express δ~J the perturbed current as function of the

perturbed electric field.
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Step 1 : MHD Eqs

We consider a mixture of CRs and background electrons/protons in charge electroneutrality, the
CR density reads

nCR = ne − np .

From Ampère law in non-relativistic limit (we neglect the displacement current) we have

~JCR +~J =
c

4π
~∇∧ ~B .
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Step 1 : MHD Eqs

We consider a mixture of CRs and background electrons/protons in charge electroneutrality, the
CR density reads

nCR = ne − np .

From Ampère law in non-relativistic limit (we neglect the displacement current) we have

~JCR +~J =
c

4π
~∇∧ ~B .

Starting from a momentum Eq. : one for protons and one for electrons and summing each
contribution, noting electric field ~E = −~uc ∧ ~B, we finally have

∂~u +~u.~∇~u =
1

4πρ
(~∇∧ ~B) ∧ ~B− 1

ρc
~JCR ∧ ~B− ~∇P

ρ
− enCR

ρ
~E ,

1
c
∂t~B = −~∇∧ ~E .

~E = −~u
c
∧ ~B
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Step 1 : MHD Eqs

We consider a mixture of CRs and background electrons/protons in charge electroneutrality, the
CR density reads

nCR = ne − np . (43)

From Ampère law in non-relativistic limit (we neglect the displacement current) we have

~JCR +~J =
c

4π
~∇∧ ~B . (44)

Starting from a momentum Eq. : one for protons and one for electrons and summing each
contribution, noting electric field ~E = −~uc ∧ ~B, we finally have

∂~u +~u.~∇~u =
1

4πρ
(~∇∧ ~B) ∧ ~B− 1

ρc
~JCR ∧ ~B− ~∇P

ρ
− enCR

ρ
~E ,

1
c
∂t~B = −~∇∧ ~E .

~E = −~u
c
∧ ~B (45)

We linearize Eqs 45 by setting~JCR = ~JCR,0 + δ~JCR, ~B = ~B0 + δ~B,~u = δ~u (we assume no
background mean fluid motion only a response to the CR pervading effect, and neglect∇P, all
perturbed quantities are transverse). The background B-field is ~B0 = B0~ez.
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Step 1 : MHD Eqs. linearisation

We find

∂t~u =
1

4πρ
(~∇∧ δ~B) ∧ ~B0 −

1
ρc
~JCR,0 ∧ δ~B−

1
ρc
δ~JCR ∧ ~B0 −

enCR

ρ
~E ,

1
c
∂tδ~B = −~∇∧ ~E .

~E = −~u
c
∧ ~B0 .
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Step 1 : MHD Eqs. linearisation

We find

∂t~u =
1

4πρ
(~∇∧ δ~B) ∧ ~B0 −

1
ρc
~JCR,0 ∧ δ~B−

1
ρc
δ~JCR ∧ ~B0 −

enCR

ρ
~E ,

1
c
∂tδ~B = −~∇∧ ~E .

~E = −~u
c
∧ ~B0 . (46)

In order to proceed we consider parallel propagation perturbations (so~k ‖ ~B0) scaling as
exp i(kz− ωt). The system 46 reads as :

−iω~u =
i

4πρ
(~k ∧ δ~B) ∧ ~B0 −

1
ρc
~JCR,0 ∧ δ~B−

1
ρc
δ~JCR ∧ ~B0 −

enCR

ρ
~E, (47)

ωδ~B = c~k ∧ ~E . (48)

We consider electromagnetic perturbations, we take~k.~E = 0, and ~E = ω
kc δ
~B∧~k/k = ω

kc δ
~B∧~z.

We can express δ~B as function of ~E (Eq. 48) and take Eq. (47) ∧~B0.
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Step 1 : MHD Eqs. linearisation

We find : (you can use~z ∧ (~z ∧ ~E) = −~E, as ~E ⊥~z, a similar relation holds for δ~JCR ⊥~z, and
we have~JCR ‖~z.)

iω~E =
ik2V2

a

ω
~E −

JCR,0‖B0

ρcω
~k ∧ ~E +

4πV2
a

c2
δ~JCR −

enCR

ρc
~E ∧ ~B0
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Step 1 : MHD Eqs. linearisation

We find : (you can use~z ∧ (~z ∧ ~E) = −~E, as ~E ⊥~z, a similar relation holds for δ~JCR ⊥~z, and
we have~JCR ‖~z.)

iω~E =
ik2V2

a

ω
~E −

JCR,0‖B0

ρcω
~k ∧ ~E +

4πV2
a

c2
δ~JCR −

enCR

ρc
~E ∧ ~B0

Polarisation : We write ~E = E(~x± i~y) (+ stands for right-handed modes, - stand for left -handed
modes) : right (left)-handed modes forward propagating along~z (with k > 0) rotate clockwise
(counter-clockwise) for an observer looking towards + z. Backward modes (k < 0) have the
reverse polarisation.
As ~E ∧~z = ±i~E we find :

iω~E =
ik2V2

a

ω
~E ∓ i

eB0nCR

ρc

(
1−

kuCR,‖
ω

)
~E +

4πV2
a

c2
δ~JCR .
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Step 1 : MHD Eqs. linearisation

We find : (you can use~z ∧ (~z ∧ ~E) = −~E, as ~E ⊥~z, a similar relation holds for δ~JCR ⊥~z, and
we have~JCR ‖~z.)

iω~E =
ik2V2

a

ω
~E −

JCR,0‖B0

ρcω
~k ∧ ~E +

4πV2
a

c2
δ~JCR −

enCR

ρc
~E ∧ ~B0 (49)

Polarisation : We write ~E = E(~x± i~y) (+ stands for right-handed modes, - stand for left -handed
modes) : right (left)-handed modes forward propagating along~z (with k > 0) rotate clockwise
(counter-clockwise) for an observer looking towards + z. Backward modes (k < 0) have the
reverse polarisation.
As ~E ∧~z = ±i~E we find : (in red a pure MHD solution, Bell 2004)

iω~E =
ik2V2

a

ω
~E ∓ i

eB0nCR

ρc

(
1−

kuCR,‖
ω

)
~E +

4πV2
a

c2
δ~JCR . (50)

One can readily interpret the different RHS terms in Eq. 50 . The first term leads to the standard
dispersion relation of Alfvén waves (ω2 = k2V2

a ), the second is connected to the non-resonant

branch and has the threshold term
(

1− kuCR,‖
ω

)
over the parallel CR drift speed, the third is at

the origin of the resonant/non-resonant branches of the streaming instability
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Step 2 : Vlasov Eq. linearisation

Let us now express δ~JCR as function of ~E !

The Vlasov Eq. reads

∂tf (~x,~p, t) +~v.~∇f + q
(
~E +

~v
c
∧ ~B
)
.∂~pf = 0 ,

We consider the CR background distribution F(~p) and a response to the perturbation
growth/damping δf (~x,~p, t), such that f (~x,~p, t) = F(~p) + δf (~x,~p, t). We look for perturbations
of the form exp i(kz− ωt) again.
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Step 2 : Vlasov Eq. linearisation

Let us now express δ~JCR as function of ~E !

The Vlasov Eq. reads

∂tf (~x,~p, t) +~v.~∇f + q
(
~E +

~v
c
∧ ~B
)
.∂~pf = 0 , (51)

We consider the CR background distribution F(~p) and a response to the perturbation
growth/damping δf (~x,~p, t), such that f (~x,~p, t) = F(~p) + δf (~x,~p, t). We look for perturbations
of the form exp i(kz− ωt) again.

The perturbed distribution follows (to the first order perturbed quantities) :

−iωδf + ikv‖δf +
q
c

(
~v ∧ ~B0

)
.∂~pδf = −q

(
~E +

1
ω
~v ∧ (~k ∧ ~E)

)
.∂~pF (52)

Our aim is now to derive δf as function F, and then to derive δ~JCR =
∫

d3~pδf~v.

A few technical slides follow ... be patient.
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Step 2 : Vlasov Eq. linearisation

We turn now to work in cylindrical coordinates in momentum, hence the gradient of the "f"
terms has the components (∂p⊥ ,

1
p⊥
∂φ, ∂p‖ ). We have (we use the gyro-frequency

Ω = qB0/γmc)

q
c

(
~v ∧ ~B0

)
.∂~pδf = −Ω∂φδf (p‖, p⊥, φ) .[This is the Larmor motion]
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Step 2 : Vlasov Eq. linearisation

We turn now to work in cylindrical coordinates in momentum, hence the gradient of the "f"
terms has the components (∂p⊥ ,

1
p⊥
∂φ, ∂p‖ ). We have (we use the gyro-frequency

Ω = qB0/γmc)

q
c

(
~v ∧ ~B0

)
.∂~pδf = −Ω∂φδf (p‖, p⊥, φ) .[This is the Larmor motion]

The background CR distribution has a gyrotropic distribution (we are at times T � Ω−1) and
hence does not depends on φ. We have

−q
(
~E +

1
ω
~v ∧ (~k ∧ ~E)

)
.∂~pF = −q

(
kv⊥
ω
∂p‖F + (1−

kv‖
ω

)∂p⊥F
)
~E.
~v⊥
v⊥

.
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Step 2 : Vlasov Eq. linearisation

We turn now to work in cylindrical coordinates in momentum, hence the gradient of the "f"
terms has the components (∂p⊥ ,

1
p⊥
∂φ, ∂p‖ ). We have (we use the gyro-frequency

Ω = qB0/γmc)

q
c

(
~v ∧ ~B0

)
.∂~pδf = −Ω∂φδf (p‖, p⊥, φ) .[This is the Larmor motion] (53)

The background CR distribution has a gyrotropic distribution (we are at times T � Ω−1) and
hence does not depends on φ. We have

−q
(
~E +

1
ω
~v ∧ (~k ∧ ~E)

)
.∂~pF = −q

(
kv⊥
ω
∂p‖F + (1−

kv‖
ω

)∂p⊥F
)
~E.
~v⊥
v⊥

. (54)

We further have
~E.~v⊥/v⊥ = Ex cosφ+ Ey sinφ

which finally gives

−iωδf + ikv‖δf − Ω∂φδf = −qA(F) (Ex cosφ+ Ey sinφ) , (55)

with A(F) =
(

kv⊥
ω
∂p‖F + (1− kv‖

ω
)∂p⊥F

)
.
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Step 2 : Vlasov Eq. linearisation

Now using the electric field polarisation ~E = E(~x± i~y) we find two polarisations for δf either.
We derive our solution :

δf = δf + + δf− = − i
2

qA(F)

(
(Ex − iEy)

ω − kv‖ + Ω
exp(iφ) +

(Ex + iEy)

ω − kv‖ − Ω
exp(−iφ)

)
.
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Step 2 : Vlasov Eq. linearisation

Now using the electric field polarisation ~E = E(~x± i~y) we find two polarisations for δf either.
We derive our solution :

δf = δf + + δf− = − i
2

qA(F)

(
(Ex − iEy)

ω − kv‖ + Ω
exp(iφ) +

(Ex + iEy)

ω − kv‖ − Ω
exp(−iφ)

)
.

Only the perpendicular perturbed current contributes to Lorentz force in the fluid momentum
Eq. hence we have 6 :

δ~J =

∫
d3~pδf~v⊥ = −i

q2

4

∫
d3~pv⊥ ×(

(Ex − iEy)

ω − kv‖ + Ω
A(F)(~x + i~y) +

(Ex + iEy)

ω − kv‖ − Ω
A(F)(~x− i~y)

)
,

where we have used~v⊥ = v⊥(cosφ~x + sinφ~y).

6. the terms proportional to e.g. exp(i2φ) vanish while we integrate them over φ as d3~p = dφp⊥dp⊥dp‖ .
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Step 2 : Vlasov Eq. linearisation

Now using the electric field polarisation ~E = E(~x± i~y) we find two polarisations for δf either.
We derive our solution :

δf = δf ++δf− = − i
2

qA(F)

(
(Ex − iEy)

ω − kv‖ + Ω
exp(iφ) +

(Ex + iEy)

ω − kv‖ − Ω
exp(−iφ)

)
. (56)

Only the perpendicular perturbed current contributes to Lorentz force in the fluid momentum
Eq. hence we have 7 :

δ~J =

∫
d3~pδf~v⊥ = −i

q2

4

∫
d3~pv⊥ × (57)(

(Ex − iEy)

ω − kv‖ + Ω
A(F)(~x + i~y) +

(Ex + iEy)

ω − kv‖ − Ω
A(F)(~x− i~y)

)
,

where we have used~v⊥ = v⊥(cosφ~x + sinφ~y).

For Ey = iEx

(Ex − iEy)(~x + i~y) = 2Ex(~x + i~y) = 2~E+

For Ey = −iEx

(Ex + iEy)(~x− i~y) = 2Ex(~x− i~y) = 2~E−

7. the terms proportional to e.g. exp(i2φ) vanish while we integrate them over φ as d3~p = dφp⊥dp⊥dp‖ .
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Final expression of the perturbed current and the dispersion relation

So finally

δ~J±CR = −i
q2

2
~E±
∫

d3~p
v⊥A(F)

ω − kv‖ ± Ω
.

Thanks for your patience !
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Final expression of the perturbed current and the dispersion relation

So finally

δ~J±CR = −i
q2

2
~E±
∫

d3~p
v⊥A(F)

ω − kv‖ ± Ω
. (58)

which can be reintroduced into the linearised MHD Eq. 49.

ω2 = k2V2
a ∓ Ωc

nCR

np

(
ω − kuCR,‖

)
−2πq2V2

aω

c2
I±(ω, k) . (59)

where Ωc = qB0/mc and I± =
∫

d3~p v⊥A(F)
ω−kv‖±Ω

. The latter can be split into two terms I1 and I2

(see next slide)
In red : MHD part describing the non-resonant branch (see Bell 2004, with his σ = 0)
In blue : kinetic part describing the resonant I2 and non-resonant I1 branches.

gosh ! some more technical slides ... because we now need to give explicit expressions to I±
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Calculation of I± integrals

We first express A(F) as function of the CR distribution in the frame moving (denoted R’) with
uCR,‖. There : the distribution is assumed to be isotropic (pitch-angle scattering is efficient
enough). Notice that it is not always possible to have such assumption verified, eg for the
highest CR energies at a shock.
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Calculation of I± integrals

We first express A(F) as function of the CR distribution in the frame moving (denoted R’) with
uCR,‖. There : the distribution is assumed to be isotropic (pitch-angle scattering is efficient
enough). Notice that it is not always possible to have such assumption verified, eg for the
highest CR energies at a shock.
We have F′(p′) = F(p‖, p⊥)E/E′ ' F(p‖, p⊥), where E is the total particle energy. The

momentum transformation is p′⊥ = p⊥ and p′‖ =
(

p‖ − E
c2 uCR,‖

)
/
√

1− u2
CR,‖/c2 (we

assume uCR,‖/c� 1).
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Calculation of I± integrals

We first express A(F) as function of the CR distribution in the frame moving (denoted R’) with
uCR,‖. There : the distribution is assumed to be isotropic (pitch-angle scattering is efficient
enough). Notice that it is not always possible to have such assumption verified, eg for the
highest CR energies at a shock.
We have F′(p′) = F(p‖, p⊥)E/E′ ' F(p‖, p⊥), where E is the total particle energy. The

momentum transformation is p′⊥ = p⊥ and p′‖ =
(

p‖ − E
c2 uCR,‖

)
/
√

1− u2
CR,‖/c2 (we

assume uCR,‖/c� 1).
We can rearrange A(F) to get

A(F) =

(
kv⊥
ω
∂p‖F + (1−

kv‖
ω

)∂p⊥F
)

=

(
kv⊥
ωp′

(
p‖ −

uCR,‖E

c2

)
+

(
1−

kv‖
ω

)
p⊥
p′

)
dF(p′)

dp′

=
p⊥
p′

(
1−

kuCR,‖
ω

)
dF(p′)

dp′
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Calculation of I± integrals

We first express A(F) as function of the CR distribution in the frame moving (denoted R’) with
uCR,‖. There : the distribution is assumed to be isotropic (pitch-angle scattering is efficient
enough). Notice that it is not always possible to have such assumption verified, eg for the
highest CR energies at a shock.
We have F′(p′) = F(p‖, p⊥)E/E′ ' F(p‖, p⊥), where E is the total particle energy. The

momentum transformation is p′⊥ = p⊥ and p′‖ =
(

p‖ − E
c2 uCR,‖

)
/
√

1− u2
CR,‖/c2 (we

assume uCR,‖/c� 1).
We can rearrange A(F) to get

A(F) =

(
kv⊥
ω
∂p‖F + (1−

kv‖
ω

)∂p⊥F
)

=

(
kv⊥
ωp′

(
p‖ −

uCR,‖E

c2

)
+

(
1−

kv‖
ω

)
p⊥
p′

)
dF(p′)

dp′

=
p⊥
p′

(
1−

kuCR,‖
ω

)
dF(p′)

dp′
(60)

The last simplification is to consider that the drift momentum muCR,‖ � pmin, the minimum
CR momentum, then all primes can be dropped in Eq. 60.
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Calculation of I± integrals

We find :

I± =

(
1−

kuCR,‖
ω

)∫
d3~p

dF(p)

dp
v(1− µ2)

(ω − kv‖ ± Ω)
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Calculation of I± integrals

We find :

I± =

(
1−

kuCR,‖
ω

)∫
d3~p

dF(p)

dp
v(1− µ2)

(ω − kv‖ ± Ω)

I± can be split into two terms I±1 and I±2 to properly treat the pole in Eq. 61 reading as
I± = I±1 + iI±2

8 with

I±1 = −2π
(

1−
kuCR,‖
ω

)
P
∫

dpdµp2v
dF(p)

dp
(1− µ2)

(kv‖ − ω ∓ Ω)
,

I±2 = −2π
(

1−
kuCR,‖
ω

)∫
dpdµp2v

dF(p)

dp
(1− µ2)πδ(kv‖ − ω ∓ Ω) .

8. we have used the residue theorem for a pole located on the real axis, the integration contour goes over a half circle giving
iπ times the value of the analytical part at the pole position.
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Calculation of I± integrals

We find :

I± =

(
1−

kuCR,‖
ω

)∫
d3~p

dF(p)

dp
v(1− µ2)

(ω − kv‖ ± Ω)
(61)

I± can be split into two terms I±1 and I±2 to properly treat the pole in Eq. 61 reading as
I± = I±1 + iI±2

9 with

I±1 = −2π
(

1−
kuCR,‖
ω

)
P
∫

dpdµp2v
dF(p)

dp
(1− µ2)

(kv‖ − ω ∓ Ω)
, (62)

I±2 = −2π
(

1−
kuCR,‖
ω

)∫
dpdµp2v

dF(p)

dp
(1− µ2)πδ(kv‖ − ω ∓ Ω) . (63)

We readily see here that I2 is attached to the resonant branch of the instability because of the
resonance condition treated in the pole of the integral in Eq. 61. The other part is linked with the
current and hence the non-resonant branch, it involves to solve the principal part of the integral,
namely (µr = (Ω± ω)/kv). For a general function g(µ) :

P
∫ 1

−1
dµ

g(µ)

µ∓ µr
= lim
ε→0+

(∫ ±µr−ε

−1
dµ

g(µ)

µ∓ µr
+

∫ 1

±µr+ε
dµ

g(µ)

µ∓ µr

)
. (64)

9. we have used the residue theorem for a pole located on the real axis, the integration contour goes over a half circle giving
iπ times the value of the analytical part at the pole position.
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Final expressions for I±

Integral I1 reads

I±1 (k, ω) = ±2π
k

(
1−

kuCR,‖
ω

)∫
dpp2 dF(p)

dp

(
2µr + (1− µ2

r ) log

∣∣∣∣1 + µr

1− µr

∣∣∣∣) .
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Final expressions for I±

Integral I1 reads

I±1 (k, ω) = ±2π
k

(
1−

kuCR,‖
ω

)∫
dpp2 dF(p)

dp

(
2µr + (1− µ2

r ) log

∣∣∣∣1 + µr

1− µr

∣∣∣∣) .

Integral I2 reads

I±2 (k, ω) = −2π2

k

(
1−

kuCR,‖
ω

)∫
dpp2 dF(p)

dp
(1− µ2

r ) .
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Final expressions for I±

Integral I1 reads

I±1 (k, ω) = ±2π
k

(
1−

kuCR,‖
ω

)∫
dpp2 dF(p)

dp

(
2µr + (1− µ2

r ) log

∣∣∣∣1 + µr

1− µr

∣∣∣∣) .

Integral I2 reads

I±2 (k, ω) = −2π2

k

(
1−

kuCR,‖
ω

)∫
dpp2 dF(p)

dp
(1− µ2

r ) .

The resonant pitch-angle cosine can be expressed in terms of the particle momentum
µr = m(Ωc ± γω)/kp, where Ωc = qB/mc is the cyclotron frequency. The pertubations
under consideration have a low frequency and we can approximate the resonant
pitch-angle cosine as µr ' mΩc/kp.
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Final expressions for I±

Integral I1 reads

I±1 (k, ω) = ±2π
k

(
1−

kuCR,‖
ω

)∫
dpp2 dF(p)

dp

(
2µr + (1− µ2

r ) log

∣∣∣∣1 + µr

1− µr

∣∣∣∣) .

Integral I2 reads

I±2 (k, ω) = −2π2

k

(
1−

kuCR,‖
ω

)∫
dpp2 dF(p)

dp
(1− µ2

r ) .

The resonant pitch-angle cosine can be expressed in terms of the particle momentum
µr = m(Ωc ± γω)/kp, where Ωc = qB/mc is the cyclotron frequency. The pertubations
under consideration have a low frequency and we can approximate the resonant
pitch-angle cosine as µr ' mΩc/kp.

Hence, we see that the kinetic part depends on the form of the CR distribution because of
the term dF(p)

dp .
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Final expressions for I±

Integral I1 reads

I±1 (k, ω) = ±2π
k

(
1−

kuCR,‖
ω

)∫
dpp2 dF(p)

dp

(
2µr + (1− µ2

r ) log

∣∣∣∣ 1 + µr

1− µr

∣∣∣∣) . (65)

Integral I2 reads

I±2 (k, ω) = −2π2

k

(
1−

kuCR,‖
ω

)∫
dpp2 dF(p)

dp
(1− µ2

r ) . (66)

The resonant pitch-angle cosine can be expressed in terms of the particle momentum
µr = m(Ωc ± γω)/kp, where Ωc = qB/mc is the cyclotron frequency. The pertubations
under consideration have a low frequency and we can approximate the resonant
pitch-angle cosine as µr ' mΩc/kp.
Hence, we see that the kinetic part depends on the form of the CR distribution because of
the term dF(p)

dp .

Both terms vanish if 1− kuCR,‖
ω

= 0, this is a quenching term, for instance when the drift
speed uCR,‖ = Va the resonant branch is stabilised.

124/203 Cosmic-Ray and astrophysical plasma instabilities



Preliminaries
Lecture 1 : Astrophysical plasmas instabilities and Cosmic Rays

Lecture 2 : The Cosmic-Ray streaming instability
Conclusions

The kinetic theory of the streaming instability
Environmental effects
Numerical studies

The final expression of the dispersion relation

The dispersion relation can be finally cast to the form after some rearranging

ω2 = k2V2
a ∓ Ωc

nCR

np
(ω − kuCR,‖) (1− T1(k)± iT2(k)) , (67)

with using an integration by part in Eqs. 65 and 66

T1(k) =

∫
dp

4πp2F(p)

nCR

pr

2p
log

∣∣∣∣p + pr

p− pr

∣∣∣∣ , (68)

and

T2(k) = π

∫ pmax

pr

dp
4πp2F(p)

nCR

pr

2p
. (69)

(1− T1) fully describes the non-resonant branch, while T2 fully describes the resonant branch.

Yes ! we did it ...
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Discussion

The case of an electron-positron beam (interesting for the case of gamma-ray halos around
pulsars)

Consider two CR species with the same mass but opposite charges, e.g. electrons and
positrons, the resonant pitch-angle cosine is µr,e = −µr,e+ . If the two species have the
same drift speed and densities. Then, I±1,e = −I±

1,e+
and I±2,e = I±

2,e+
.
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Discussion

The case of an electron-positron beam (interesting for the case of gamma-ray halos around
pulsars)

Consider two CR species with the same mass but opposite charges, e.g. electrons and
positrons, the resonant pitch-angle cosine is µr,e = −µr,e+ . If the two species have the
same drift speed and densities. Then, I±1,e = −I±

1,e+
and I±2,e = I±

2,e+
.

If CRs have a vanishing current the I1 (non-resonant) contribution as well as the second
term in RHS of Eq. 67 (as Ωc,e = −Ωc,e+ ) to the dispersion relation vanishes and only
the I2 (resonant) contribution remains [Evoli et al 2018 PRD 98 3017].
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Discussion

The case of an electron-positron beam (interesting for the case of gamma-ray halos around
pulsars)

Consider two CR species with the same mass but opposite charges, e.g. electrons and
positrons, the resonant pitch-angle cosine is µr,e = −µr,e+ . If the two species have the
same drift speed and densities. Then, I±1,e = −I±

1,e+
and I±2,e = I±

2,e+
.

If CRs have a vanishing current the I1 (non-resonant) contribution as well as the second
term in RHS of Eq. 67 (as Ωc,e = −Ωc,e+ ) to the dispersion relation vanishes and only
the I2 (resonant) contribution remains [Evoli et al 2018 PRD 98 3017].

An electron-positron beam does not necessarily leads to a null current if for instance you
have differences in density and/or drift speeds between the two species.
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Discussion

The case of an electron-positron beam (interesting for the case of gamma-ray halos around
pulsars)

Consider two CR species with the same mass but opposite charges, e.g. electrons and
positrons, the resonant pitch-angle cosine is µr,e = −µr,e+ . If the two species have the
same drift speed and densities. Then, I±1,e = −I±

1,e+
and I±2,e = I±

2,e+
.

If CRs have a vanishing current the I1 (non-resonant) contribution as well as the second
term in RHS of Eq. 67 (as Ωc,e = −Ωc,e+ ) to the dispersion relation vanishes and only
the I2 (resonant) contribution remains [Evoli et al 2018 PRD 98 3017].

An electron-positron beam does not necessarily leads to a null current if for instance you
have differences in density and/or drift speeds between the two species.

The case of a proton beam :

The beam current can not be cancel and then both branches are present but as we will see
non-resonant modes grow faster.
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Dispersion relation

CR magnetic field and shock acceleration 553

Figure 2. Dispersion relation for the mode with the largest maximum

growth rate; vA = 6.6 × 103 m s−1, v s/c = 1/30, ζ = 4.8 × 10−4. ω

is in units of v2
s /crg1 and k in units of r−1

g1 .

v s/c = 1/30, ln(p2/mpc) = 14, B ‖ = 3 µG and a nucleon density

n0 = 1 cm−3, then vA = 6.6 × 103 m s−1, ζ = 4.8 × 10−4 and

ζv2
s = 1100v2

A, so ζv2
s $ v2

A. It is usually supposed that upstream

turbulence consists of Alfvén waves with kr g1 ∼ 1 driven reso-

nantly by the interaction of the CR gyration with the wavelength of

the wave. Our calculation shows that the turbulence has a different

nature upstream of the outer shocks of young SNR and cannot be

characterized in terms of linear or non-linear Alfvén waves. In the

weakly driven regime, the linear growth rate is proportional to the

CR current (proportional to ζ ). In contrast, in the strongly driven

regime (ζv2
s $ v2

A) relevant to young SNR, the growth rate increases

only as the square root of the CR current for fixed kr g1 = 1. In this

sense, the strongly driven regime delivers comparatively less rapid

wave growth than the weakly driven regime.

The dispersion relationship is plotted in Fig. 2 for our typical

parameters. In Fig. 2, the wavenumber is in units of r−1
g1 , and the

frequency is given in units of v2
s /crg1. For comparison, 1/(v2

s /crg1) is

three times the time an upstream fluid element takes to traverse the

characteristic upstream scaleheight rg1c/3v s for CR with momentum

p1.

Fig. 2 shows that there are three distinct regimes to the dispersion

relation when the waves are strongly CR-driven.

4.1 Regime I, < 1

In this regime, the wavelength is longer than the Larmor radius

of CR at the low momentum cut-off. CR with Larmor radii much

shorter than the wavelength simply spiral along the field lines and

do not excite waves effectively. The real part of 1 − σ 1 is small

(see Fig. 1) leaving the imaginary part σ 1I of σ 1 to dominate the

dispersion relation, giving

ω ≈ ±(1 ± i)

(

3πζ

32

)1/2

kvs. (14)

The real and imaginary parts of the frequency are equal in magni-

tude, but both are relatively small and this regime is of little interest

for CR acceleration.

4.2 Regime III, krg1 > ζv2
s /v

2
A

At the short-wavelength end of the spectrum, the Alfvén term domi-

nates and the waves behave as Alfvén waves as in the weakly driven

case. Because the wavelength is much smaller than the Larmor ra-

dius of all CR, and the growth rate is low, the waves are too lightly

excited to be of any significance for CR acceleration.

4.3 Regime II, 1 < kr g1 < ζv2
s /v

2
A

This intermediate regime is the most significant for CR acceleration.

The maximum growth rate occurs towards the high-k end of this

regime, and waves throughout most of the regime have e-folding

times short enough for significant amplification in the time taken

for a fluid element to pass through the CR scaleheight. Except at the

low-k end of this regime, σ 1 is small (1 − σ 1 ≈ 1 in Fig. 1), so the

dispersion relation for the growing mode approximates to

ω2 − v2
Ak2 ± ζv2

s

k

rg1

= 0, (15)

where the replacement of ± by − or + determines whether or not

the mode is either oscillatory or purely growing or decaying. For the

purely growing mode, the growth rate varies as k1/2 within regime

II, and the maximum growth rate γ max occurs at the wavenumber

kmax where

kmax =
ζ

2

v2
s

v2
A

1

rg1

and γmax =
ζ

2

vs

vA

vs

rg1

. (16)

For the parameters adopted above, and for a lower limit of 1015 eV

to the local CR spectrum (r g1 = 1.1 × 1016 m), k−1
max = 2 × 1013 m

and γ −1
max = 98 yr. The relative time-scales and their implication for

CR acceleration in SNR will be discussed in Section 6.

5 WAV E M O D E S I N R E G I M E I I

In regime II, the small value of σ 1 for kr g1 $ 1 indicates that j⊥ is

small. As might be expected, CR trajectories are negligibly affected

by modes with a wavelength much shorter than the CR gyroradius.

Consequently, the j ⊥ ∧ B force is small, and the waves are driven

mainly by the interaction of the zeroth-order current j‖ with the

first-order perpendicular field B⊥. Because kinetic effects are small,

modes in regime II, especially those with the largest growth rate,

can be understood in purely MHD terms. This allays the concerns

of McKenzie & Volk (1982) and Achterberg (1983) that kinetic

effects such as particle trapping might become important when the

growth rate is comparable with the oscillation frequency and δB/B

approaches one, although it will be shown in Section 9 that kinetic

effects may cause wave saturation when δB/B $ 1.

The MHD equations describing the waves in regime II take a

very simple form (i) under our assumption that the wave-vector k,

the zeroth-order magnetic field and the zeroth-order current are all

parallel, thus making the wave transverse and ρ a constant, and (ii)

if the wavelength is significantly longer than that at the border with

regime III, thus making irrelevant the tension in the magnetic field

lines. The equations for regime II are then

ρ
du

dt
= − j‖ ∧ B;

∂B

∂t
= ∇ ∧ (u ∧ B). (17)

These simple equations can be used to check the results reached

above for regime II and to understand the nature of the modes in this

regime. Many of the results presented in this paper can be derived

from these two equations alone. The more complicated derivation of

the dispersion relation in Sections 2 and 3 serves mainly to establish

the validity and applicability of these equations.

Waves in regime II can be oscillatory, purely growing or purely

decaying depending on their polarization. The time dependence of

the wave depends on the sign of kB‖ j ‖. If the current j‖ and the

C© 2004 RAS, MNRAS 353, 550–558

FIGURE – Dispersion relation of the streaming instability, in the case F(p) ∝ p−4, k is in units of R−1
L , ω is

in units of u2
CR/cRL. From Bell (2004 ibidem). The resonant branch is at k < 1 with Im(ω) = Re(ω), the

non-resonant branch develops at k > 1 and has Im(ω) > Re(ω). The Alfvén mode is retrieved at very high
k.
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Dispersion relation : the resonant branch

In case of a vanishing current we set T1 = 1 and the dispersion relation is

ω2 = k2V2
a − iΩc

nCR

np
(ω − kuCR,‖)T2(k) .

The growth rate (ωI ) can be obtained from Eq. 70 by setting ω = ωR + iωI . If the ratio
nCR
np
� 1, the solutions are in the test-particle limit. This condition is almost always verified in

astrophysical sources.
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Dispersion relation : the resonant branch

In case of a vanishing current we set T1 = 1 and the dispersion relation is

ω2 = k2V2
a − iΩc

nCR

np
(ω − kuCR,‖)T2(k) .

The growth rate (ωI ) can be obtained from Eq. 70 by setting ω = ωR + iωI . If the ratio
nCR
np
� 1, the solutions are in the test-particle limit. This condition is almost always verified in

astrophysical sources.
In the test-particle limit the real part is ω̄R ∼ kVA � kuCR,‖. We find the growth rate (positive
ωI ) as

Γ(k) = ω̄I ' Ωc
nCR

2np

( uCR,‖
Va
− 1
)

T2(k) .
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Dispersion relation : the resonant branch

In case of a vanishing current we set T1 = 1 and the dispersion relation is

ω2 = k2V2
a − iΩc

nCR

np
(ω − kuCR,‖)T2(k) . (70)

The growth rate (ωI ) can be obtained from Eq. 70 by setting ω = ωR + iωI . If the ratio
nCR
np
� 1, the solutions are in the test-particle limit. This condition is almost always verified in

astrophysical sources.
In the test-particle limit the real part is ω̄R ∼ kVA � kuCR,‖. We find the growth rate (positive
ωI ) as

Γ(k) = ω̄I ' Ωc
nCR

2np

( uCR,‖
Va
− 1
)

T2(k) . (71)

No signs associated with polarisation appear here, this means that the two circularly-polarised
modes (left and right) have the same growth rate.
We recover the necessary condition for the instability to grow :

uCR,‖
Va

> 1.
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Dispersion relation : the non-resonant branch

We now set T2 = 0 in Eq. 67. The dispersion relation can then be cast to the form :(
ω ± Ωc

nCR

2np
(1− T1)

)2

=

(
kVa ± Ωc

uCR,‖
Va

nCR

2np
(1− T1)

)2

+Ω2
c

n2
CR

4n2
p

(1− T1)2

(
1−

u2
CR,‖
V2

a

)
.
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Dispersion relation : the non-resonant branch

We now set T2 = 0 in Eq. 67. The dispersion relation can then be cast to the form :(
ω ± Ωc

nCR

2np
(1− T1)

)2

=

(
kVa ± Ωc

uCR,‖
Va

nCR

2np
(1− T1)

)2

+Ω2
c

n2
CR

4n2
p

(1− T1)2

(
1−

u2
CR,‖
V2

a

)
.

The growth rate is maximal at (using ω = ωR + iωI )

Γ = ωI ' Ωc
uCR,‖

Va

nCR

2np
(1− T1) .

where we have assumed that uCR,‖ � Va. Here a sign appears in the relation dispersion, hence
one polarisation is oscillatory (-, ωI < 0) and the other one growing (+, ωI > 0).
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Dispersion relation : the non-resonant branch

We now set T2 = 0 in Eq. 67. The dispersion relation can then be cast to the form :(
ω ± Ωc

nCR

2np
(1− T1)

)2

=

(
kVa ± Ωc

uCR,‖
Va

nCR

2np
(1− T1)

)2

+Ω2
c

n2
CR

4n2
p

(1− T1)2

(
1−

u2
CR,‖
V2

a

)
.

The growth rate is maximal at (using ω = ωR + iωI )

Γ = ωI ' Ωc
uCR,‖

Va

nCR

2np
(1− T1) .

where we have assumed that uCR,‖ � Va. Here a sign appears in the relation dispersion, hence
one polarisation is oscillatory (-, ωI < 0) and the other one growing (+, ωI > 0). The maximum
growth is attained at

kmax = ∓Ωc
uCR,‖

V2
a

nCR

2np
(1− T1) .
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Dispersion relation : the non-resonant branch

We now set T2 = 0 in Eq. 67. The dispersion relation can then be cast to the form :(
ω ± Ωc

nCR

2np
(1− T1)

)2

=

(
kVa ± Ωc

uCR,‖
Va

nCR

2np
(1− T1)

)2

+Ω2
c

n2
CR

4n2
p

(1− T1)2

(
1−

u2
CR,‖
V2

a

)
. (72)

The growth rate is maximal at (using ω = ωR + iωI )

Γ = ωI ' Ωc
uCR,‖

Va

nCR

2np
(1− T1) . (73)

where we have assumed that uCR,‖ � Va. Here a sign appears in the relation dispersion, hence
one polarisation is oscillatory (-, ωI < 0) and the other one growing (+, ωI > 0). The maximum
growth is attained at

kmax = ∓Ωc
uCR,‖

V2
a

nCR

2np
(1− T1) . (74)

Otherwise the growth rate varies as function of k like

Γ(k) '
√

ΩckuCR,‖
nCR

np
(1− T1)− k2V2

a . (75)
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Properties of the two branches

Once the condition for the resonant modes to be
triggered, namely uCR > Va the growth rate and the real
part of the modes are not strongly sensitive to the drift
speed (see Fig. 21 up).
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Figure 4. Dispersion relation w(k) for the resonant (upper and
lower panels for krgm  1) and non-resonant (lower panel only for

krgm � 1) modes destabilized by CRs following a power-law energy

distribution with s = 2. Re(w) – dashed lines – and Im(w) – solid
lines – are plotted for vsh = 300 and 1000 km s�1 and ni = 103 and

104 cm�3. We fix Bj = 10 µG and hp = 0.01.

k values probably quench the development of fast streaming
instabilities in the configuration of a weakly CR modified
shock. In the mean time, if k > 100 then hp > 0.1 and the
destabilization of streaming instabilities occurs in the regime
of strongly CR modified shocks, a case beyond the scope of
the present linear analysis.

4.2 Reduction of the NR growth rate due to environmental
conditions

Di↵erent e↵ects may reduce the growth rate of the NR in-
stability. In this paper we discuss thermal e↵ects and ion-
neutral collisions in non-completely ionized jets.

4.2.1 Thermal e↵ects

Thermal e↵ects are important when (vA/vi)
3 <

(np/ni)(vsh/vi), where the ion speed is v2
i = kBTu/mp

(Zweibel & Everett 2010). This leads to the condition

Tu

K
> 1.1⇥104

⇣ hp

0.02

⌘�1
✓

Ep

GeV

◆

⇥
⇣ vsh

1000kms�1

⌘�3
✓

Bj

10 µG

◆3⇣ ni

104cm�3

⌘� 3
2

(23)

in which case an extra term µ k2T 2
u rgw needs to be added

in the dispersion relation in Eq. (16). The maximum growth
rate of the thermally modified Bell instability is

Gmax,th ' wci

✓
np

ni

◆ 2
3
✓

vsh

vi

◆ 2
3

, (24)

where wci = eBj/(mpc) is the ion cyclotron frequency (Reville
et al. 2007). For typical values in protostellar jets,

Gmax,th

Gmax,NR
' 1.9

⇣ hp

0.02

⌘� 1
3
✓

Ep

GeV

◆ 1
3
✓

Tu

104 K

◆� 1
3

⇥
⇣ vsh

1000kms�1

⌘�1
✓

Bj

10 µG

◆⇣ ni

104cm�3

⌘� 1
2
. (25)

We stress that Gmax,th < Gmax,NR when the temperature is
within the range where the condition in Eq. (23) is satis-
fied. The thermally modified Bell instability is damped when
Gmax,thtadv < 1, i.e. when

Tu

K
> 4.5⇥107

⇣ hp

0.02

⌘2
✓

Ep

GeV

◆
, (26)

where we have assumed tadv = tk. When thermal e↵ects are
taken into account, they can reduce the growth rate of the
NR instability but we do not expect strong damping by
thermal e↵ects over the development of the NR streaming
modes, unless the proton acceleration e�ciency hp is unrea-
sonably small in which case the NR modes are not destabi-
lized.

4.2.2 Partially ionized medium

In a partially ionized protostellar jet (i.e. Xu < 1) the friction
arising between charged and neutral particles can quench
the growth of CR driven instabilities at shock precursors,
and therefore DSA is less e�cient (e.g. Drury et al. 1996;
Reville et al. 2007). When ion-neutral collisions are taken
into account in the MHD equations, the dispersion relation
of the CR-driven instability becomes

w3 + iw2nin

✓
1

1�Xu

◆
+w

 
ez

v2
sh

rgm
k(1�s)� k2v2

A

!
+

inin

✓
Xu

1�Xu

◆ 
ez

v2
sh

rgm
k(1�s)� k2v2

A

!
= 0, (27)

where the ion-neutral collision frequency is given by

nin

s�1 ' 8.9⇥10�4
✓

Tu

104 K

◆0.5 ⇣ nn

105cm�3

⌘
, (28)

in the shock upstream region with Tu > 140 K and neutral
density nn = (1/Xu � 1)ni (Jean et al. 2009). We point out
that in a completely ionized plasma Xu = 1, nn = 0 and then
nin = 0. In such a case the dispersion relation in Eq. (27) is
identical to Eq. (16). We solve Eq. (27) for e = 1 and dif-
ferent values of Xu. As pointed out by Reville et al. (2007),
ion-neutral collisions are unable to stabilize the Bell modes

MNRAS 000, 1–16 (2015)

FIGURE – Effects of the drift speed and CR
density (which is a fraction of the gas density
displayed in the figures) over the dispersion
relation of the streaming instability. Up : the
resonant branch, Down : the non-resonant branch.
From Araudo et al 2021.
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Properties of the two branches

Once the condition for the resonant modes to be
triggered, namely uCR > Va the growth rate and the real
part of the modes are not strongly sensitive to the drift
speed (see Fig. 21 up).

This is not the case of the non resonant branch which
develops between k1RL ' 1 and k2RL '

uCR,‖
2Va

nCR
np

ΩcRL
Va

(these numbers have been obtained for a monoenergetic
distribution, F(p) ∝ δ(p− p0) and with pr

p0
� 1), (see

Fig. 21 down)
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Figure 4. Dispersion relation w(k) for the resonant (upper and
lower panels for krgm  1) and non-resonant (lower panel only for

krgm � 1) modes destabilized by CRs following a power-law energy

distribution with s = 2. Re(w) – dashed lines – and Im(w) – solid
lines – are plotted for vsh = 300 and 1000 km s�1 and ni = 103 and

104 cm�3. We fix Bj = 10 µG and hp = 0.01.

k values probably quench the development of fast streaming
instabilities in the configuration of a weakly CR modified
shock. In the mean time, if k > 100 then hp > 0.1 and the
destabilization of streaming instabilities occurs in the regime
of strongly CR modified shocks, a case beyond the scope of
the present linear analysis.

4.2 Reduction of the NR growth rate due to environmental
conditions

Di↵erent e↵ects may reduce the growth rate of the NR in-
stability. In this paper we discuss thermal e↵ects and ion-
neutral collisions in non-completely ionized jets.

4.2.1 Thermal e↵ects

Thermal e↵ects are important when (vA/vi)
3 <

(np/ni)(vsh/vi), where the ion speed is v2
i = kBTu/mp

(Zweibel & Everett 2010). This leads to the condition

Tu

K
> 1.1⇥104

⇣ hp

0.02

⌘�1
✓

Ep

GeV

◆

⇥
⇣ vsh

1000kms�1

⌘�3
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Bj
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◆3⇣ ni

104cm�3

⌘� 3
2

(23)

in which case an extra term µ k2T 2
u rgw needs to be added

in the dispersion relation in Eq. (16). The maximum growth
rate of the thermally modified Bell instability is

Gmax,th ' wci

✓
np

ni

◆ 2
3
✓

vsh

vi

◆ 2
3

, (24)

where wci = eBj/(mpc) is the ion cyclotron frequency (Reville
et al. 2007). For typical values in protostellar jets,

Gmax,th

Gmax,NR
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GeV
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2
. (25)

We stress that Gmax,th < Gmax,NR when the temperature is
within the range where the condition in Eq. (23) is satis-
fied. The thermally modified Bell instability is damped when
Gmax,thtadv < 1, i.e. when

Tu

K
> 4.5⇥107

⇣ hp

0.02

⌘2
✓

Ep

GeV

◆
, (26)

where we have assumed tadv = tk. When thermal e↵ects are
taken into account, they can reduce the growth rate of the
NR instability but we do not expect strong damping by
thermal e↵ects over the development of the NR streaming
modes, unless the proton acceleration e�ciency hp is unrea-
sonably small in which case the NR modes are not destabi-
lized.

4.2.2 Partially ionized medium

In a partially ionized protostellar jet (i.e. Xu < 1) the friction
arising between charged and neutral particles can quench
the growth of CR driven instabilities at shock precursors,
and therefore DSA is less e�cient (e.g. Drury et al. 1996;
Reville et al. 2007). When ion-neutral collisions are taken
into account in the MHD equations, the dispersion relation
of the CR-driven instability becomes
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where the ion-neutral collision frequency is given by

nin

s�1 ' 8.9⇥10�4
✓

Tu

104 K

◆0.5 ⇣ nn

105cm�3

⌘
, (28)

in the shock upstream region with Tu > 140 K and neutral
density nn = (1/Xu � 1)ni (Jean et al. 2009). We point out
that in a completely ionized plasma Xu = 1, nn = 0 and then
nin = 0. In such a case the dispersion relation in Eq. (27) is
identical to Eq. (16). We solve Eq. (27) for e = 1 and dif-
ferent values of Xu. As pointed out by Reville et al. (2007),
ion-neutral collisions are unable to stabilize the Bell modes
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FIGURE – Effects of the drift speed and CR
density (which is a fraction of the gas density
displayed in the figures) over the dispersion
relation of the streaming instability. Up : the
resonant branch, Down : the non-resonant branch.
From Araudo et al 2021.
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Properties of the two branches

Once the condition for the resonant modes to be
triggered, namely uCR > Va the growth rate and the real
part of the modes are not strongly sensitive to the drift
speed (see Fig. 21 up).

This is not the case of the non resonant branch which
develops between k1RL ' 1 and k2RL '

uCR,‖
2Va

nCR
np

ΩcRL
Va

(these numbers have been obtained for a monoenergetic
distribution, F(p) ∝ δ(p− p0) and with pr

p0
� 1), (see

Fig. 21 down)

The non resonant branch is stabilised if k2RL = 1, this
can be written by different means

If CR energy density is a fraction of the gas kinetic energy
density ECR = ξCR

1
2ρu2

CR it reads

uCR

c
ξCR

Ekin

Em
& 1 , (76)

or (see Zweibel & Everett 2010)

uCR

c
ECR

Em
& 1 . (77)
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Figure 4. Dispersion relation w(k) for the resonant (upper and
lower panels for krgm  1) and non-resonant (lower panel only for

krgm � 1) modes destabilized by CRs following a power-law energy

distribution with s = 2. Re(w) – dashed lines – and Im(w) – solid
lines – are plotted for vsh = 300 and 1000 km s�1 and ni = 103 and

104 cm�3. We fix Bj = 10 µG and hp = 0.01.

k values probably quench the development of fast streaming
instabilities in the configuration of a weakly CR modified
shock. In the mean time, if k > 100 then hp > 0.1 and the
destabilization of streaming instabilities occurs in the regime
of strongly CR modified shocks, a case beyond the scope of
the present linear analysis.

4.2 Reduction of the NR growth rate due to environmental
conditions

Di↵erent e↵ects may reduce the growth rate of the NR in-
stability. In this paper we discuss thermal e↵ects and ion-
neutral collisions in non-completely ionized jets.

4.2.1 Thermal e↵ects

Thermal e↵ects are important when (vA/vi)
3 <

(np/ni)(vsh/vi), where the ion speed is v2
i = kBTu/mp

(Zweibel & Everett 2010). This leads to the condition

Tu

K
> 1.1⇥104

⇣ hp

0.02

⌘�1
✓

Ep

GeV

◆

⇥
⇣ vsh

1000kms�1

⌘�3
✓

Bj

10 µG

◆3⇣ ni

104cm�3

⌘� 3
2

(23)

in which case an extra term µ k2T 2
u rgw needs to be added

in the dispersion relation in Eq. (16). The maximum growth
rate of the thermally modified Bell instability is

Gmax,th ' wci

✓
np

ni

◆ 2
3
✓

vsh

vi

◆ 2
3

, (24)

where wci = eBj/(mpc) is the ion cyclotron frequency (Reville
et al. 2007). For typical values in protostellar jets,

Gmax,th

Gmax,NR
' 1.9

⇣ hp

0.02

⌘� 1
3
✓

Ep

GeV

◆ 1
3
✓

Tu

104 K

◆� 1
3

⇥
⇣ vsh

1000kms�1

⌘�1
✓

Bj

10 µG

◆⇣ ni

104cm�3

⌘� 1
2
. (25)

We stress that Gmax,th < Gmax,NR when the temperature is
within the range where the condition in Eq. (23) is satis-
fied. The thermally modified Bell instability is damped when
Gmax,thtadv < 1, i.e. when

Tu

K
> 4.5⇥107

⇣ hp

0.02

⌘2
✓

Ep

GeV

◆
, (26)

where we have assumed tadv = tk. When thermal e↵ects are
taken into account, they can reduce the growth rate of the
NR instability but we do not expect strong damping by
thermal e↵ects over the development of the NR streaming
modes, unless the proton acceleration e�ciency hp is unrea-
sonably small in which case the NR modes are not destabi-
lized.

4.2.2 Partially ionized medium

In a partially ionized protostellar jet (i.e. Xu < 1) the friction
arising between charged and neutral particles can quench
the growth of CR driven instabilities at shock precursors,
and therefore DSA is less e�cient (e.g. Drury et al. 1996;
Reville et al. 2007). When ion-neutral collisions are taken
into account in the MHD equations, the dispersion relation
of the CR-driven instability becomes

w3 + iw2nin

✓
1

1�Xu

◆
+w

 
ez

v2
sh

rgm
k(1�s)� k2v2

A

!
+

inin

✓
Xu

1�Xu

◆ 
ez

v2
sh

rgm
k(1�s)� k2v2

A

!
= 0, (27)

where the ion-neutral collision frequency is given by

nin

s�1 ' 8.9⇥10�4
✓

Tu

104 K

◆0.5 ⇣ nn

105cm�3

⌘
, (28)

in the shock upstream region with Tu > 140 K and neutral
density nn = (1/Xu � 1)ni (Jean et al. 2009). We point out
that in a completely ionized plasma Xu = 1, nn = 0 and then
nin = 0. In such a case the dispersion relation in Eq. (27) is
identical to Eq. (16). We solve Eq. (27) for e = 1 and dif-
ferent values of Xu. As pointed out by Reville et al. (2007),
ion-neutral collisions are unable to stabilize the Bell modes
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FIGURE – Effects of the drift speed and CR
density (which is a fraction of the gas density
displayed in the figures) over the dispersion
relation of the streaming instability. Up : the
resonant branch, Down : the non-resonant branch.
From Araudo et al 2021.
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Effects of CR pressure anisotropy over the resonant branch

In a recent work Reville et al 2021 point out
that pressure anisotropy (firehose/mirror
instability) can modify the dispersion
relation of the resonant branch (see Fig. 25).
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2
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the cut-o↵ in the real part of the frequency below krg2 = 10�4.5 due to onset of the firehose instability.
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is rg1/vA ⇡ 106(p1/mpc) s. We recall that the maximum growth rate is predicted to be Im(!rg1/vA = ⇣1/2), where in these plots

⇣1 ⇡ 1200⌘/⌘0

keeping fixed the inferred spectral index of s = 4.17. In fig-
ures 1 and 2 we plot the phase velocity and growth rates
for the full dispersion relation, truncating the expansion at
second order. In figure 1 the CR e�ciency is kept fixed at
the upper limit inferred from observations, and we explore
the e↵ect of increasing anisotropy. The first thing to note is
that the anisotropy has no e↵ect on the maximum growth
rate of the Bell instability

�max =
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rg1
. (14)

This results from the non-resonant nature of the instability,
for which only the total current matters. The CR current is
kept fixed for all plots in Fig.1. Second, and contrary to the
standard picture, only at extremely short wavelengths (or
small ⇣1) does the usual Alfvén branch emerge. At all other
wave-lengths, the modes are highly super-Alfvénic and also
dispersive. There is thus no unique wave-frame, and naively,
one might anticipate this to have an e↵ect on the trans-
port in the precursor, and as a consequence the accelera-
tion. The dispersion free (!/k = constant) behaviour that is
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FIGURE – The Re and Im parts of the streaming instability dispersion
relation for different values of ∆PCR/PCR. The high k branch
(non-resonant) is not affected. The low k branch (resonant) is affected
for both its Real and Imaginary part. Continuous and dashed mark
different mode polarisation. From Reville et al 2021.
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Effects of CR pressure anisotropy over the resonant branch

In a recent work Reville et al 2021 point out
that pressure anisotropy (firehose/mirror
instability) can modify the dispersion
relation of the resonant branch (see Fig. 25).

The non-resonant branch is not
affected by pressure effects, because it
is controlled by the CR current.
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is rg1/vA ⇡ 106(p1/mpc) s. We recall that the maximum growth rate is predicted to be Im(!rg1/vA = ⇣1/2), where in these plots

⇣1 ⇡ 1200⌘/⌘0

keeping fixed the inferred spectral index of s = 4.17. In fig-
ures 1 and 2 we plot the phase velocity and growth rates
for the full dispersion relation, truncating the expansion at
second order. In figure 1 the CR e�ciency is kept fixed at
the upper limit inferred from observations, and we explore
the e↵ect of increasing anisotropy. The first thing to note is
that the anisotropy has no e↵ect on the maximum growth
rate of the Bell instability

�max =
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This results from the non-resonant nature of the instability,
for which only the total current matters. The CR current is
kept fixed for all plots in Fig.1. Second, and contrary to the
standard picture, only at extremely short wavelengths (or
small ⇣1) does the usual Alfvén branch emerge. At all other
wave-lengths, the modes are highly super-Alfvénic and also
dispersive. There is thus no unique wave-frame, and naively,
one might anticipate this to have an e↵ect on the trans-
port in the precursor, and as a consequence the accelera-
tion. The dispersion free (!/k = constant) behaviour that is
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FIGURE – The Re and Im parts of the streaming instability dispersion
relation for different values of ∆PCR/PCR. The high k branch
(non-resonant) is not affected. The low k branch (resonant) is affected
for both its Real and Imaginary part. Continuous and dashed mark
different mode polarisation. From Reville et al 2021.
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Effects of CR pressure anisotropy over the resonant branch

In a recent work Reville et al 2021 point out
that pressure anisotropy (firehose/mirror
instability) can modify the dispersion
relation of the resonant branch (see Fig. 25).

The non-resonant branch is not
affected by pressure effects, because it
is controlled by the CR current.

The long wavelength branch is
modified. ω ∝ ka with a > 1, so the
nature of the Alfvén mode is modified.
The imaginary part shows higher
growth rates.
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the cut-o↵ in the real part of the frequency below krg2 = 10�4.5 due to onset of the firehose instability.
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Figure 2. Real component of the phase speeds (left) and growth rates (right) in a fully ionised background and growth rate, as a function

of cosmic-ray acceleration e�ciency ⌘ = Pcr/⇢iu
2
sh. Pressure anisotropy is set to the di↵usion approximation �P = 2(ush/c)2, and

⌘0 = 0.2 (see text). All other parameters are as in Fig.1. In the lower plot, for the conditions given, the relevant time scale for growth

is rg1/vA ⇡ 106(p1/mpc) s. We recall that the maximum growth rate is predicted to be Im(!rg1/vA = ⇣1/2), where in these plots

⇣1 ⇡ 1200⌘/⌘0

keeping fixed the inferred spectral index of s = 4.17. In fig-
ures 1 and 2 we plot the phase velocity and growth rates
for the full dispersion relation, truncating the expansion at
second order. In figure 1 the CR e�ciency is kept fixed at
the upper limit inferred from observations, and we explore
the e↵ect of increasing anisotropy. The first thing to note is
that the anisotropy has no e↵ect on the maximum growth
rate of the Bell instability

�max =
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. (14)

This results from the non-resonant nature of the instability,
for which only the total current matters. The CR current is
kept fixed for all plots in Fig.1. Second, and contrary to the
standard picture, only at extremely short wavelengths (or
small ⇣1) does the usual Alfvén branch emerge. At all other
wave-lengths, the modes are highly super-Alfvénic and also
dispersive. There is thus no unique wave-frame, and naively,
one might anticipate this to have an e↵ect on the trans-
port in the precursor, and as a consequence the accelera-
tion. The dispersion free (!/k = constant) behaviour that is
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FIGURE – The Re and Im parts of the streaming instability dispersion
relation for different values of ∆PCR/PCR. The high k branch
(non-resonant) is not affected. The low k branch (resonant) is affected
for both its Real and Imaginary part. Continuous and dashed mark
different mode polarisation. From Reville et al 2021.
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Effects of CR pressure anisotropy over the resonant branch

In a recent work Reville et al 2021 point out
that pressure anisotropy (firehose/mirror
instability) can modify the dispersion
relation of the resonant branch (see Fig. 25).

The non-resonant branch is not
affected by pressure effects, because it
is controlled by the CR current.

The long wavelength branch is
modified. ω ∝ ka with a > 1, so the
nature of the Alfvén mode is modified.
The imaginary part shows higher
growth rates.

The firehose mode emerges at small k
(below 3 10−4).
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the cut-o↵ in the real part of the frequency below krg2 = 10�4.5 due to onset of the firehose instability.

10�2

10�1

100

101

10�4 10�2 100 102 104

R
e(
!
/k

v A
)

krg1

⌘/⌘0 = 100

⌘/⌘0 = 10�0.5

⌘/⌘0 = 10�1.0

⌘/⌘0 = 10�1.5

⌘/⌘0 = 10�2.0

⌘/⌘0 = 10�2.5

10�5

10�4

10�3

10�2

10�1

100

101

102

103

10�4 10�2 100 102 104

Im
(!

r g
1
/v

A
)

krg1

⌘/⌘0 = 100

⌘/⌘0 = 10�0.5

⌘/⌘0 = 10�1.0

⌘/⌘0 = 10�1.5

⌘/⌘0 = 10�2.0

⌘/⌘0 = 10�2.5

Figure 2. Real component of the phase speeds (left) and growth rates (right) in a fully ionised background and growth rate, as a function

of cosmic-ray acceleration e�ciency ⌘ = Pcr/⇢iu
2
sh. Pressure anisotropy is set to the di↵usion approximation �P = 2(ush/c)2, and

⌘0 = 0.2 (see text). All other parameters are as in Fig.1. In the lower plot, for the conditions given, the relevant time scale for growth

is rg1/vA ⇡ 106(p1/mpc) s. We recall that the maximum growth rate is predicted to be Im(!rg1/vA = ⇣1/2), where in these plots

⇣1 ⇡ 1200⌘/⌘0

keeping fixed the inferred spectral index of s = 4.17. In fig-
ures 1 and 2 we plot the phase velocity and growth rates
for the full dispersion relation, truncating the expansion at
second order. In figure 1 the CR e�ciency is kept fixed at
the upper limit inferred from observations, and we explore
the e↵ect of increasing anisotropy. The first thing to note is
that the anisotropy has no e↵ect on the maximum growth
rate of the Bell instability

�max =
1

2
⇣1

vA

rg1
. (14)

This results from the non-resonant nature of the instability,
for which only the total current matters. The CR current is
kept fixed for all plots in Fig.1. Second, and contrary to the
standard picture, only at extremely short wavelengths (or
small ⇣1) does the usual Alfvén branch emerge. At all other
wave-lengths, the modes are highly super-Alfvénic and also
dispersive. There is thus no unique wave-frame, and naively,
one might anticipate this to have an e↵ect on the trans-
port in the precursor, and as a consequence the accelera-
tion. The dispersion free (!/k = constant) behaviour that is

MNRAS 000, 1–18 (2020)

FIGURE – The Re and Im parts of the streaming instability dispersion
relation for different values of ∆PCR/PCR. The high k branch
(non-resonant) is not affected. The low k branch (resonant) is affected
for both its Real and Imaginary part. Continuous and dashed mark
different mode polarisation. From Reville et al 2021.
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The come-back of Cosmic-Ray pressure driven instability

We have already discussed the physics of the firehose and mirror instabilities. Both instabilities
are non-resonant as the growing wave numbers k verify kRL � 1 (see slide 36). But including a
second order term in anisotropy also drives a resonant branch of the instability aka as the
gyroresonant pressure driven anisotropy [see Beresnyak & Lazarian 2006, Zweibel 2020]. The
way to derive it is similar as the streaming instability but the unperturbed CR distribution has
the form given in Eq. 29 : F(p, µ) =

nCRN(p)
4π

(
1 + χ

2 (3µ2 − 1)
)
.
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The come-back of Cosmic-Ray pressure driven instability

We have already discussed the physics of the firehose and mirror instabilities. Both instabilities
are non-resonant as the growing wave numbers k verify kRL � 1 (see slide 36). But including a
second order term in anisotropy also drives a resonant branch of the instability aka as the
gyroresonant pressure driven anisotropy [see Beresnyak & Lazarian 2006, Zweibel 2020]. The
way to derive it is similar as the streaming instability but the unperturbed CR distribution has
the form given in Eq. 29 : F(p, µ) =

nCRN(p)
4π

(
1 + χ

2 (3µ2 − 1)
)
.

The growth rate is provided by Lebiga et al (2018). It is derived for a power-law CR
distribution with F(p) ∝ p−α−2 with pmin < p < pmax � pmin.

Γ(k) = ∓5π
8
α− 1
α+ 1

c
Va

Ωs
nCR

ng

∆P
P

F(k) , (78)

F(k) = (krmin)α−1 for
pmin

pmax
< krmin < 1

F(k) = (krmin)−2 for krmin > 1 .

(I remind ∆P = PCR,‖ − PCR,⊥).
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The fluid theory of the non-resonant streaming instability : oblique case

Bell 2005 generalised the above calculation to the case of non colinear current and magnetic
field. The analysis now include density and pressure perturbations, as the wave vectors are
aligned with the background magnetic field, so we have to include the perturbed continuity Eq
to the above system 45, namely

∂tδρ = −~∇(ρ~u) .
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The fluid theory of the non-resonant streaming instability : oblique case

Bell 2005 generalised the above calculation to the case of non colinear current and magnetic
field. The analysis now include density and pressure perturbations, as the wave vectors are
aligned with the background magnetic field, so we have to include the perturbed continuity Eq
to the above system 45, namely

∂tδρ = −~∇(ρ~u) .

The dispersion relation is more complex (see appendix A of the article) :(
Γ2 cos2(αk)k2v2

a

)(
Γ4 + Γ2k2(v2

a + c2
s ) + cos2(αk)v2

ac2
s

)
= Γ4

0×(
Γ2 + cos2(αj)k2c2

s + k2v2
a(cos2(αk) + cos2(αj)− 2 cos(αj) cos(αk) cos(αb)

)
where cos(αk) = cos(~k, ~B), cos(αj) = cos(~k,~J), cos(αb) = cos(~J, ~B) and Γ4

0 = (~k.~B)2 J2

ρ2 ,
Γ0 is the parallel growth rate.
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The fluid theory of the non-resonant streaming instability : oblique case

Bell 2005 generalised the above calculation to the case of non colinear current and magnetic
field. The analysis now include density and pressure perturbations, as the wave vectors are
aligned with the background magnetic field, so we have to include the perturbed continuity Eq
to the above system 45, namely

∂tδρ = −~∇(ρ~u) . (79)

The dispersion relation is more complex (see appendix A of the article) :(
Γ2 cos2(αk)k2v2

a

)(
Γ4 + Γ2k2(v2

a + c2
s ) + cos2(αk)v2

ac2
s

)
= Γ4

0×(
Γ2 + cos2(αj)k2c2

s + k2v2
a(cos2(αk) + cos2(αj)− 2 cos(αj) cos(αk) cos(αb)

)
(80)

where cos(αk) = cos(~k, ~B), cos(αj) = cos(~k,~J), cos(αb) = cos(~J, ~B) and Γ4
0 = (~k.~B)2 J2

ρ2 ,
Γ0 is the parallel growth rate.

The dispersion relation indicates that instability is possible for all orientations of~k,~J and ~B
except for~k ⊥ ~B.
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Another form of the (resonant) streaming growth rate

The origin of the streaming instability is encoded in the CR anisotropy. There are several ways
to have such an anisotropy.

CR in a shock precursor. If even CRs have an almost isotropic momentum distribution in
the shock rest-frame as seen from the upstream (ISM) rest-frame they have a strongly
anisotropic distribution. This is the set-up we just used to derive the previous streaming
instability growth rates.
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Another form of the (resonant) streaming growth rate

The origin of the streaming instability is encoded in the CR anisotropy. There are several ways
to have such an anisotropy.

CR in a shock precursor. If even CRs have an almost isotropic momentum distribution in
the shock rest-frame as seen from the upstream (ISM) rest-frame they have a strongly
anisotropic distribution. This is the set-up we just used to derive the previous streaming
instability growth rates.

It may happen also that CRs have an anisotropic distribution in the ISM because of the
scattering process in background turbulence itself (see P. Blasi lecture). Indeed CRs have
an isotropic distribution in a special frame moving with the scattering centres not with the
gas itself. As seen from the ISM restframe, CRs have an anisotropic distribution, but
usually this anisotropy is weaker than in the shock context.
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Another form of the (resonant) streaming growth rate

The origin of the streaming instability is encoded in the CR anisotropy. There are several ways
to have such an anisotropy.

CR in a shock precursor. If even CRs have an almost isotropic momentum distribution in
the shock rest-frame as seen from the upstream (ISM) rest-frame they have a strongly
anisotropic distribution. This is the set-up we just used to derive the previous streaming
instability growth rates.

It may happen also that CRs have an anisotropic distribution in the ISM because of the
scattering process in background turbulence itself (see P. Blasi lecture). Indeed CRs have
an isotropic distribution in a special frame moving with the scattering centres not with the
gas itself. As seen from the ISM restframe, CRs have an anisotropic distribution, but
usually this anisotropy is weaker than in the shock context.

The latter set-up has been adopted by the first work on resonant streaming instability :
Lerche 1967, Wentzel 1968, Skilling 1975.
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Another form of the (resonant) streaming growth rate

The origin of the streaming instability is encoded in the CR anisotropy. There are several ways
to have such an anisotropy.

CR in a shock precursor. If even CRs have an almost isotropic momentum distribution in
the shock rest-frame as seen from the upstream (ISM) rest-frame they have a strongly
anisotropic distribution. This is the set-up we just used to derive the previous streaming
instability growth rates.

It may happen also that CRs have an anisotropic distribution in the ISM because of the
scattering process in background turbulence itself (see P. Blasi lecture). Indeed CRs have
an isotropic distribution in a special frame moving with the scattering centres not with the
gas itself. As seen from the ISM restframe, CRs have an anisotropic distribution, but
usually this anisotropy is weaker than in the shock context.

The latter set-up has been adopted by the first work on resonant streaming instability :
Lerche 196, Wentzel 1968, Skilling 1975.

Another way to have a strong anisotropy without a shock is the case of particles which are
free streaming (moving at c) because of the lack of scattering interaction with any
perturbation (escape from sources, escape from the disc into the halo, highest energies
escaping a shock precursor...)
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The resonant growth rate

In order to apply this theory one has to respect some small numbers (Skilling 1975 ibidem).

Scattering centre speed is small compare to particle speed. This is the case in the ISM as
Va � c. Not always the case in relativistic plasmas where the magnetisation is high, so
Va ∼ c (see lecture by L. Sironi).

The pitch-angle scattering frequency νs � c
L , where L is the system size.
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The resonant growth rate

In order to apply this theory one has to respect some small numbers (Skilling 1975 ibidem).

Scattering centre speed is small compare to particle speed. This is the case in the ISM as
Va � c. Not always the case in relativistic plasmas where the magnetisation is high, so
Va ∼ c (see lecture by L. Sironi).

The pitch-angle scattering frequency νs � c
L , where L is the system size.

From these conditions, the driven instability term in the scattering center frame ∂µδf can be
expressed in the background gas frame as νs∂µ∂δf = −v~b.~∇F, µ = cos(~v, ~B0), is the
particle’s pitch-angle cosine. The final expression of the growth rate (Skilling 1975 ibidem) :

Γ = − mv2
a

4W(k)

Ω

kva

∫
d3~p(1− µ2)v~b.~∇f δ(µ± mΩ

pk
) . (81)

W(k) is the wave power spectrum. This is indeed the resonant branch because of the presence of
the Dirac function in the integrand. I have noted~b = ~B0/B0.
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Outlines

1 Preliminaries

2 Lecture 1 : Astrophysical plasmas instabilities and Cosmic Rays
Instabilities in plasma physics
Cosmic Rays as source of free energy in Astrophysics
Model equations
Cosmic-Ray-modified Instabilities : main classes and one example
Cosmic-Ray-driven instabilities : main classes

3 Lecture 2 : The Cosmic-Ray streaming instability
The kinetic theory of the streaming instability
Environmental effects

Thermal effects
Ion-neutral collision effects

Numerical studies

4 Conclusions
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Background plasma contribution to susceptibility

If we want to account for thermal effects then a fluid theory for background plasma is not
adequate. We need to go back to a Vlasov approach and use the same procedure as for the CR
beam.
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Background plasma contribution to susceptibility

If we want to account for thermal effects then a fluid theory for background plasma is not
adequate. We need to go back to a Vlasov approach and use the same procedure as for the CR
beam.
Same routine : we have to express δf as function of F for all thermal species and derive the
susceptibility. As we are considering parallel electromagnetic modes the thermal contribution of
all species a to the dispersion relation is (see Krall & Trivelpiece 1973, or I can furnish it on
demand). Here we assume a Maxwellian distribution :

1− k2c2

ω2
−
∑

a

ω2
p,a

ω2

(√
Θa(ua,d −

ω

k
)Z(ζ±a )

)
= 0. (82)

The temperature is in Θa = ma/2kBTa = 1/v2
th. The plasma frequency is ωp =

√
4πq2n/m.

We have noted ψ± = ψ ± Ωc,a, ψ±2 = ψ ± 2Ωc,a. We introduce the Fried-Conte function

Z(ζ) =
1√
π

∫
du

exp(−u2)

(u− ζ) , (83)

ζ± =

√
Θ‖
k (ω − kud ± Ωc), ud accounts for a possible drift of the thermal particles.
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Reminder : the general dispersion relation

For all species s = CR, thermal components the dispersion relation writes

k2c2

ω2
− 1−

∑
s

Xs = 0, or (84)

ω2 V2
a

c2

(
1 +

∑
s

Xs

)
− k2V2

a = 0

CR contribute to

XCR = ∓ c2

V2
a

(
nCR

ni
Ωcp

(ω − kuCR)

ω2
(T1 ∓ iT2)

)
. (85)

We are now evaluating the background thermal gas contribution Xbg in different temperature
case.
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The cold case

The cold regime is obtained for |ζ±| � 1 (vth → 0), we use Z(ζ)± ' − 1
ζ± = −kvt

(ω−ku±Ωc)
in

Eq. 82.
This leads to the dispersion relation in the background thermal plasma using 1) ne = np + nCR,
2) ue ' nCR

np
uCR (and up = 0), we find

Xbg '
c2

v2
a

(
1± Ωcp

ω2

nCR

np
(ω − kuCR)

)
.

Above we have neglected terms scaling as me/mp and nCR/np in front of 1.
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The cold case

The cold regime is obtained for |ζ±| � 1 (vth → 0), we use Z(ζ)± ' − 1
ζ± = −kvt

(ω−ku±Ωc)
in

Eq. 82.
This leads to the dispersion relation in the background thermal plasma using 1) ne = np + nCR,
2) ue ' nCR

np
uCR (and up = 0), we find

Xbg '
c2

v2
a

(
1± Ωcp

ω2

nCR

np
(ω − kuCR)

)
. (86)

Above we have neglected terms scaling as me/mp and nCR/np in front of 1. Inserting both
susceptibilities into Eq. 84 we almost recover Eq. 67 10

ω2(1 +
V2

a

c2
)± Ωcp

nCR

np
(ω − kuCR) (1− T1(k)± iT2(k))− k2V2

a = 0 . (87)

In the non-relativistic regime the small correction in V2
a/c2 is neglected. This expression also

assumes that the CR density is nCR � np, so is valid in the test particle limit only.

10. almost because in the derivation of Eq. 67 we dropped the displacement current in the Ampère Eq. hence the term in V2
a/c2 .
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The warm case

The intermediate warm regime gives |ζ±| & 1. In the warm regime we can perform a Taylor
expansion of u− ζ± in the the expression of Z(ζ±) in Eq.83. We have to account for the pole
u = ζ± we finally find

Z(ζ±) ' − 1
ζ±

[
1 +

1
2ζ±2

]
+ i
√
π exp(−ζ±2

) .
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The warm case

The intermediate warm regime gives |ζ±| & 1. In the warm regime we can perform a Taylor
expansion of u− ζ± in the the expression of Z(ζ±) in Eq.83. We have to account for the pole
u = ζ± we finally find

Z(ζ±) ' − 1
ζ±

[
1 +

1
2ζ±2

]
+ i
√
π exp(−ζ±2

) .

The background susceptibility now reads

Xbg ' c2

v2
a

(
1± Ωcp

ω2

nCR

ni
(ω − kuCR)∓ (kVTp)2

2ωωcp
+ i
√
π

Ω2
cp

ωkVTp
exp(−

Ω2
cp

k2V2
Tp

)

)
.
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The warm case

The intermediate warm regime gives |ζ±| & 1. In the warm regime we can perform a Taylor
expansion of u− ζ± in the the expression of Z(ζ±) in Eq.83. We have to account for the pole
u = ζ± we finally find

Z(ζ±) ' − 1
ζ±

[
1 +

1
2ζ±2

]
+ i
√
π exp(−ζ±2

) . (88)

The background susceptibility now reads

Xbg ' c2

v2
a

(
1± Ωcp

ω2

nCR

ni
(ω − kuCR)∓ (kVTp)2

2ωωcp
+ i
√
π

Ω2
cp

ωkVTp
exp(−

Ω2
cp

k2V2
Tp

)

)
(89)

hence the dispersion relation reads (still using up = 0 in Eq. 82)

ω2 ± Ωcp
nCR

np
(ω − kuCR) (1− T1(k)± iT2(k))− k2V2

a

+ω

(
i
√
π

Ω2
cp

kVTp
exp

(
−

Ω2
cp

k2V2
Tp

)
∓

k2V2
Tp

2Ωcp

)
= 0 . (90)

The last bracket shows the thermal corrections due to warm ions (ion cyclotron+ gyroviscosity
due to finite Larmor radius).
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Growth rate

Zweibel & Everett (2010) derived the
maximum growth rate and the wavenumber for
the non-resonant branch (upper sign, T2 = 0)
and get

Γ(k) ' Ωcp

(
nCR

ni

uCR

VTp

)2/3

kmax '
Ωcp

VTp

(
nCR

np

uCR

VTp

)1/3

.

165/203 Cosmic-Ray and astrophysical plasma instabilities



Preliminaries
Lecture 1 : Astrophysical plasmas instabilities and Cosmic Rays

Lecture 2 : The Cosmic-Ray streaming instability
Conclusions

The kinetic theory of the streaming instability
Environmental effects
Numerical studies

Growth rate

Zweibel & Everett (2010) derived the
maximum growth rate and the wavenumber for
the non-resonant branch (upper sign, T2 = 0)
and get

Γ(k) ' Ωcp

(
nCR

ni

uCR

VTp

)2/3

kmax '
Ωcp

VTp

(
nCR

np

uCR

VTp

)1/3

.

Thermal effects reduce kmax (see Fig.27
bottom).
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Figure 5. Left panel: growth rate ωi vs. scaled wavenumber krcr as computed from the full dispersion relation Equation (4), long dashed line; and the approximation (11),
short dashed line for T = 103 K and the other parameters as in Equation (3). Right panel: same for T = 107 K.

kwicercr ∼ (c/vi)kwiceri > 1. Both requirements can be written
as temperature and density dependent limits on ncrvD; we return
to them in Section 3.1 (Equations (17), (20)).

The growth rate ωwice corresponding to kwice is

ωwice ∼ ωci

(
ncr

ni

vD

vi

)2/3

, (14)

in agreement with Reville et al. (2008a).
It can be shown from Equations (10), (12), and (14) that

ωwice/ωBell < 1. At the limits of validity of the warm ion
approximation, which is kwicevi/ωci = 1, ωwice/ωBell = vA/vi .
The suppression of the growth rate is due not to thermal ion
cyclotron damping, which is weak for ωci/kvi " 1, but due
to the restoring force exerted by the warm ions. Cyclotron
damping does, however, come into play at shorter wavelength,
obliterating the resonant tail of the instability. This happens
roughly where (kvi/ωci)e−(ωci/kvi )2

> ncrvD/nic. For the cosmic
ray flux and ion density assumed in Figures 3–5, this occurs at
kvi/ωci ∼ 0.27, or kc/ωci ∼ 9 × 105T −1/2. This is consistent
with the behavior shown in Figure 3.

At T = 107 K, something more complicated is going on:
the instability growth rate decreases sharply after peaking near
kc/ωci ∼ 102, as predicted by Equation (13), but then has a
brief resurgence. This is because the resonant ion cyclotron term
overwhelms the stabilizing gyroviscous term for ωci/kvi ∼ 3/2,
removing, in a small band of k space, gyroviscous stabilization.

As we discussed in Section 2.2.1, the instability can only
efficiently amplify magnetic fields at a shock if its growth
time is faster than the convection time (ωciv

2
D/c2)−1. From

Equation (14) we see that this requires

ωci

(
ncr

ni

vD

vi

)2/3

> ωci
v2

D

c2
. (15)

The criterion (15) is independent of magnetic field strength and
depends only on the cosmic ray flux, drift speed, and the density
and temperature of the ambient medium.

2.2.3. Hot Ions

When kri ! 1, Equation (11) becomes invalid. In this limit,
the argument of the plasma dispersion function in Equation (4)
becomes large, and Z(z) ≈ −z−1 + i

√
π . Physically, this

means the ions are responding very little to the perturbation.
Ion cyclotron damping is also weak, because the slope of the
distribution function is small at the resonant velocities.

Under these conditions, the instability, if it exists at all, is due
entirely to properties of the electron distribution function. In
deriving the cosmic ray response function ζr used in Equation (4)

and plotted in Figure 2, we assumed the electrons are cold
and a fraction ncr/ni of them are drifting with the cosmic
rays. As long as vD/ve is sufficiently large, the electrons are
unstable not only to the electromagnetic streaming instability
considered here, but also to the much faster growing electrostatic
instabilities discussed in Section 2 (see the Appendix). On the
other hand, if the electrons were all drifting at speed ncrvD/vi

both the electromagnetic and electrostatic instabilities would be
stabilized.

Assuming the two peaked electron distribution, it can be
shown that the instability growth rate is bounded above by
ωci(ncrvD/nivi). This is generally less than ωwice defined in
Equation (14), showing that these very short wavelength in-
stabilities are not as important as the thermally modified or
standard Bell instabilities. At even shorter wavelengths, such
that kre > 1, the derivation of ζr becomes invalid. In view of
our uncertainty about the electron distribution function, we have
pursued the hot ion case no further.

3. APPLICATIONS

3.1. Instability Regimes

We begin by summarizing the different regimes of the
streaming instability as functions of magnetic field strength
B and cosmic ray flux ncrvD . These regimes were introduced
without proof in Section 1 and depicted schematically in
Figure 1. The criteria used to delineate these regimes are
approximate, but as Figures 4(a) and (b) indicate, the transitions
between regimes are fairly sharp.

According to Equation (1), the condition that the Bell insta-
bility be nonresonant, i.e., that kBellrcr > 1, is

B < BS ≡ 8.7 × 10−7(ncrvD)1/2, (16)

where here and below ncrvD is given in units of cm−2 s−1

and B is in G. The condition that thermal effects modify the
Bell instability such that the wavelength of the fastest growing
mode is at k ∼ kwice (Equation (9)) rather than k ∼ kBell
(Equation (13)) is

B < BM ≡ 2.3 × 10−9T 1/3n
1/6
i (ncrvD)1/3. (17)

The condition for the thermally modified Bell instability to be
nonresonant is kwicercr > 1. At the same time, the thermal ions
must be magnetized at k = kwice; kwiceri < 1. These conditions
limit ncrvD to the range

ni

v4
i

c3
< ncrvD < nivi, (18)
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kwicercr ∼ (c/vi)kwiceri > 1. Both requirements can be written
as temperature and density dependent limits on ncrvD; we return
to them in Section 3.1 (Equations (17), (20)).

The growth rate ωwice corresponding to kwice is

ωwice ∼ ωci

(
ncr

ni

vD

vi

)2/3

, (14)

in agreement with Reville et al. (2008a).
It can be shown from Equations (10), (12), and (14) that

ωwice/ωBell < 1. At the limits of validity of the warm ion
approximation, which is kwicevi/ωci = 1, ωwice/ωBell = vA/vi .
The suppression of the growth rate is due not to thermal ion
cyclotron damping, which is weak for ωci/kvi " 1, but due
to the restoring force exerted by the warm ions. Cyclotron
damping does, however, come into play at shorter wavelength,
obliterating the resonant tail of the instability. This happens
roughly where (kvi/ωci)e−(ωci/kvi )2

> ncrvD/nic. For the cosmic
ray flux and ion density assumed in Figures 3–5, this occurs at
kvi/ωci ∼ 0.27, or kc/ωci ∼ 9 × 105T −1/2. This is consistent
with the behavior shown in Figure 3.

At T = 107 K, something more complicated is going on:
the instability growth rate decreases sharply after peaking near
kc/ωci ∼ 102, as predicted by Equation (13), but then has a
brief resurgence. This is because the resonant ion cyclotron term
overwhelms the stabilizing gyroviscous term for ωci/kvi ∼ 3/2,
removing, in a small band of k space, gyroviscous stabilization.

As we discussed in Section 2.2.1, the instability can only
efficiently amplify magnetic fields at a shock if its growth
time is faster than the convection time (ωciv

2
D/c2)−1. From

Equation (14) we see that this requires

ωci

(
ncr

ni

vD

vi

)2/3

> ωci
v2

D

c2
. (15)

The criterion (15) is independent of magnetic field strength and
depends only on the cosmic ray flux, drift speed, and the density
and temperature of the ambient medium.

2.2.3. Hot Ions

When kri ! 1, Equation (11) becomes invalid. In this limit,
the argument of the plasma dispersion function in Equation (4)
becomes large, and Z(z) ≈ −z−1 + i

√
π . Physically, this

means the ions are responding very little to the perturbation.
Ion cyclotron damping is also weak, because the slope of the
distribution function is small at the resonant velocities.

Under these conditions, the instability, if it exists at all, is due
entirely to properties of the electron distribution function. In
deriving the cosmic ray response function ζr used in Equation (4)

and plotted in Figure 2, we assumed the electrons are cold
and a fraction ncr/ni of them are drifting with the cosmic
rays. As long as vD/ve is sufficiently large, the electrons are
unstable not only to the electromagnetic streaming instability
considered here, but also to the much faster growing electrostatic
instabilities discussed in Section 2 (see the Appendix). On the
other hand, if the electrons were all drifting at speed ncrvD/vi

both the electromagnetic and electrostatic instabilities would be
stabilized.

Assuming the two peaked electron distribution, it can be
shown that the instability growth rate is bounded above by
ωci(ncrvD/nivi). This is generally less than ωwice defined in
Equation (14), showing that these very short wavelength in-
stabilities are not as important as the thermally modified or
standard Bell instabilities. At even shorter wavelengths, such
that kre > 1, the derivation of ζr becomes invalid. In view of
our uncertainty about the electron distribution function, we have
pursued the hot ion case no further.

3. APPLICATIONS

3.1. Instability Regimes

We begin by summarizing the different regimes of the
streaming instability as functions of magnetic field strength
B and cosmic ray flux ncrvD . These regimes were introduced
without proof in Section 1 and depicted schematically in
Figure 1. The criteria used to delineate these regimes are
approximate, but as Figures 4(a) and (b) indicate, the transitions
between regimes are fairly sharp.

According to Equation (1), the condition that the Bell insta-
bility be nonresonant, i.e., that kBellrcr > 1, is

B < BS ≡ 8.7 × 10−7(ncrvD)1/2, (16)

where here and below ncrvD is given in units of cm−2 s−1

and B is in G. The condition that thermal effects modify the
Bell instability such that the wavelength of the fastest growing
mode is at k ∼ kwice (Equation (9)) rather than k ∼ kBell
(Equation (13)) is

B < BM ≡ 2.3 × 10−9T 1/3n
1/6
i (ncrvD)1/3. (17)

The condition for the thermally modified Bell instability to be
nonresonant is kwicercr > 1. At the same time, the thermal ions
must be magnetized at k = kwice; kwiceri < 1. These conditions
limit ncrvD to the range

ni

v4
i

c3
< ncrvD < nivi, (18)

FIGURE – Up : growth rate (long-dashed) at T = 103 K.
Bottom : growth rate (long-dashed) at T = 107 K. From
Zweibel & Everett 2010 ibidem.
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Growth rate

Zweibel & Everett (2010) derived the
maximum growth rate and the wavenumber for
the non-resonant branch (upper sign, T2 = 0)
and get

Γ(k) ' Ωcp

(
nCR

ni

uCR

VTp

)2/3

(91)

kmax '
Ωcp

VTp

(
nCR

np

uCR

VTp

)1/3

. (92)

Thermal effects reduce kmax (see Fig.27
bottom).

At high k, ion cyclotron takes over
gyroviscosity for a short interval of k→ small
bump.
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kwicercr ∼ (c/vi)kwiceri > 1. Both requirements can be written
as temperature and density dependent limits on ncrvD; we return
to them in Section 3.1 (Equations (17), (20)).

The growth rate ωwice corresponding to kwice is

ωwice ∼ ωci

(
ncr
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vD
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)2/3

, (14)

in agreement with Reville et al. (2008a).
It can be shown from Equations (10), (12), and (14) that

ωwice/ωBell < 1. At the limits of validity of the warm ion
approximation, which is kwicevi/ωci = 1, ωwice/ωBell = vA/vi .
The suppression of the growth rate is due not to thermal ion
cyclotron damping, which is weak for ωci/kvi " 1, but due
to the restoring force exerted by the warm ions. Cyclotron
damping does, however, come into play at shorter wavelength,
obliterating the resonant tail of the instability. This happens
roughly where (kvi/ωci)e−(ωci/kvi )2

> ncrvD/nic. For the cosmic
ray flux and ion density assumed in Figures 3–5, this occurs at
kvi/ωci ∼ 0.27, or kc/ωci ∼ 9 × 105T −1/2. This is consistent
with the behavior shown in Figure 3.

At T = 107 K, something more complicated is going on:
the instability growth rate decreases sharply after peaking near
kc/ωci ∼ 102, as predicted by Equation (13), but then has a
brief resurgence. This is because the resonant ion cyclotron term
overwhelms the stabilizing gyroviscous term for ωci/kvi ∼ 3/2,
removing, in a small band of k space, gyroviscous stabilization.

As we discussed in Section 2.2.1, the instability can only
efficiently amplify magnetic fields at a shock if its growth
time is faster than the convection time (ωciv

2
D/c2)−1. From

Equation (14) we see that this requires

ωci

(
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vi

)2/3

> ωci
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. (15)

The criterion (15) is independent of magnetic field strength and
depends only on the cosmic ray flux, drift speed, and the density
and temperature of the ambient medium.

2.2.3. Hot Ions

When kri ! 1, Equation (11) becomes invalid. In this limit,
the argument of the plasma dispersion function in Equation (4)
becomes large, and Z(z) ≈ −z−1 + i

√
π . Physically, this

means the ions are responding very little to the perturbation.
Ion cyclotron damping is also weak, because the slope of the
distribution function is small at the resonant velocities.

Under these conditions, the instability, if it exists at all, is due
entirely to properties of the electron distribution function. In
deriving the cosmic ray response function ζr used in Equation (4)

and plotted in Figure 2, we assumed the electrons are cold
and a fraction ncr/ni of them are drifting with the cosmic
rays. As long as vD/ve is sufficiently large, the electrons are
unstable not only to the electromagnetic streaming instability
considered here, but also to the much faster growing electrostatic
instabilities discussed in Section 2 (see the Appendix). On the
other hand, if the electrons were all drifting at speed ncrvD/vi

both the electromagnetic and electrostatic instabilities would be
stabilized.

Assuming the two peaked electron distribution, it can be
shown that the instability growth rate is bounded above by
ωci(ncrvD/nivi). This is generally less than ωwice defined in
Equation (14), showing that these very short wavelength in-
stabilities are not as important as the thermally modified or
standard Bell instabilities. At even shorter wavelengths, such
that kre > 1, the derivation of ζr becomes invalid. In view of
our uncertainty about the electron distribution function, we have
pursued the hot ion case no further.

3. APPLICATIONS

3.1. Instability Regimes

We begin by summarizing the different regimes of the
streaming instability as functions of magnetic field strength
B and cosmic ray flux ncrvD . These regimes were introduced
without proof in Section 1 and depicted schematically in
Figure 1. The criteria used to delineate these regimes are
approximate, but as Figures 4(a) and (b) indicate, the transitions
between regimes are fairly sharp.

According to Equation (1), the condition that the Bell insta-
bility be nonresonant, i.e., that kBellrcr > 1, is

B < BS ≡ 8.7 × 10−7(ncrvD)1/2, (16)

where here and below ncrvD is given in units of cm−2 s−1

and B is in G. The condition that thermal effects modify the
Bell instability such that the wavelength of the fastest growing
mode is at k ∼ kwice (Equation (9)) rather than k ∼ kBell
(Equation (13)) is

B < BM ≡ 2.3 × 10−9T 1/3n
1/6
i (ncrvD)1/3. (17)

The condition for the thermally modified Bell instability to be
nonresonant is kwicercr > 1. At the same time, the thermal ions
must be magnetized at k = kwice; kwiceri < 1. These conditions
limit ncrvD to the range

ni

v4
i

c3
< ncrvD < nivi, (18)
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kwicercr ∼ (c/vi)kwiceri > 1. Both requirements can be written
as temperature and density dependent limits on ncrvD; we return
to them in Section 3.1 (Equations (17), (20)).

The growth rate ωwice corresponding to kwice is

ωwice ∼ ωci

(
ncr

ni

vD

vi

)2/3

, (14)

in agreement with Reville et al. (2008a).
It can be shown from Equations (10), (12), and (14) that

ωwice/ωBell < 1. At the limits of validity of the warm ion
approximation, which is kwicevi/ωci = 1, ωwice/ωBell = vA/vi .
The suppression of the growth rate is due not to thermal ion
cyclotron damping, which is weak for ωci/kvi " 1, but due
to the restoring force exerted by the warm ions. Cyclotron
damping does, however, come into play at shorter wavelength,
obliterating the resonant tail of the instability. This happens
roughly where (kvi/ωci)e−(ωci/kvi )2

> ncrvD/nic. For the cosmic
ray flux and ion density assumed in Figures 3–5, this occurs at
kvi/ωci ∼ 0.27, or kc/ωci ∼ 9 × 105T −1/2. This is consistent
with the behavior shown in Figure 3.

At T = 107 K, something more complicated is going on:
the instability growth rate decreases sharply after peaking near
kc/ωci ∼ 102, as predicted by Equation (13), but then has a
brief resurgence. This is because the resonant ion cyclotron term
overwhelms the stabilizing gyroviscous term for ωci/kvi ∼ 3/2,
removing, in a small band of k space, gyroviscous stabilization.

As we discussed in Section 2.2.1, the instability can only
efficiently amplify magnetic fields at a shock if its growth
time is faster than the convection time (ωciv

2
D/c2)−1. From

Equation (14) we see that this requires
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(
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)2/3

> ωci
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. (15)

The criterion (15) is independent of magnetic field strength and
depends only on the cosmic ray flux, drift speed, and the density
and temperature of the ambient medium.

2.2.3. Hot Ions

When kri ! 1, Equation (11) becomes invalid. In this limit,
the argument of the plasma dispersion function in Equation (4)
becomes large, and Z(z) ≈ −z−1 + i

√
π . Physically, this

means the ions are responding very little to the perturbation.
Ion cyclotron damping is also weak, because the slope of the
distribution function is small at the resonant velocities.

Under these conditions, the instability, if it exists at all, is due
entirely to properties of the electron distribution function. In
deriving the cosmic ray response function ζr used in Equation (4)

and plotted in Figure 2, we assumed the electrons are cold
and a fraction ncr/ni of them are drifting with the cosmic
rays. As long as vD/ve is sufficiently large, the electrons are
unstable not only to the electromagnetic streaming instability
considered here, but also to the much faster growing electrostatic
instabilities discussed in Section 2 (see the Appendix). On the
other hand, if the electrons were all drifting at speed ncrvD/vi

both the electromagnetic and electrostatic instabilities would be
stabilized.

Assuming the two peaked electron distribution, it can be
shown that the instability growth rate is bounded above by
ωci(ncrvD/nivi). This is generally less than ωwice defined in
Equation (14), showing that these very short wavelength in-
stabilities are not as important as the thermally modified or
standard Bell instabilities. At even shorter wavelengths, such
that kre > 1, the derivation of ζr becomes invalid. In view of
our uncertainty about the electron distribution function, we have
pursued the hot ion case no further.

3. APPLICATIONS

3.1. Instability Regimes

We begin by summarizing the different regimes of the
streaming instability as functions of magnetic field strength
B and cosmic ray flux ncrvD . These regimes were introduced
without proof in Section 1 and depicted schematically in
Figure 1. The criteria used to delineate these regimes are
approximate, but as Figures 4(a) and (b) indicate, the transitions
between regimes are fairly sharp.

According to Equation (1), the condition that the Bell insta-
bility be nonresonant, i.e., that kBellrcr > 1, is

B < BS ≡ 8.7 × 10−7(ncrvD)1/2, (16)

where here and below ncrvD is given in units of cm−2 s−1

and B is in G. The condition that thermal effects modify the
Bell instability such that the wavelength of the fastest growing
mode is at k ∼ kwice (Equation (9)) rather than k ∼ kBell
(Equation (13)) is

B < BM ≡ 2.3 × 10−9T 1/3n
1/6
i (ncrvD)1/3. (17)

The condition for the thermally modified Bell instability to be
nonresonant is kwicercr > 1. At the same time, the thermal ions
must be magnetized at k = kwice; kwiceri < 1. These conditions
limit ncrvD to the range
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c3
< ncrvD < nivi, (18)

FIGURE – Up : growth rate (long-dashed) at T = 103 K.
Bottom : growth rate (long-dashed) at T = 107 K. From
Zweibel & Everett 2010 ibidem.
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The hot case

In the hot case we use |ζ|± � 1 the Fried-Conte functions are (the principal part Z(0) = 0
because the integrand is an odd function)

Z(ζ) ' i
√
π exp(−ζ2)− 2ζ

(
1− 2

3
ζ + o(ζ2)

)
.
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The hot case

In the hot case we use |ζ|± � 1 the Fried-Conte functions are (the principal part Z(0) = 0
because the integrand is an odd function)

Z(ζ) ' i
√
π exp(−ζ2)− 2ζ

(
1− 2

3
ζ + o(ζ2)

)
. (93)

In this regime the thermal protons are said to be de-magnetised, this means that their Larmor
radius is larger than the scale of the perturbations, i.e. krth � 1. To the lowest order in ω/Ωc
we find

∓Ωcp
nCR

np
(ω − kuCR) (T1(k)∓ iT2(k))− k2V2

a

+ω

(
∓2

Ω3
ci

k2V2
Tp

+ i
√
π

Ω2
ci

kVTp

)

±Ωcp

(
ω − kuCR

nCR

np

)
= 0 , (94)

where we have assumed exp(−ζ2) ' 1. Cold electrons contribute to the third row while hot
protons to the second. This result is at o(( nCR

np
)2) and we have neglected a term in the electron

susceptibility scaling as me
mp

.
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Growth rate

In the case of the non-resonant mode only, for
CRs with a Larmor radius rL � 1/k, at the
maximum growth rate [Marret et al 2021] find a
growth rate (krth � 1)

Γ(k) ' nCR

np

uCR

VTp
Ωcp

kmax ' nCR

np

Ωcp

Va
.
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Growth rate

In the case of the non-resonant mode only, for
CRs with a Larmor radius rL � 1/k, at the
maximum growth rate [Marret et al 2021] find a
growth rate (krth � 1)

Γ(k) ' nCR

np

uCR

VTp
Ωcp (95)

kmax ' nCR

np

Ωcp

Va
. (96)

Hot case is similar to cold case in the sense that
background protons are demagnetised and
hence decoupled from electrons (considered as
cold) and fluid Eqs. are not modified. kmax is
still fixed by a balance between magnetic
tension and Lorentz force.
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Figure 1. Growth rate �hot (upper panel) and phase velocity
v� = !r,hot/k (lower panel) as a function of the wave number
k, obtained from Eqs. 19 and 20. Parameters used are, in nor-
malized units: ncr = 0.01 nm, ukcr = 100 vA0. The black, red
and orange curves corresponds to Tm = 102, 104, 106 T0 respec-
tively. The dotted lines correspond to wave numbers where the
demagnetized main protons assumption is not fulfilled. The grey
vertical dotted line corresponds to k = kmax from Eq. 9.

rate �hot(k) and real angular frequency !r,hot(k) for the hot
regime of the non-resonant streaming instability:

�hot(k)=
(2⇡)1/2

rLm⇠

k
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2
� 2
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where we have defined the parameter ⇠ = p±kukcr/⌦0 � 1.
The growth rate �hot(k) and phase velocity v� = !r,hot(k)/k
are plotted in Fig. 1 for the main protons temperatures
Tm = 102, 104, 106 T0 (see Sec. 3.1 for a discussion on the
normalization). The growth rate is found to be strongly re-
duced with increasing temperature, and the fastest growing
mode shifts towards smaller wave numbers compared to the
cold regime. In the warm regime, finite Larmor radius e↵ects
of the main protons play a role in determining the largest
unstable wave number. We find that in the hot regime how-
ever, the competition between the magnetic tension and the
cosmic rays current driving term is the only determining
factor of the largest unstable wave number, and one obtains
good agreement with the fluid estimate kmax = ncr

nm

ukcr

v2
A0

⌦0.

This can be understood by considering the fluid model pre-
sented in Sec. 2.1 while retaining the Hall e↵ect in Ohm’s
law (Eq. 5) to account for the decoupling between electrons
and background protons in the demagnetized and collision-
less regime. One then finds that for all the unstable wave-
lengths, the resulting background fluid momentum conser-
vation equation is not modified, resulting in identical max-
imum unstable wavenumber kmax in both the cold and hot
regimes.

Useful analytical expressions can be obtained by con-
sidering the limits krLm � 1, kukcr/⌦0 � 1 which corre-
sponds to the hypothesis of demagnetized main protons, and
to the instability requirement |k| > kmin discussed in Sec.
2.1. One finds the approximate expressions for the fastest
growing mode:

�hot =
⇣⇡

2

⌘1/2 ncr

nm

ukcr

vTm
⌦0 (21)

!r,hot =
n2

cr

n2
m

ukcr

vA0
⌦0 (22)

khot =
ncr

nm

⌦0

vA0
(23)

v�,hot = �ncr

nm
ukcr (24)

We give here the absolute value of !r,hot and khot. For
⇣±

m & 1/2, the first order asymptotic expansion of the main
protons Fried and Conte function cannot accurately describe
the complete function. As a consequence, Eqs. 21 to 24 hold
for kcoldrLm & 2 which corresponds to the demagnetization
of half of the fastest growing mode in the cold limit.

The growth rate for hot, demagnetized main protons is
found to decrease as T�1/2 with temperature, more rapidly
than the T�1/3 dependency in the warm protons regime, and
we obtain �hot/�cold = (2⇡)1/2vA0/vTm. This result may be
of importance in high temperature plasmas with small am-
bient magnetic field, where the instability growth may be
strongly reduced. We find that the real angular frequency
and the fastest growing wave number are independent of
the main protons temperature, and the fastest growing wave
number is also independent of the cosmic rays velocity. The
phase velocity v�,hot = !r,hot/khot is equal and opposed to
the electron drift velocity compensating the cosmic rays cur-
rent, which is the same result as in the cold regime. We will
return to these results in Sec. 4 where we discuss possible
applications for astrophysical settings.

Having studied the instability linear theory for a large
range of temperature, we will now use hybrid-PIC simula-
tions to verify the theory developed in the last two sections,
and explore the non-linear behaviour of the unstable waves.
We will first present our numerical model, then our 1D and
2D simulations results.

3 SIMULATIONS RESULTS

We use the Hybrid-PIC code HECKLE (Smets, R. 2020),
which solves the Vlasov-Maxwell system using a predictor-
corrector scheme for the electromagnetic field and a non-
relativistic Boris pusher (Boris 1970) for the particles. The
main and cosmic rays protons are described as macro-
particles, and the electrons as a mass-less fluid. This hybrid
approach is well suited to study the kinetic, non-linear evolu-
tion of systems at the protons temporal scale while avoiding
prohibitive computational time.

3.1 Numerical model and setup

Masses and charges are normalized to the proton mass mp

and elementary charge e respectively. The densities and
magnetic field are normalized to a reference value n0 =

MNRAS 000, 1–15 (0000)
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Figure 1. Growth rate �hot (upper panel) and phase velocity

v� = !r,hot/k (lower panel) as a function of the wave number
k, obtained from Eqs. 19 and 20. Parameters used are, in nor-

malized units: ncr = 0.01 nm, ukcr = 100 vA0. The black, red

and orange curves corresponds to Tm = 102, 104, 106 T0 respec-
tively. The dotted lines correspond to wave numbers where the

demagnetized main protons assumption is not fulfilled. The grey

vertical dotted line corresponds to k = kmax from Eq. 9.

rate �hot(k) and real angular frequency !r,hot(k) for the hot
regime of the non-resonant streaming instability:
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!r,hot(k) =

k3r2
Lm

�
k2r2

Lm � 1
�✓ncr

nm
ukcr + p± k

⌦0
v2

A0

◆

k4r4
Lm + k2r2

Lm

⇣⇡
2
� 2

⌘
+ 1

(20)

where we have defined the parameter ⇠ = p±kukcr/⌦0 � 1.
The growth rate �hot(k) and phase velocity v� = !r,hot(k)/k
are plotted in Fig. 1 for the main protons temperatures
Tm = 102, 104, 106 T0 (see Sec. 3.1 for a discussion on the
normalization). The growth rate is found to be strongly re-
duced with increasing temperature, and the fastest growing
mode shifts towards smaller wave numbers compared to the
cold regime. In the warm regime, finite Larmor radius e↵ects
of the main protons play a role in determining the largest
unstable wave number. We find that in the hot regime how-
ever, the competition between the magnetic tension and the
cosmic rays current driving term is the only determining
factor of the largest unstable wave number, and one obtains
good agreement with the fluid estimate kmax = ncr

nm

ukcr

v2
A0

⌦0.

This can be understood by considering the fluid model pre-
sented in Sec. 2.1 while retaining the Hall e↵ect in Ohm’s
law (Eq. 5) to account for the decoupling between electrons
and background protons in the demagnetized and collision-
less regime. One then finds that for all the unstable wave-
lengths, the resulting background fluid momentum conser-
vation equation is not modified, resulting in identical max-
imum unstable wavenumber kmax in both the cold and hot
regimes.

Useful analytical expressions can be obtained by con-
sidering the limits krLm � 1, kukcr/⌦0 � 1 which corre-
sponds to the hypothesis of demagnetized main protons, and
to the instability requirement |k| > kmin discussed in Sec.
2.1. One finds the approximate expressions for the fastest
growing mode:

�hot =
⇣⇡

2

⌘1/2 ncr

nm

ukcr

vTm
⌦0 (21)

!r,hot =
n2

cr

n2
m

ukcr

vA0
⌦0 (22)

khot =
ncr

nm

⌦0

vA0
(23)

v�,hot = �ncr

nm
ukcr (24)

We give here the absolute value of !r,hot and khot. For
⇣±

m & 1/2, the first order asymptotic expansion of the main
protons Fried and Conte function cannot accurately describe
the complete function. As a consequence, Eqs. 21 to 24 hold
for kcoldrLm & 2 which corresponds to the demagnetization
of half of the fastest growing mode in the cold limit.

The growth rate for hot, demagnetized main protons is
found to decrease as T�1/2 with temperature, more rapidly
than the T�1/3 dependency in the warm protons regime, and
we obtain �hot/�cold = (2⇡)1/2vA0/vTm. This result may be
of importance in high temperature plasmas with small am-
bient magnetic field, where the instability growth may be
strongly reduced. We find that the real angular frequency
and the fastest growing wave number are independent of
the main protons temperature, and the fastest growing wave
number is also independent of the cosmic rays velocity. The
phase velocity v�,hot = !r,hot/khot is equal and opposed to
the electron drift velocity compensating the cosmic rays cur-
rent, which is the same result as in the cold regime. We will
return to these results in Sec. 4 where we discuss possible
applications for astrophysical settings.

Having studied the instability linear theory for a large
range of temperature, we will now use hybrid-PIC simula-
tions to verify the theory developed in the last two sections,
and explore the non-linear behaviour of the unstable waves.
We will first present our numerical model, then our 1D and
2D simulations results.

3 SIMULATIONS RESULTS

We use the Hybrid-PIC code HECKLE (Smets, R. 2020),
which solves the Vlasov-Maxwell system using a predictor-
corrector scheme for the electromagnetic field and a non-
relativistic Boris pusher (Boris 1970) for the particles. The
main and cosmic rays protons are described as macro-
particles, and the electrons as a mass-less fluid. This hybrid
approach is well suited to study the kinetic, non-linear evolu-
tion of systems at the protons temporal scale while avoiding
prohibitive computational time.

3.1 Numerical model and setup

Masses and charges are normalized to the proton mass mp

and elementary charge e respectively. The densities and
magnetic field are normalized to a reference value n0 =

MNRAS 000, 1–15 (0000)

FIGURE – Streaming mode growth rate as function of
background ion temperature (`0 = c/ωp,i, T0 = mpV2

a ).
Temperature effects reduced the growth rate and kmax. From
Marret et al 2021 ibidem.
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Normal (non driven) modes propagation in partially ionised gas

Ion-neutral collision can be included in the fluid formalism by adding a friction term in the
(ionised) momentum equation, namely rewriting Eq.45 as (see Soler et al 2013)

∂~ui +~ui.~∇~ui =
1

4πρi
(~∇∧ ~B) ∧ ~B−

~∇Pi

ρi
− νin (~ui −~un) , (97)

∂~un +~un.~∇~un = −
~∇Pn

ρn
− ρi

ρn
νin (~ui −~un) , (98)

1
c
∂t~B = −~∇∧ ~E ,

(99)

i = ions, n= neutrals
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Collision frequencies and neutral perturbed velocity

We have the ion-neutral collision frequency [Shull & Draine 1987]

νin ' 8.9 10−9 nn

1 cm−3

(
Ti

1 eV

)0.4

s−1 , for 102K < T < 106K ,

νin ' 1.6 10−9 nn

1 cm−3
s−1 , for T < 102K .

The neutral-ion collision frequency νni can be deduced from ρiνin = ρnνni.

173/203 Cosmic-Ray and astrophysical plasma instabilities



Preliminaries
Lecture 1 : Astrophysical plasmas instabilities and Cosmic Rays

Lecture 2 : The Cosmic-Ray streaming instability
Conclusions

The kinetic theory of the streaming instability
Environmental effects
Numerical studies

Collision frequencies and neutral perturbed velocity

We have the ion-neutral collision frequency [Shull & Draine 1987]

νin ' 8.9 10−9 nn

1 cm−3

(
Ti

1 eV

)0.4

s−1 , for 102K < T < 106K ,

νin ' 1.6 10−9 nn

1 cm−3
s−1 , for T < 102K . (100)

The neutral-ion collision frequency νni can be deduced from ρiνin = ρnνni.

The neutral perturbed velocity can be deduced from the linearised neutral momentum Eq. We
express the neutral perturbed velocity from the neutral momentum Eq. 98 as

~un =

(
χνin

χνin − iω

)
~ui , (101)

where χ = ρi/ρn is a parameter to evaluate the degree of ionisation in the system. We have
again neglected pressure effects.
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Dispersion relation

The dispersion relation for the normal modes is (see
Fig. 32)

ω2
(

1 +
iνin

ω + iχνin

)
= k2V2

a,i .

The ion Alfvén speed reads Va,i = B0√
4πρi

.
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Figure 1. Results for standing waves. (a) ωR/kzcA and (b) ωI/kzcA as functions
of νni/kzcA. We have used χ = 2. Solid and dashed lines correspond to
the numerical results of the oscillatory and evanescent modes, respectively,
while the symbols correspond to the analytic expressions in the weak damping
approximation (Equations (21)–(23)).
(A color version of this figure is available in the online journal.)

the agreement between numerical and analytic results is not
good near the cutoff region, but both results are in reasonably
agreement far from the cutoff interval.

To explore the physical behavior of the solutions near the
cutoff region, we rewrite the momentum equations of ions
(Equation (1)) and neutrals (Equation (2)) in the following
forms:

ρi
∂vi

∂t
= T − R, (30)

ρn
∂vn

∂t
= R, (31)

where T and R are the magnetic tension force and the friction
force, respectively, given by

T = −iρi
k2
z c

2
A

ω
vi, (32)

R = ρn
νniω

ω + iνni
vi. (33)

In Equations (30) and (31) we have not included magnetic
pressure and gas pressure forces because they do not affect
Alfvén waves. Now we use the numerically obtained solutions
for χ = 20 (Figure 2) to compute the moduli of T and R, namely

Figure 2. Same as Figure 1 but with χ = 20. The shaded zone denotes the
cutoff region according to Equation (20).
(A color version of this figure is available in the online journal.)

Figure 3. Ratio ||T||/||R|| vs. νni/kzcA for the solutions displayed in
Figure 2 near the cutoff region (shaded zone). Solid and dashed lines corre-
spond to oscillatory and evanescent solutions in time, respectively.

||T|| and ||R||, as functions of νni/kzcA. Figure 3 displays the
ratio ||T||/||R|| versus νni/kzcA near the cutoff region. We have
selected some locations in Figure 3, denoted by letters from a
to e, to support the following discussion on the importance of
the two forces.

We start by analyzing the solutions on the left-hand side
to the cutoff region. There are an oscillatory solution, a, and
an evanescent solution, b. We find that ||T|| " ||R|| for the

5

FIGURE – Real part of Alfvén wave frequency in a partially
ionised medium with χ = 20. The grey band is the non
propagation band. From Soler et al 2013 ibidem.
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Dispersion relation

The dispersion relation for the normal modes is (see
Fig. 32)

ω2
(

1 +
iνin

ω + iχνin

)
= k2V2

a,i .

The ion Alfvén speed reads Va,i = B0√
4πρi

.

If ω � νni < νin, neutrals have time to adapt
to ion motion and both ions and neutrals are
coupled. In this regime perturbations in the ion
motions are weakly damped.
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FIGURE – Real part of Alfvén wave frequency in a partially
ionised medium with χ = 20. The grey band is the non
propagation band. From Soler et al 2013 ibidem.
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Dispersion relation

The dispersion relation for the normal modes is (see
Fig. 32)

ω2
(

1 +
iνin

ω + iχνin

)
= k2V2

a,i .

The ion Alfvén speed reads Va,i = B0√
4πρi

.

If ω � νni < νin, neutrals have time to adapt
to ion motion and both ions and neutrals are
coupled. In this regime perturbations in the ion
motions are weakly damped.

If ω � νin, ions and neutrals are decoupled and
the effect of collisions is maximal over ion
motions, in this regime the latter are strongly
damped.
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FIGURE – Real part of Alfvén wave frequency in a partially
ionised medium with χ = 20. The grey band is the non
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Dispersion relation

The dispersion relation for the normal modes is (see Fig.
32)

ω2
(

1 +
iνin

ω + iχνin

)
= k2V2

a,i . (102)

The ion Alfvén speed reads Va,i = B0√
4πρi

.

If ω � νni < νin, neutrals have time to adapt to ion
motion and both ions and neutrals are coupled. In
this regime perturbations in the ion motions are
weakly damped.

If ω � νin, ions and neutrals are decoupled and the
effect of collisions is maximal over ion motions, in
this regime the latter are strongly damped.

For χ < 1/8 there is a band with no real k, so no
propagation [Kulsrud & Pearce 1969],
νin > ω > νni : neutral-ion collisions have time to
damp the magnetic perturbations but there is no
time for a momentum transfer to the neutral fluid.
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good near the cutoff region, but both results are in reasonably
agreement far from the cutoff interval.

To explore the physical behavior of the solutions near the
cutoff region, we rewrite the momentum equations of ions
(Equation (1)) and neutrals (Equation (2)) in the following
forms:

ρi
∂vi

∂t
= T − R, (30)

ρn
∂vn

∂t
= R, (31)

where T and R are the magnetic tension force and the friction
force, respectively, given by

T = −iρi
k2
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vi, (32)

R = ρn
νniω

ω + iνni
vi. (33)

In Equations (30) and (31) we have not included magnetic
pressure and gas pressure forces because they do not affect
Alfvén waves. Now we use the numerically obtained solutions
for χ = 20 (Figure 2) to compute the moduli of T and R, namely
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Figure 3. Ratio ||T||/||R|| vs. νni/kzcA for the solutions displayed in
Figure 2 near the cutoff region (shaded zone). Solid and dashed lines corre-
spond to oscillatory and evanescent solutions in time, respectively.

||T|| and ||R||, as functions of νni/kzcA. Figure 3 displays the
ratio ||T||/||R|| versus νni/kzcA near the cutoff region. We have
selected some locations in Figure 3, denoted by letters from a
to e, to support the following discussion on the importance of
the two forces.

We start by analyzing the solutions on the left-hand side
to the cutoff region. There are an oscillatory solution, a, and
an evanescent solution, b. We find that ||T|| " ||R|| for the

5

FIGURE – Real part of Alfvén wave frequency in a
partially ionised medium with χ = 20. The grey band
is the non propagation band. From Soler et al 2013
ibidem.
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Driven waves propagation in partially ionised gas : non-resonant branch

Including CR effects the dispersion relation given by Eq. 67 is then modified as [Reville et al
2021 ibidem]

ω2
(

1 +
iνin

ω + iχνin

)
= k2V2

a,i ∓ Ωc
nCR

np
(ω − kuCR,‖) (1− T1(k)± iT2(k)) .
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Driven waves propagation in partially ionised gas : non-resonant branch

Including CR effects the dispersion relation given by Eq. 67 is then modified as [Reville et al
2021 ibidem]

ω2
(

1 +
iνin

ω + iχνin

)
= k2V2

a,i ∓ Ωc
nCR

np
(ω − kuCR,‖) (1− T1(k)± iT2(k)) .

Reville et al (2007) investigate the case with T2 ≡ 0.
We introduce two quantities : 1) the typical CR Larmor radius driving the instability rd = pd

mpΩc

2) the forcing strength : δ = nCRpd
npmpuCR

. The CR term is ACR ' k2u2
CR

δ
krd

(1− T1).
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Driven waves propagation in partially ionised gas : non-resonant branch

Including CR effects the dispersion relation given by Eq. 67 is then modified as [Reville et al
2021 ibidem]

ω2
(

1 +
iνin

ω + iχνin

)
= k2V2

a,i ∓ Ωc
nCR

np
(ω − kuCR,‖) (1− T1(k)± iT2(k)) . (103)

Reville et al (2007) investigate the case with T2 ≡ 0.
We introduce two quantities : 1) the typical CR Larmor radius driving the instability rd = pd

mpΩc

2) the forcing strength : δ = nCRpd
npmpuCR

. The CR term is ACR ' k2u2
CR

δ
krd

(1− T1).

Reville et al investigate the strongly driven case given by the condition δ u2
CR

V2
a,i
� krd .

The growth rate reads :

Γ =
−νin

2
+

1
2

√
ν2

in + 4ACR . (104)

Hence, ion-neutral collisions are unable to stabilise the non-resonant branch !
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Driven waves propagation in inhomogeneous partially ionised gas

The normal mode analysis is simplified for
two reasons

1 When CR drive some instabilities (eg
streaming) ions motions are forced [Drury
et al 1994].
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Driven waves propagation in inhomogeneous partially ionised gas

The normal mode analysis is simplified for
two reasons

1 When CR drive some instabilities (eg
streaming) ions motions are forced [Drury
et al 1994].

2 When "Alfvén" waves are driven at
inhomogeneous shock precursors, hence
the usual dispersion relation approach ω(k)
(previous slide) does not hold and it is
preferable to adopt a k(ω) approach
[Tagger at al 1995], see Fig 33.

Because of these conditions resonant
driven modes can still exist in the normal
mode non propagation bands.

4144 B. Reville, G. Giacinti and R. S. Scott

Figure 4. Effect of CRs on evanescent waveband (shaded region) for the cases of WNM (left-hand panel) and CNM (right-hand panel) as a function of CR
drift speed. Here, MA = vcr/vA, solid (dashed) lines are for Ucr/UB = 10(100). The CRs are taken to have a spectral index of s = 4.3 and Emin = 1GeV. For the
WNM, we adopt the parameters ni + nn = 0.5 cm−3, T = 5000 K, and χ−1 = 50, while for the CNM, we take ni + nn = 50 cm−3, T = 50 K, and χ = 10−3. In
both cases, the magnetic field is set to 5 µG. Note that for the two dashed lines ζ 1 > 1.

to sources, where both Ucr and vcr are greatly enhanced, this is
generally not the case. Similar conclusions may apply for the low
density environment at the periphery of the Galactic halo (e.g. Blasi
& Amato 2019). We plan to bridge the two regimes in an upcoming
numerical study.

The transport of CRs in the ISM, and the related topic of their
escape from sources, has recently received significant interest, with
particular emphasis on the different phases of the ISM. The role of
ion-neutral damping features heavily in these studies. That different
conceptual approaches to the problem produce opposite conclusions
regarding propagation of Alfvénic fluctuations at intermediate fre-
quencies in weakly ionized plasmas (νni < ω < ν in) is already known
(Tagger et al. 1995; Soler et al. 2013). However, studies to date have
focused exclusively on only one such approach, which, motivated by
the new results, we now argue is in fact less likely to apply.

Turbulent MHD cascades can be conceptualized as interactions
between colliding wave-packets (Kraichnan 1965). To mediate
efficient exchange of energy between Fourier modes, the semi-
classical conservation laws for three-wave couplings: k1 + k2 = k3

and ω(k1) + ω(k2) = ω(k3) should be satisfied. Here, ω(k) is the
3D generalization of the dispersion relation in this paper.3 It is
well known that for incompressible MHD, coupling requires either
vanishing k1 · vA or k2 · vA, i.e. one of the Fourier modes must be
non-propagating and in a plane perpendicular to the guide field. This
generally results in an anisotropic turbulence spectrum (see Zhou,
Matthaeus & Dmitruk 2004, for a review). If the waves are, however,
dispersive, which will always be the case in the neighbourhood of
an hypothetical evanescent band, it is straightforward to show that
this is no longer a requirement, provided ω "= 0. Thus, based on the
dispersion curves shown in Section 4, there is no physical justification
to exclude waves with k3 falling within the evanescent band, and
allowing them to propagate with phase velocity between the two
Alfvén velocity limits, as shown in Fig 3. The existence of a region
of non-propagating fluctuations would appear to be a highly idealized
concept. The dispersive nature of the waves, however, may still cause

3Bell (2005) provides the result without neutrals for fixed CR current, while
Soler et al. (2013) provides the result for neutrals without CRs.

modifications to the resulting turbulence spectrum and may yet leave
an imprint on energetic particle transport. To our knowledge, there
has been no thorough investigation of this effect, which may reveal
itself in the γ -ray emission from CRs in molecular clouds.

To this end, recent studies of the diffuse γ -ray emission from
giant molecular clouds with Fermi–LAT (e.g. Aharonian et al. 2020)
hint at a dependence of the Galactic CR density with Galactocentric
radius, although could also correlate with nearby sources. The lack
of any clear trend in the spectra, however, hint at the absence
of unique energy-dependent behaviour/trends. Surveys that look
at higher energies with instruments such as HAWC (Lauer 2015),
LHAASO (Bai et al. 2019a) and the anticipated Southern hemisphere
counterpart SWGO (Albert et al. 2019), may provide a different
picture. The analysis presented in this work is important for the
transport at such energies, and future observations in the VHE to UHE
γ -ray regimes may reveal new insight into the role of CR feedback
on molecular clouds. Unfortunately, we currently lack predictive
capability.

Finally, we note that attention was restricted in the present study to
relativistic particles. The results could, however, be extended to non-
relativistic particles without difficulty. Since low-energy CRs may
play an important role in the ionization of dense molecular clouds,
the ability of self-induced scattering to inhibit penetration into the
cores of such clouds warrants further investigation.
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FIGURE – Effects of CR on the evanescent waveband (shaded region) for two ISM
phases : warm neutral (left) and cold neutral (right) medium. Results for different values of
the Alfvénic Mach number Ma = uCR/va are reported. Dashed lines are for

8πECR/B2=100, for continuous lines the ratio is 10. From Reville et al 2021 ibidem.

183/203 Cosmic-Ray and astrophysical plasma instabilities



Preliminaries
Lecture 1 : Astrophysical plasmas instabilities and Cosmic Rays

Lecture 2 : The Cosmic-Ray streaming instability
Conclusions

The kinetic theory of the streaming instability
Environmental effects
Numerical studies

Outlines

1 Preliminaries

2 Lecture 1 : Astrophysical plasmas instabilities and Cosmic Rays
Instabilities in plasma physics
Cosmic Rays as source of free energy in Astrophysics
Model equations
Cosmic-Ray-modified Instabilities : main classes and one example
Cosmic-Ray-driven instabilities : main classes

3 Lecture 2 : The Cosmic-Ray streaming instability
The kinetic theory of the streaming instability
Environmental effects

Thermal effects
Ion-neutral collision effects

Numerical studies

4 Conclusions

184/203 Cosmic-Ray and astrophysical plasma instabilities



Preliminaries
Lecture 1 : Astrophysical plasmas instabilities and Cosmic Rays

Lecture 2 : The Cosmic-Ray streaming instability
Conclusions

The kinetic theory of the streaming instability
Environmental effects
Numerical studies

Numerical techniques

> Why using numerics?

Investigate the whole growth phase of the instability : linear (exponential growth),
non-linear and saturation phase.
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Numerical techniques

> Why using numerics?

Investigate the whole growth phase of the instability : linear (exponential growth),
non-linear and saturation phase.

> Using which techniques? [see Marcowith et al 2020]. It is useful to investigate different
scales.

Particle-in-cell (PIC) simulations : Solve Vlasov + Maxwell, retain electrons and ions as
kinetic.

Hybrid simulations : Treat electrons with fluid Eqs., retain ions as kinetic + Maxwell Eqs.

Particle-in-cell in magnetohydrodynamics : Treat all thermal species (electrons + ions) as
fluid, non-thermal particles as kinetic + Maxwell Eqs.

Below – even if it is not really a foundation aspect – I highlight some recent works (not an
exhaustive list) with some focus on the non-linear growth phase and saturation.
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Resonant streaming instability : particle-in-cell simulations

[Holcomb & Spitkovsky 2019], consider two cases
1) a ring-like (RLD) CR distribution, where the
pitch-angle cosine is fixed 2) a power-law
distribution (PLD). The former has the advantage to
isolate the resonance between wave and particle
more closely.
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Resonant streaming instability : particle-in-cell simulations

[Holcomb & Spitkovsky 2019], consider two cases
1) a ring-like (RLD) CR distribution, where the
pitch-angle cosine is fixed 2) a power-law
distribution (PLD). The former has the advantage to
isolate the resonance between wave and particle
more closely.

Fig. 34 shows the time evolution in the RLD case.
Left : tΩ=36 at the start of the linear phase, tΩ=72 at
the start of the non-linear growth phase, tΩ=108 at
saturation. Right : momentum space evolution of the
RLD distribution under the effect of particle
scattering.

anisotropy of the CR distribution results in right-handed
(negative-helicity) waves that emerge around kmax

PR . The fastest-
growing left-handed mode kmax

PL is dominated by the growth of
the right-handed mode at the same wavenumber. At larger values
of k, the right-handed growth rates decrease and become
subdominant compared to the left-handed growth rates, resulting
in a reversal of wave helicity around keq≈0.5ωpic

−1. In the post-
linear phases of instability, additional power is injected in the left-
handed modes by the CRs as they scatter toward μ∼−1.

Larger proportions of CRs resonate with the parallel-
propagating left-handed waves as the initial drift velocity of
power-law-distributed CRs is reduced. When vdrvA, the
growth rates of the parallel-propagating left- and right-handed
modes become degenerate, and Equation (8) becomes a good
approximation for both. Left- and right-handed modes super-
imposed on one another combine to produce linear polarization if
the component amplitudes are equal. In Figure 6 we show the
propagation/polarization-decomposed wave spectrum in the
linear instability phase of simulation Lo. The marginally super-
Alfvénic drift velocity of this simulation, vdr=1.4vA, allows
CRs to excite parallel-propagating left- and right-handed modes
in nearly equal measure. The combined spectrum is approxi-
mately linearly polarized around the largest-amplitude modes.

4.3. Particle Distributions

The spread of the CR distribution function offers a
complementary view of the phases of instability. Figure 7
depicts snapshots of the CR and background ion momentum
phase space (px(x), top row; py(x), middle row) and transverse
magnetic field amplitude (bottom row) at various stages of the
high CR density simulation Gy4. Initially CRs are scattered by
small angles as they resonate with small-amplitude waves
( = W-t 36 0

1, left column), and gyroresonant structure can be
observed in the transverse motion on the scale of p k2 max

PR .
This structure becomes increasingly apparent as waves saturate
at large amplitude ( = W-t 72 0

1, middle column) and the
parallel motion of CRs is substantially disrupted. Eventually

the scattering on large-amplitude waves causes the CR
distribution to approach isotropy ( = W-t 108 0

1, right column),
and the waves decay to somewhat smaller amplitudes.
The wave spectra produced by the ring distribution are quasi-

monochromatic—a small number of narrow spectral peaks
dominate the dynamics of particles in these simulations.
Figure 8 shows the change over time of the CR distribution
functions in the px−p⊥ plane for the simulations Gy2 (lower CR
density, left column) and Gy4 (higher CR density, right column),
along with the associated time dependence of the rms transverse
magnetic field amplitudes. The primary difference between the
displayed simulations lies in the amplitudes to which the
fluctuations grow. The CR density of Gy4 is a factor of 20 larger
than that of Gy2, and the peak wave amplitudes are correspond-
ingly larger in the former. This discrepancy manifests itself in the
motions of CRs. The distribution functions are elongated roughly
along the trajectories predicted by Equation (3) for a parallel-
propagating right-handed wave kmax

PR (solid semicircular lines) as
the simulations progress through the phases of instability.
Diffusion in total momentum p occurs owing to the deviation
of the wave spectra from pure monochromaticity caused by the
antiparallel left-handed mode kmax

AL (Miller et al. 1991).
Other than the difference in peak wave amplitudes, the most

notable divergence between the evolution of Gy2 and Gy4 is
that the CRs of the former are not fully isotropized, and the
unstable growth stalls prior to total saturation as we have
defined it. The wave modes generated in the linear and
nonlinear instability phases of Gy2 scatter the CRs within their
respective resonant bands, allowing CRs to cascade to smaller
μ. The CRs approach the μ=vph/v (vertical black dashed
lines, top row of Figure 8) but are unable to efficiently cross it.
CRs instead remain trapped by the effective potential wells of
the largest-amplitude waves. The CRs of simulation Gy4
(Figure 8, right column) are not constrained to the μvph/v
region. The large-amplitude waves generated in the linear
instability phase are able to impart forces of sufficient
magnitude on CRs such that they are able to cross
μ=vph/v. Positive-helicity waves that facilitate the isotropiza-
tion process are subsequently generated in the nonlinear phase

Figure 7. Instability development in simulation Gy4. The CR and background ion momentum densities px (top row) and py (middle row) are shown along with the
transverse magnetic field components δBy, z (bottom row) at early ( = W-t 36 0

1, left column), intermediate ( = W-t 72 0
1, middle column), and late ( = W-t 108 0

1, right
column) stages of development. During the linear growth phase, a resonant mode quickly emerges from thermal noise (left column). The CR distribution is not
substantially disturbed until the wave amplitude reaches δB/B0.1, after which large angle scatters occur, rapidly reducing the average parallel CR momentum and
establishing visible oscillations in the transverse momenta (middle column). Disruption of the CR distribution brings linear growth to a halt, while CRs continue to
excite the modes that ultimately lead to isotropy (right column).
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of instability. Ultimately, CRs populate the entire length of the
semicircular momentum space scattering trajectory.

The time-dependent pitch-angle cosine distributions f (μ) of
power-law simulations for high CR density (Hi3, top panel)
and low CR density (Hi1, bottom panel) are displayed in
Figure 9. In the initial and linear phases of instability the CRs
remain unperturbed. At t∼1200Ω0

−1 for Hi3 (top) and
~ W-t 5000 0

1 for Hi1 (bottom), waves of substantial amplitude
are generated and the CRs are moved out of their initial
resonant bands, transitioning from the linear to the nonlinear
phase of instability. The behaviors of these simulations
subsequently diverge.

The higher CR density of simulation Hi3 enhances the
isotropization process in two ways. The first is that the large-
amplitude waves produced in the linear phase of Hi3 allow CRs
to efficiently scatter beyond μ=vph/v. The spatial fluctuations
of the transverse magnetic field reach peak amplitudes of up to
δB/B0∼0.5, and the magnetic mirroring mechanism has a
correspondingly broad reach m m» ¢ + ~v v 0.45M M A , which
allows CRs to easily move deep into the μ<0 region. The
second way is that the large influx of CRs into the μ<0 region
rapidly excites the parallel-propagating left-handed modes that
are required to continue scattering toward μ∼−1. The
combined effect of these behaviors leads to the rapid
isotropization of CRs with respect to the parallel-propagating
Alfvén waves in the nonlinear phase of instability. By
~ W-t 4000 0

1 the system approaches total saturation of
instability with a nearly constant CR pitch-angle distribu-
tion f (μ).

In the less energetic wave spectrum of Hi1, CRs are unable
to efficiently cross the pitch-angle gap into negative μ. A
buildup of CRs forms around μ∼0 as they cascade down the
predominantly parallel-propagating right-handed wave spec-
trum. There they are met with the parallel-propagating left-
handed modes of the spectral noise floor, with amplitudes
roughly three orders of magnitude smaller than kmax
(d ~B B0.01k 0max ). The density associated with these μ∼0

CRs does not translate to rapid growth in the left-handed
modes, and the instability stalls for some protracted (but likely
finite) period of time beyond the duration of the simulation.
Figure 9 also features the pitch-angle trajectories μ(t) of

example CRs (blue and orange lines), allowing us to examine
the scattering behaviors of individual particles in regions with
and without power in the corresponding resonant waves. For
both simulations shown, the CRs experience only small-angle
deflections prior to the nonlinear phase of instability, while
violent scattering events take place following the transition to
the nonlinear phase. In the later stages of instability, CRs are

Figure 8. Resonant scattering surfaces (top row) and the associated rms transverse magnetic field amplitudes (bottom row) in simulations Gy2 (lower CR density; left
column) and Gy4 (higher CR density; right column). Vertical dashed lines in the bottom row correspond in color to the times at which the CR momenta are displayed
in the top row. Solid and dotted semicircles correspond to constant energy surfaces in the wave and laboratory frames, respectively. The vertical black dashed lines in
the top row denote the location of μ=vph/v for the initial value of the CR velocity v. The large-amplitude waves of Gy4 easily isotropize CRs, while those of Gy2
struggle to scatter CRs into μ<vph/v.

Figure 9. Evolution of marginal CR distributions f (μ) over time in simulations
Hi3 (top) and Hi1 (bottom). The large density of CRs in simulation Hi3 rapidly
produces large-amplitude right-handed modes that saturate linear growth
( ~ W-t 1200 0

1) and, subsequently, left-handed modes that lead to CR isotropy
( > W-t 2000 0

1). In the lower CR density simulation Hi1, a buildup of CRs
forms in the μ∼0 region. The right-handed modes generated by linear growth
efficiently scatter CRs, but the small-amplitude left-handed waves are unable to
continue scattering them into negative μ on the timescales of the simulation.
The pitch-angle cosines μ(t) are shown for two example CRs in each panel.
These trajectories demonstrate the strong scattering of CRs within the range
encompassed by moderate- to large-amplitude resonant modes.
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FIGURE – Time evolution of the resonant streaming instability in the RLD case. From Holcomb & Spitkovsky 2019 ibidem.
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Saturation of the resonant branch

In the PLD case we have different features :

Figure 36 (left) shows the relaxation process
over the CR drift speed and the saturation of the
magnetic field

linear-amplitude Alfvén modes (δB2∼0) on the background
medium is negligible, the fields of nonlinear-amplitude modes
can drive nontrivial drifts of the background plasma along the
axis of wave propagation (Weidl et al. 2019b). The latter effect
can be clearly observed in simulation Gy5 in the bottom panel
of Figure 11—the CR drift velocity ultimately reduces to vA +
vi, where vA is the (fixed) Alfvén speed given in the laboratory
frame and vi is the drift imparted to the ions of the background
plasma.

We have seen previously that the range of particle momenta
and pitch angles of the power-law distribution produces a
broad spectrum of negative-helicity waves and, if the initial
anisotropy is sufficiently small, a similarly broad positive-
helicity component as well. These features are the basis for the
qualitative divergence between the behaviors of the power-law-
and ring-distributed CR systems. In Figure 13 we show the rms
transverse magnetic field amplitude (top), the bulk CR drift
velocity (middle), and the bulk velocity of the background ions
(bottom) over time for the power-law simulations. Exponential
growth of the fastest-growing mode transitions into an
extended nonlinear instability phase where the initial distribu-
tion has been disrupted but substantial unstable growth
continues on longer timescales.

What we have called the “nonlinear phase of instability,” as
embodied by the evolution of the transverse magnetic fields,
consists of two sequential behaviors of the initially anisotropic
CR distributions. First, following the cessation of exponential
growth at the linear rate, continued growth of other modes
flattens the CR distribution function within the region
μvph/v. The inefficiency of crossing the 90 degree barrier

(due to the absence of left-handed modes) results in a reduced
slow-down of the drift velocity during this phase. Unlike the
ring-distribution-driven instability, the majority of the total
wave energy comes from growth in the nonlinear phase of
instability, leading to the second behavior. As waves grow,
diffusion across the 90 degree barrier and into μ<0 becomes
more efficient, resulting in a second and steeper decline in the
drift velocity until isotropy is nearly achieved.
The growth rate of simulation Lo (low anisotropy) is

comparable to simulations Hi2 and Hi3 (high anisotropy), but
the progression of the instability is qualitatively different.
Systems with less severe CR anisotropy have smoother
transitions between the linear phase disruption, μvph/v
gradient flattening, and finally diffusion across the 90 degree
barrier. Beyond the trivial explanation that systems with less
anisotropy are closer to vdr=vph by definition, the content of
the excited wave spectra plays a role here. In particular, less
isotropy translates to a larger fraction of the free momentum
going into parallel-propagating left-handed modes. These
positive-helicity modes are required to scatter CRs in the
post-mirroring region m m- ¢ v v Mph . The existence of these
modes allows simulation Lo to reach total saturation of
instability before simulation Hi3, despite the latter having
more energy in the transverse magnetic field.
In the bottom panel of Figure 13 we show the response of the

background ions vi to the presence of the relatively large-
amplitude Alfvén waves, where vi is the mean velocity of
background ions in the x̂-direction. The momentum given up
by CRs flows to the background plasma via the ´E B drifts of
individual particles. Conservation of momentum implies a bulk
flow of the background plasma. Since the Alfvén wave frame

Figure 13. The rms transverse magnetic field amplitude δBrms (top), CR bulk
drift velocity vdr (middle), and background ion bulk drift velocity vi (bottom)
over time for power-law-distributed CRs. The drift of the background plasma
causes CRs to reach total saturation at vdr=vA+vi when measured in the
stationary laboratory frame.

Figure 14. Same as Figure 12, but for power-law-distributed CRs. The orange
dashed lines correspond to saturation estimates, Equation (15), when using the
approximate growth rate (Equation (8) with relativistic correction). The blue
dashed lines utilize the numerical computation of the growth rate integral,
Equation (6), instead. Both theoretical predictions come from the estimate
n = ´ GQLT

1
4 cr, where the factor 1/4 was chosen to give rough alignment with

the simulation data. For the strongly right-hand-polarized simulations (Hi1-3)
we used G = Gcr cr

PR, while for the lower-anisotropy simulations (Lo and Med)
we used G = G + Gcr cr

PR
cr
PL. Note that both growth rates utilized here have the

same scaling with the CR density; thus, the saturation amplitudes scale with
(ncr/ni)1/2 as suggested by Equation (15).
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linear-amplitude Alfvén modes (δB2∼0) on the background
medium is negligible, the fields of nonlinear-amplitude modes
can drive nontrivial drifts of the background plasma along the
axis of wave propagation (Weidl et al. 2019b). The latter effect
can be clearly observed in simulation Gy5 in the bottom panel
of Figure 11—the CR drift velocity ultimately reduces to vA +
vi, where vA is the (fixed) Alfvén speed given in the laboratory
frame and vi is the drift imparted to the ions of the background
plasma.

We have seen previously that the range of particle momenta
and pitch angles of the power-law distribution produces a
broad spectrum of negative-helicity waves and, if the initial
anisotropy is sufficiently small, a similarly broad positive-
helicity component as well. These features are the basis for the
qualitative divergence between the behaviors of the power-law-
and ring-distributed CR systems. In Figure 13 we show the rms
transverse magnetic field amplitude (top), the bulk CR drift
velocity (middle), and the bulk velocity of the background ions
(bottom) over time for the power-law simulations. Exponential
growth of the fastest-growing mode transitions into an
extended nonlinear instability phase where the initial distribu-
tion has been disrupted but substantial unstable growth
continues on longer timescales.

What we have called the “nonlinear phase of instability,” as
embodied by the evolution of the transverse magnetic fields,
consists of two sequential behaviors of the initially anisotropic
CR distributions. First, following the cessation of exponential
growth at the linear rate, continued growth of other modes
flattens the CR distribution function within the region
μvph/v. The inefficiency of crossing the 90 degree barrier

(due to the absence of left-handed modes) results in a reduced
slow-down of the drift velocity during this phase. Unlike the
ring-distribution-driven instability, the majority of the total
wave energy comes from growth in the nonlinear phase of
instability, leading to the second behavior. As waves grow,
diffusion across the 90 degree barrier and into μ<0 becomes
more efficient, resulting in a second and steeper decline in the
drift velocity until isotropy is nearly achieved.
The growth rate of simulation Lo (low anisotropy) is

comparable to simulations Hi2 and Hi3 (high anisotropy), but
the progression of the instability is qualitatively different.
Systems with less severe CR anisotropy have smoother
transitions between the linear phase disruption, μvph/v
gradient flattening, and finally diffusion across the 90 degree
barrier. Beyond the trivial explanation that systems with less
anisotropy are closer to vdr=vph by definition, the content of
the excited wave spectra plays a role here. In particular, less
isotropy translates to a larger fraction of the free momentum
going into parallel-propagating left-handed modes. These
positive-helicity modes are required to scatter CRs in the
post-mirroring region m m- ¢ v v Mph . The existence of these
modes allows simulation Lo to reach total saturation of
instability before simulation Hi3, despite the latter having
more energy in the transverse magnetic field.
In the bottom panel of Figure 13 we show the response of the

background ions vi to the presence of the relatively large-
amplitude Alfvén waves, where vi is the mean velocity of
background ions in the x̂-direction. The momentum given up
by CRs flows to the background plasma via the ´E B drifts of
individual particles. Conservation of momentum implies a bulk
flow of the background plasma. Since the Alfvén wave frame

Figure 13. The rms transverse magnetic field amplitude δBrms (top), CR bulk
drift velocity vdr (middle), and background ion bulk drift velocity vi (bottom)
over time for power-law-distributed CRs. The drift of the background plasma
causes CRs to reach total saturation at vdr=vA+vi when measured in the
stationary laboratory frame.

Figure 14. Same as Figure 12, but for power-law-distributed CRs. The orange
dashed lines correspond to saturation estimates, Equation (15), when using the
approximate growth rate (Equation (8) with relativistic correction). The blue
dashed lines utilize the numerical computation of the growth rate integral,
Equation (6), instead. Both theoretical predictions come from the estimate
n = ´ GQLT

1
4 cr, where the factor 1/4 was chosen to give rough alignment with

the simulation data. For the strongly right-hand-polarized simulations (Hi1-3)
we used G = Gcr cr

PR, while for the lower-anisotropy simulations (Lo and Med)
we used G = G + Gcr cr

PR
cr
PL. Note that both growth rates utilized here have the

same scaling with the CR density; thus, the saturation amplitudes scale with
(ncr/ni)1/2 as suggested by Equation (15).
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FIGURE – Time evolution of the resonant streaming instability in the PLD case
(left). Magnetic saturation level as compared to analytical estimates (right). Hi cases
have uCR ' 8Va (and nCR/ng = 2, 7, 20 × 10−4 for Hi1 to Hi3), Med
uCR ' 3Va , Lo uCR ' 2Va . It takes more time to saturate in high anisotropic
cases. From Holcomb & Spitkovsky 2019 ibidem. Notice that in the ISM
nCR/ng ∼ 10−10 !

189/203 Cosmic-Ray and astrophysical plasma instabilities



Preliminaries
Lecture 1 : Astrophysical plasmas instabilities and Cosmic Rays

Lecture 2 : The Cosmic-Ray streaming instability
Conclusions

The kinetic theory of the streaming instability
Environmental effects
Numerical studies

Saturation of the resonant branch

In the PLD case we have different features :

Figure 36 (left) shows the relaxation process
over the CR drift speed and the saturation of the
magnetic field

Figure 36 (right) shows a comparison between
simulations and analytical estimations. The
latter are done as follows [see Bai et al 2019]
A balance between the momentum lost by CRs :

∆pCR ' −
4
3

(
uCR − Va

c

)
nCR〈p〉 , (105)

and the momentum gained by generated waves

∆pw ' ρVa〈
δB2

B2
0
〉 . (106)

linear-amplitude Alfvén modes (δB2∼0) on the background
medium is negligible, the fields of nonlinear-amplitude modes
can drive nontrivial drifts of the background plasma along the
axis of wave propagation (Weidl et al. 2019b). The latter effect
can be clearly observed in simulation Gy5 in the bottom panel
of Figure 11—the CR drift velocity ultimately reduces to vA +
vi, where vA is the (fixed) Alfvén speed given in the laboratory
frame and vi is the drift imparted to the ions of the background
plasma.

We have seen previously that the range of particle momenta
and pitch angles of the power-law distribution produces a
broad spectrum of negative-helicity waves and, if the initial
anisotropy is sufficiently small, a similarly broad positive-
helicity component as well. These features are the basis for the
qualitative divergence between the behaviors of the power-law-
and ring-distributed CR systems. In Figure 13 we show the rms
transverse magnetic field amplitude (top), the bulk CR drift
velocity (middle), and the bulk velocity of the background ions
(bottom) over time for the power-law simulations. Exponential
growth of the fastest-growing mode transitions into an
extended nonlinear instability phase where the initial distribu-
tion has been disrupted but substantial unstable growth
continues on longer timescales.

What we have called the “nonlinear phase of instability,” as
embodied by the evolution of the transverse magnetic fields,
consists of two sequential behaviors of the initially anisotropic
CR distributions. First, following the cessation of exponential
growth at the linear rate, continued growth of other modes
flattens the CR distribution function within the region
μvph/v. The inefficiency of crossing the 90 degree barrier

(due to the absence of left-handed modes) results in a reduced
slow-down of the drift velocity during this phase. Unlike the
ring-distribution-driven instability, the majority of the total
wave energy comes from growth in the nonlinear phase of
instability, leading to the second behavior. As waves grow,
diffusion across the 90 degree barrier and into μ<0 becomes
more efficient, resulting in a second and steeper decline in the
drift velocity until isotropy is nearly achieved.
The growth rate of simulation Lo (low anisotropy) is

comparable to simulations Hi2 and Hi3 (high anisotropy), but
the progression of the instability is qualitatively different.
Systems with less severe CR anisotropy have smoother
transitions between the linear phase disruption, μvph/v
gradient flattening, and finally diffusion across the 90 degree
barrier. Beyond the trivial explanation that systems with less
anisotropy are closer to vdr=vph by definition, the content of
the excited wave spectra plays a role here. In particular, less
isotropy translates to a larger fraction of the free momentum
going into parallel-propagating left-handed modes. These
positive-helicity modes are required to scatter CRs in the
post-mirroring region m m- ¢ v v Mph . The existence of these
modes allows simulation Lo to reach total saturation of
instability before simulation Hi3, despite the latter having
more energy in the transverse magnetic field.
In the bottom panel of Figure 13 we show the response of the

background ions vi to the presence of the relatively large-
amplitude Alfvén waves, where vi is the mean velocity of
background ions in the x̂-direction. The momentum given up
by CRs flows to the background plasma via the ´E B drifts of
individual particles. Conservation of momentum implies a bulk
flow of the background plasma. Since the Alfvén wave frame

Figure 13. The rms transverse magnetic field amplitude δBrms (top), CR bulk
drift velocity vdr (middle), and background ion bulk drift velocity vi (bottom)
over time for power-law-distributed CRs. The drift of the background plasma
causes CRs to reach total saturation at vdr=vA+vi when measured in the
stationary laboratory frame.

Figure 14. Same as Figure 12, but for power-law-distributed CRs. The orange
dashed lines correspond to saturation estimates, Equation (15), when using the
approximate growth rate (Equation (8) with relativistic correction). The blue
dashed lines utilize the numerical computation of the growth rate integral,
Equation (6), instead. Both theoretical predictions come from the estimate
n = ´ GQLT
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(ncr/ni)1/2 as suggested by Equation (15).
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more energy in the transverse magnetic field.
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FIGURE – Time evolution of the resonant streaming instability in the PLD case
(left). Magnetic saturation level as compared to analytical estimates (right). Hi cases
have uCR ' 8Va (and nCR/ng = 2, 7, 20 × 10−4 for Hi1 to Hi3), Med
uCR ' 3Va , Lo uCR ' 2Va . It takes more time to saturate in high anisotropic
cases. From Holcomb & Spitkovsky 2019 ibidem. Notice that in the ISM
nCR/ng ∼ 10−10 !
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Growth phase (Fig. 38 left) : It can be
seen that both polarisation growth as
expected from linear theory. Notice a
slight difference at early times likely
due to some effect link to the
non-resonant branch (some current
effects).

The bottom panels of Figure 15 give more quantitative
information about how quasi-linear evolution has progressed over
time. For lower-energy particles (with p∼p0−3p0), evolution
proceeds rapidly and can initially be well reproduced by solving
the QLD equation. During subsequent evolution, particle
distribution functions in fixed momentum bins are largely flat
(due to rapid QLD) on both sides, with a jump at μ=0. The
jump gradually decreases, as particles get scattered across μ=0,
which is the rate-limiting process for particle isotropization. For
higher-energy particles (p10p0), on the other hand, the crossing
of μ=0 is more rapid (leading to substantial deviation from
directly solving the QLD equation). The rate-limiting process for
isotropization then becomes QLD itself, especially at large μ.
A key result from our run M3 is efficient particle crossing of the

μ=0 barrier. We again first examine whether this is consistent
with mirror reflection. From Figure 4, we see that by the time of
t=6× W-10 c

4 1, the magnetic energy density approaches a
saturated value (d ~ ´ -B B 2 102

0
2 3), corresponding to

δB/B0∼0.045. This gives the mirror reflection threshold of
μmir∼0.032. Within a simulation time of ~ W-10 c

5 1, we need
kI(k)∼10−5 for effective QLD. This is achieved for k
up to kcut∼10km by looking at Figure 12 at = W-t 10 c

5 1.
According to the same calculation as in Equation (44), we find
that mirror reflection can be achieved for particles with
 m= ~-( )p p k k p3mmin cut mir

1
0. However, we see that by this

time, particles with pp0 are already fully isotropized, and
lower-energy particles have also undergone partial isotropization.
Again, we conclude that mirror reflection appears insufficient to
explain the detailed evolution of the momentum distributions.

5.4. Overcoming the 90° Barrier

To reveal the mechanism behind particle crossing of the 90°
pitch angle in run M3, we have randomly selected a subsample
of particles (1280 per energy bin) and closely followed
their trajectories for a time interval of W-200 c

1 starting from
= ´ W-t 6 10 c0

4 1. We count the number of particles that have

Figure 11. Same as Figure 7 but for run M3, showing the 2D distribution function of δf/f0 in the simulation frame at four snapshots.

Figure 12. Same as Figure 8 but for run M3, showing the wave spectrum at the
same four snapshots as in Figure 11.
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time necessary to reach saturation.12 With an adiabatic equation
of state, we can capture the change in gas internal energy over
time (thanks to the excellent energy conservation properties in the
gas component). We find that it increases steadily as result of
numerical dissipation and reaches a level that is comparable to the
overall wave energy density by the end of the runs. When we add
this energy lost to dissipation to the direct wave energy, we find
much more reasonable saturation levels, as shown with large/
thick symbols in Figure 18. In particular, run Fid remains at a
level below the full saturation prediction because particles become
“stuck” at 90°, whereas runs vD4 and vD8 are closer to the
expected saturation level as more particles are fully isotropized.
Run M3, which, based on its distribution function, is clearly
isotropized, is in excellent agreement with theoretical expectations
for the wave amplitude.

6.2. Numerical Parameters

Here we examine our runs Fid-hires, Fid-short, Fid-Np64,
and Fid-Np1024, in which we keep the physical parameters the
same and vary only the numerical parameters (note that for run
Fid-hires, we have slightly reduced the box size to save
computational cost). In Figure 19, we show the time evolution
of the wave energy density of these runs. Overall, these three
runs proceed very similarly to run Fid.13 Here QLD proceeds
slightly slower in run Fid-short, but it catches up to the other
runs shortly after. Run Fid-hires eventually grows to reach
larger wave amplitudes, which we will show later is due to
more efficient crossing of the 90° pitch angles.

In Figure 20, we show the wave spectrum from these runs at
time = ´ W-t 2 10 c

5 1. The overall shapes of the spectra are
comparable to each other. The high-resolution run has less
numerical dissipation, allowing the wave spectra to extend to

larger k. Run Fid-short has a box size that is only one-third of
the fiducial box (but still long enough to fit ∼17 of the most
unstable modes); hence, the modes are a lot more sparsely
sampled, especially at low-k. This is likely related to its initially

Figure 20. Wave spectrum at time t=2× W-10 c
5 1 from runs Fid-hires, Fid-short,

Fid-Np64, and Fid-Np1024. The vertical dotted lines are identical to those in
Figure 8 (the location of the thick line indicates the most unstable wavenumber).

Figure 19. Time evolution of total wave intensity for runs with different
numerical parameters.Figure 18. Saturation level measured from our simulations, in terms of wave

energy density normalized by CR fraction. Black circles are from runs Fid, vD4,
and vD8; red diamonds are from run Fid-hires; and blue squares are from run M3.
Small/thin symbols are measured based on the total wave energy density, while
large/thick symbols are measured from the same runs but corrected for numerical
dissipation. The dashed line indicates the expected saturation level assuming all
CRs are fully isotropized, obtained by setting Equations (22) and (24) equal.

12 Dissipation of low-amplitude waves imposed in the initial conditions is also
evident at early times in Figure 4.
13 All of these runs have the same initial wave amplitude A=10−4 (see
Equation (42)). Run Fid-hires thus has more initial wave energy because of the
larger spectral range it covers.
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FIGURE – Left : time sequence evolution of the different mode helicity (F/B) and polarisation
(L/R) in the case of M3 run (uCR = 2Va , nCR/ng = 10−3). Right : magnetic saturation level
compared to analytical estimates (dashed line). From Bai et al 2019 ibidem.
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Growth phase (Fig. 38 left) : It can be
seen that both polarisation growth as
expected from linear theory. Notice a
slight difference at early times likely
due to some effect link to the
non-resonant branch (some current
effects).

Saturation (Fig. 38 right) : The
agreement is reasonably good at all
initial drift speeds if numerical
dissipation is properly accounted for.
In the small drift cases, simulations
underestimate the saturation level
because of a lack of 90o crossings.

The bottom panels of Figure 15 give more quantitative
information about how quasi-linear evolution has progressed over
time. For lower-energy particles (with p∼p0−3p0), evolution
proceeds rapidly and can initially be well reproduced by solving
the QLD equation. During subsequent evolution, particle
distribution functions in fixed momentum bins are largely flat
(due to rapid QLD) on both sides, with a jump at μ=0. The
jump gradually decreases, as particles get scattered across μ=0,
which is the rate-limiting process for particle isotropization. For
higher-energy particles (p10p0), on the other hand, the crossing
of μ=0 is more rapid (leading to substantial deviation from
directly solving the QLD equation). The rate-limiting process for
isotropization then becomes QLD itself, especially at large μ.
A key result from our run M3 is efficient particle crossing of the

μ=0 barrier. We again first examine whether this is consistent
with mirror reflection. From Figure 4, we see that by the time of
t=6× W-10 c

4 1, the magnetic energy density approaches a
saturated value (d ~ ´ -B B 2 102
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According to the same calculation as in Equation (44), we find
that mirror reflection can be achieved for particles with
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0. However, we see that by this

time, particles with pp0 are already fully isotropized, and
lower-energy particles have also undergone partial isotropization.
Again, we conclude that mirror reflection appears insufficient to
explain the detailed evolution of the momentum distributions.

5.4. Overcoming the 90° Barrier

To reveal the mechanism behind particle crossing of the 90°
pitch angle in run M3, we have randomly selected a subsample
of particles (1280 per energy bin) and closely followed
their trajectories for a time interval of W-200 c

1 starting from
= ´ W-t 6 10 c0

4 1. We count the number of particles that have

Figure 11. Same as Figure 7 but for run M3, showing the 2D distribution function of δf/f0 in the simulation frame at four snapshots.

Figure 12. Same as Figure 8 but for run M3, showing the wave spectrum at the
same four snapshots as in Figure 11.
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time necessary to reach saturation.12 With an adiabatic equation
of state, we can capture the change in gas internal energy over
time (thanks to the excellent energy conservation properties in the
gas component). We find that it increases steadily as result of
numerical dissipation and reaches a level that is comparable to the
overall wave energy density by the end of the runs. When we add
this energy lost to dissipation to the direct wave energy, we find
much more reasonable saturation levels, as shown with large/
thick symbols in Figure 18. In particular, run Fid remains at a
level below the full saturation prediction because particles become
“stuck” at 90°, whereas runs vD4 and vD8 are closer to the
expected saturation level as more particles are fully isotropized.
Run M3, which, based on its distribution function, is clearly
isotropized, is in excellent agreement with theoretical expectations
for the wave amplitude.

6.2. Numerical Parameters

Here we examine our runs Fid-hires, Fid-short, Fid-Np64,
and Fid-Np1024, in which we keep the physical parameters the
same and vary only the numerical parameters (note that for run
Fid-hires, we have slightly reduced the box size to save
computational cost). In Figure 19, we show the time evolution
of the wave energy density of these runs. Overall, these three
runs proceed very similarly to run Fid.13 Here QLD proceeds
slightly slower in run Fid-short, but it catches up to the other
runs shortly after. Run Fid-hires eventually grows to reach
larger wave amplitudes, which we will show later is due to
more efficient crossing of the 90° pitch angles.

In Figure 20, we show the wave spectrum from these runs at
time = ´ W-t 2 10 c

5 1. The overall shapes of the spectra are
comparable to each other. The high-resolution run has less
numerical dissipation, allowing the wave spectra to extend to

larger k. Run Fid-short has a box size that is only one-third of
the fiducial box (but still long enough to fit ∼17 of the most
unstable modes); hence, the modes are a lot more sparsely
sampled, especially at low-k. This is likely related to its initially

Figure 20. Wave spectrum at time t=2× W-10 c
5 1 from runs Fid-hires, Fid-short,

Fid-Np64, and Fid-Np1024. The vertical dotted lines are identical to those in
Figure 8 (the location of the thick line indicates the most unstable wavenumber).

Figure 19. Time evolution of total wave intensity for runs with different
numerical parameters.Figure 18. Saturation level measured from our simulations, in terms of wave

energy density normalized by CR fraction. Black circles are from runs Fid, vD4,
and vD8; red diamonds are from run Fid-hires; and blue squares are from run M3.
Small/thin symbols are measured based on the total wave energy density, while
large/thick symbols are measured from the same runs but corrected for numerical
dissipation. The dashed line indicates the expected saturation level assuming all
CRs are fully isotropized, obtained by setting Equations (22) and (24) equal.

12 Dissipation of low-amplitude waves imposed in the initial conditions is also
evident at early times in Figure 4.
13 All of these runs have the same initial wave amplitude A=10−4 (see
Equation (42)). Run Fid-hires thus has more initial wave energy because of the
larger spectral range it covers.
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FIGURE – Left : time sequence evolution of the different mode helicity (F/B) and polarisation
(L/R) in the case of M3 run (uCR = 2Va , nCR/ng = 10−3). Right : magnetic saturation level
compared to analytical estimates (dashed line). From Bai et al 2019 ibidem.
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Non-resonant streaming instability : hybrid simulations

Marret et al (2021) investigate using a 1D-2D hybrid
simulations the growth rate and saturation of
non-resonant modes with the thermal effects.

Fig.40 up shows the linear growth rate in three
regimes (cold/warm/hot). Results fits the trend
with temperature but are a factor 2 below
analytical estimations. The discrepancy is
because analytical estimates are given at one k
(the maximum growth rate). The ratio of hot to
cold growth rate is Γhot/Γcold ' Va/VTp.

On the growth of the thermally modified non-resonant streaming instability 7

dim ncr/nm ukcr �m Tm Tcr Te Lx/Ly �x/�y

1D 0.01 100 0.2 to 400 0.1 to 200 1 1 1000/ 1/
2D 0.01 100 20, 50, 100 10, 25, 50 1 1 1000/200 1/1

Table 1. Normalized parameters used in the simulations. We defined �m = 2(vTm/vA0)2. �x and �y are the mesh size in the x and y
directions.

Figure 2. Perturbed magnetic field intensity B1 = ||B � B0||/B0

evolution over time integrated over space (blue solid line) and
maximum value in simulation domain B1,max/B0 (green solid
line), for 1D simulations with a main protons temperature Tm =
T0 (upper panel) and Tm = 25 T0 (middle panel). 2D simulation
with Tm = 25 T0 is presented in the lower panel. The red dashed
line corresponds to an exponential fit in the linear phase. The
orange line in the lower panel correspond to the perturbed mag-
netic field parallel component Bk = B1 · ex. The vertical dashed
lines corresponds, from left to right, to the beginning of the lin-
ear regime, transition to the non-linear regime and to magnetic
saturation, which is reached typically after 6 e-foldings of growth.

One important parameter characterizing the linear
phase is the growth rate of the instability. Fig. 3 shows the
predictions of the fastest growing mode in the three regimes
of cold (Eq. 14), warm (Eq. 17) and hot (Eq. 21) main pro-
tons, alongside growth rates extracted from 1D and 2D sim-
ulations �1D,2D, as a function of the main protons tempera-
ture. The growth rate in the hot regime is found to decrease
with the temperature as T

�1/2
m as expected from the lin-

ear theory calculation of this work. In the low temperature
limit, the prediction from Winske & Leroy 1984 is very accu-
rate, and become rapidly invalid for temperatures Tm > T0.
The intermediate warm regime from T0 to 16 T0 is well re-
produced by the prediction from Reville et al. 2008 with
a decrease of the growth rate with temperature as T

�1/3
m .

The overestimates in the warm and hot regimes by a factor
⇠ 2 may be linked to the fact that the theoretical values
correspond to the fastest growing mode. The magnetic field
intensity in the simulations is integrated over the whole k
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Figure 3. 1D and 2D simulations growth rate �1D,2D (blue and red
dots), Winske & Leroy 1984 prediction �cold (Eq. 14, solid black
line), Reville et al. 2008 prediction �warm (Eq. 17, solid green line)
and growth rate prediction of this work �hot (Eq. 21, solid orange
line) as a function of the main protons temperature Tm. The
vertical dashed lines indicates the transition to the warm regime
vA0/vTm < (ncrukcr/nmvTm)1/3 (Zweibel & Everett 2010, left
line at Tm = T0), and to the hot regime kcoldrLm > 2 (Eq. 9,
right line at Tm = 16 T0). Parameters used are, in normalized
units: ncr = 0.01 nm, ukcr = 100 vA0.

spectrum, which gives an overall smaller growth rate than if
only the fastest growing mode was observed.

To study the instability behaviour during the linear
phase, we investigate the time evolution of the maximum
and minimum unstable wave numbers kmax = ncr

nm

ukcr

v2
A0

⌦0

and kmin = ⌦0/ukcr, which are expected to play a central
role in determining the maximum reachable magnetic field.
The results are presented in Fig. 4 upper panel. As the mag-
netic field increases, kmax decreases whereas kmin increases.
The moment these wave numbers become equal corresponds
to the magnetic field saturation proposed in Bell 2004. The
instability condition kmin < |k| < kmax cannot be satisfied
at any scale, and one expect to obtain a decrease of the main
protons velocity in the (ey, ez) plane.

To quantify the e↵ects of the instability on the veloc-
ities of the proton populations, we will use a local mag-
netic field aligned basis ek = B0

B0
= ex (parallel component),

e⇥ = B1
B1

⇥ ek (normal component) and e? = ek ⇥ e⇥ (per-
pendicular component, aligned with the perturbed magnetic
field for an electromagnetic wave propagating along B0). As
this vector basis is built to follow the local magnetic pertur-
bation, the spatial average of any quantities on this frame
of reference does not create any loss of information on the
periodic space dependency of the wave. Fig. 4 middle panel
presents the derivative over time of the main protons normal
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Figure 4. Upper panel: maximum (blue solid line) and minimum

(red solid line) unstable k (in unit of l�1
0 ), as a function of time

between t = 4 ⌦�1
0 and t = 30 ⌦�1

0 . The condition kmax = kmin

is indicated with the vertical dashed line at tNLT = 18.5 ⌦�1
0

and reported in other panels. Greyed regions correspond to sta-

ble wave numbers. Middle panel: first order derivative over time
of the main protons normal velocity u⇥

m (in unit of vA0, orange

solid line) and perturbed magnetic field intensity second order

derivative over time (in unit of B0 and multiplied by a factor
100, green solid line). Lower panel: perturbed magnetic field in-

tensity B1 (green solid line) and main protons normal fluid ve-

locity (orange solid line). Magnetic saturation is indicated with
the vertical dashed line at tsat = 21 ⌦�1

0 . Values are taken from

1D simulation with a main protons temperature Tm = T0.

fluid velocity component u⇥
m, which corresponds to the di-

rection of application of the magnetic force in the local mag-
netic field basis. The acceleration is increasing exponentially
during the linear phase, starts to decrease after t = 17 ⌦�1

0 ,
and then becomes negative, corresponding to a slowing down
of the main protons rotation. The fluctuating magnetic field
second order derivative over time, expected to be closely re-
lated to the velocity field (Eq. 7), is also shown and exhibits
the same behaviour, confirming the correlation between the
main protons fluid motion and the growth of the magnetic
perturbation. One obtain an excellent match between the
kmax = kmin condition discussed previously and the deceler-
ation of the main protons velocity. This suggests that this
condition is correlated to the transition toward a non-linear
phase, and not to magnetic saturation as the magnetic field
keeps growing, although at a slower rate. We recover the
same correlation for all our simulations, indicating that the
kmax = kmin condition may be a robust criteria to identify
quantitatively the end of the exponential growth. We note
that linear theory describes very well the instability growth
even for large magnetic perturbation as the non-linear tran-
sition occurs when the perturbed magnetic field intensity is
already greater than the initial ambient magnetic field.

The non-linear phase which follows the linear phase of
the instability is characterized by a decrease of the main
protons fluid rotation velocity and a reduced magnetic field
growth. Fig. 4 lower panel presents the main protons nor-
mal velocity and perturbed magnetic field intensity evolu-
tion over time. The transition toward non-linear growth, cor-

related to the maximum in normal velocity u⇥
m is shown

with the vertical dashed black line at tNLT = 18.5 ⌦�1
0 , and

the magnetic field saturation by the second vertical dashed
black line at tsat = 21 ⌦�1

0 corresponding to the maximum
in magnetic field intensity. The magnetic field keeps growing
during the non-linear phase until the normal velocity compo-
nent becomes negative, corresponding in the magnetic field
aligned basis to a loss of the �⇡/2 phase shift with respect
to the magnetic perturbation necessary to the growth of the
NR mode, as expected from the fluid model of the instability
presented in Sec. 2.1. As a consequence, the parallel induced
electric field changes sign and no longer slows down the cos-
mic rays drift velocity (Eq. 5), leading to the magnetic field
saturation. This saturation mechanism is well observed in all
our simulations. The normal velocity component decrease
during the non-linear phase is due both to the conversion
of the remaining rotational kinetic energy accumulated dur-
ing the linear phase into magnetic energy via the induced
electric field, and to the loss of the coupling between the
magnetic perturbation and the main protons fluid rotation
as the magnetic force driving term no longer operates, which
leads to a decrease of the normal velocity component (and
an increase of the perpendicular one) in the local magnetic
field aligned basis.

The saturated magnetic field intensity is a key parame-
ter of the instability in the context of supernova shocks, as it
dictates whether cosmic rays can be confined and accelerated
via first order Fermi acceleration. As discussed in Sec. 2.1,
the fluid model predicts that at saturation the magnetic en-
ergy density equals the cosmic rays drift kinetic energy den-
sity. An estimate for the saturated magnetic field can then
be found by assuming the cosmic rays to be drifting with
a constant velocity (Bell 2004). A di↵erent estimate can be
found by considering energy exchange rates within quasi-
linear theory calculations (Winske & Leroy 1984, Winske &
Quest 1986), which yield that the rate of energy gained by
the magnetic field is half of the rate of loss of the cosmic rays
drift kinetic energy. Extrapolating this result to saturation
and supposing that the cosmic rays drift velocity is null at
saturation, one obtains for the magnetic energy density:

B2

2µ0
⇠ 1

4
ncrmpu2

kcr (32)

which is half of the fluid prediction obtained from the con-
dition kmin = kmax.

However, kinetic theory calculations show that for the
instability to exist, the cosmic rays drift velocity must be
larger than the Alfvén speed in the amplified field (Gary
et al. 1984). In some regimes, this condition is violated and
the growth of the instability is halted before the kmin =
kmax limit is reached (Riquelme & Spitkovsky 2009). All the
di�culty lies in assessing the highly non-linear evolution of
the cosmic rays drift velocity, which would then determine
whether the conditions kmin = kmax or ukcr ⇠ vA will give
the most accurate saturation mechanism, and whether the
assumption of constant or completely depleted drift kinetic
energy is relevant to estimate the saturated magnetic field.
As such, only numerical simulations can provide a precise
answer.

Fig. 5 presents the ratio between the magnetic field en-
ergy density WB = B2/2µ0 and the initial cosmic rays ki-
netic energy density Wcr = ncrmpu2

kcr/2, at non-linear tran-

MNRAS 000, 1–15 (0000)

FIGURE – From Marret et al 2021 ibidem.
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Non-resonant streaming instability : hybrid simulations

Marret et al (2021) investigate using a 1D-2D hybrid
simulations the growth rate and saturation of
non-resonant modes with the thermal effects.

Fig.40 up shows the linear growth rate in three
regimes (cold/warm/hot). Results fits the trend
with temperature but are a factor 2 below
analytical estimations. The discrepancy is
because analytical estimates are given at one k
(the maximum growth rate). The ratio of hot to
cold growth rate is Γhot/Γcold ' Va/VTp.
Fig.40 bottom shows two phases :

1 the non-linear growth phase at tΩ = 18.5 given
by k1 = k2 (see slide 63) : Lorentz force =
Magnetic tension at resonant scale.

2 the magnetic saturation at tΩ = 21 :
background ions revert their velocity and cease
to pump energy to CRs.

On the growth of the thermally modified non-resonant streaming instability 7

dim ncr/nm ukcr �m Tm Tcr Te Lx/Ly �x/�y

1D 0.01 100 0.2 to 400 0.1 to 200 1 1 1000/ 1/
2D 0.01 100 20, 50, 100 10, 25, 50 1 1 1000/200 1/1

Table 1. Normalized parameters used in the simulations. We defined �m = 2(vTm/vA0)2. �x and �y are the mesh size in the x and y
directions.

Figure 2. Perturbed magnetic field intensity B1 = ||B � B0||/B0

evolution over time integrated over space (blue solid line) and
maximum value in simulation domain B1,max/B0 (green solid
line), for 1D simulations with a main protons temperature Tm =
T0 (upper panel) and Tm = 25 T0 (middle panel). 2D simulation
with Tm = 25 T0 is presented in the lower panel. The red dashed
line corresponds to an exponential fit in the linear phase. The
orange line in the lower panel correspond to the perturbed mag-
netic field parallel component Bk = B1 · ex. The vertical dashed
lines corresponds, from left to right, to the beginning of the lin-
ear regime, transition to the non-linear regime and to magnetic
saturation, which is reached typically after 6 e-foldings of growth.

One important parameter characterizing the linear
phase is the growth rate of the instability. Fig. 3 shows the
predictions of the fastest growing mode in the three regimes
of cold (Eq. 14), warm (Eq. 17) and hot (Eq. 21) main pro-
tons, alongside growth rates extracted from 1D and 2D sim-
ulations �1D,2D, as a function of the main protons tempera-
ture. The growth rate in the hot regime is found to decrease
with the temperature as T

�1/2
m as expected from the lin-

ear theory calculation of this work. In the low temperature
limit, the prediction from Winske & Leroy 1984 is very accu-
rate, and become rapidly invalid for temperatures Tm > T0.
The intermediate warm regime from T0 to 16 T0 is well re-
produced by the prediction from Reville et al. 2008 with
a decrease of the growth rate with temperature as T

�1/3
m .

The overestimates in the warm and hot regimes by a factor
⇠ 2 may be linked to the fact that the theoretical values
correspond to the fastest growing mode. The magnetic field
intensity in the simulations is integrated over the whole k

10�1 100 101 102

Tm [T0]

10�1

100

�
[⌦

0
]

T
�1/3
m

T
�1/2
m

�1D
�2D
�cold
�warm
�hot

Figure 3. 1D and 2D simulations growth rate �1D,2D (blue and red
dots), Winske & Leroy 1984 prediction �cold (Eq. 14, solid black
line), Reville et al. 2008 prediction �warm (Eq. 17, solid green line)
and growth rate prediction of this work �hot (Eq. 21, solid orange
line) as a function of the main protons temperature Tm. The
vertical dashed lines indicates the transition to the warm regime
vA0/vTm < (ncrukcr/nmvTm)1/3 (Zweibel & Everett 2010, left
line at Tm = T0), and to the hot regime kcoldrLm > 2 (Eq. 9,
right line at Tm = 16 T0). Parameters used are, in normalized
units: ncr = 0.01 nm, ukcr = 100 vA0.

spectrum, which gives an overall smaller growth rate than if
only the fastest growing mode was observed.

To study the instability behaviour during the linear
phase, we investigate the time evolution of the maximum
and minimum unstable wave numbers kmax = ncr

nm

ukcr

v2
A0

⌦0

and kmin = ⌦0/ukcr, which are expected to play a central
role in determining the maximum reachable magnetic field.
The results are presented in Fig. 4 upper panel. As the mag-
netic field increases, kmax decreases whereas kmin increases.
The moment these wave numbers become equal corresponds
to the magnetic field saturation proposed in Bell 2004. The
instability condition kmin < |k| < kmax cannot be satisfied
at any scale, and one expect to obtain a decrease of the main
protons velocity in the (ey, ez) plane.

To quantify the e↵ects of the instability on the veloc-
ities of the proton populations, we will use a local mag-
netic field aligned basis ek = B0

B0
= ex (parallel component),

e⇥ = B1
B1

⇥ ek (normal component) and e? = ek ⇥ e⇥ (per-
pendicular component, aligned with the perturbed magnetic
field for an electromagnetic wave propagating along B0). As
this vector basis is built to follow the local magnetic pertur-
bation, the spatial average of any quantities on this frame
of reference does not create any loss of information on the
periodic space dependency of the wave. Fig. 4 middle panel
presents the derivative over time of the main protons normal
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Figure 4. Upper panel: maximum (blue solid line) and minimum

(red solid line) unstable k (in unit of l�1
0 ), as a function of time

between t = 4 ⌦�1
0 and t = 30 ⌦�1

0 . The condition kmax = kmin

is indicated with the vertical dashed line at tNLT = 18.5 ⌦�1
0

and reported in other panels. Greyed regions correspond to sta-

ble wave numbers. Middle panel: first order derivative over time
of the main protons normal velocity u⇥

m (in unit of vA0, orange

solid line) and perturbed magnetic field intensity second order

derivative over time (in unit of B0 and multiplied by a factor
100, green solid line). Lower panel: perturbed magnetic field in-

tensity B1 (green solid line) and main protons normal fluid ve-

locity (orange solid line). Magnetic saturation is indicated with
the vertical dashed line at tsat = 21 ⌦�1

0 . Values are taken from

1D simulation with a main protons temperature Tm = T0.

fluid velocity component u⇥
m, which corresponds to the di-

rection of application of the magnetic force in the local mag-
netic field basis. The acceleration is increasing exponentially
during the linear phase, starts to decrease after t = 17 ⌦�1

0 ,
and then becomes negative, corresponding to a slowing down
of the main protons rotation. The fluctuating magnetic field
second order derivative over time, expected to be closely re-
lated to the velocity field (Eq. 7), is also shown and exhibits
the same behaviour, confirming the correlation between the
main protons fluid motion and the growth of the magnetic
perturbation. One obtain an excellent match between the
kmax = kmin condition discussed previously and the deceler-
ation of the main protons velocity. This suggests that this
condition is correlated to the transition toward a non-linear
phase, and not to magnetic saturation as the magnetic field
keeps growing, although at a slower rate. We recover the
same correlation for all our simulations, indicating that the
kmax = kmin condition may be a robust criteria to identify
quantitatively the end of the exponential growth. We note
that linear theory describes very well the instability growth
even for large magnetic perturbation as the non-linear tran-
sition occurs when the perturbed magnetic field intensity is
already greater than the initial ambient magnetic field.

The non-linear phase which follows the linear phase of
the instability is characterized by a decrease of the main
protons fluid rotation velocity and a reduced magnetic field
growth. Fig. 4 lower panel presents the main protons nor-
mal velocity and perturbed magnetic field intensity evolu-
tion over time. The transition toward non-linear growth, cor-

related to the maximum in normal velocity u⇥
m is shown

with the vertical dashed black line at tNLT = 18.5 ⌦�1
0 , and

the magnetic field saturation by the second vertical dashed
black line at tsat = 21 ⌦�1

0 corresponding to the maximum
in magnetic field intensity. The magnetic field keeps growing
during the non-linear phase until the normal velocity compo-
nent becomes negative, corresponding in the magnetic field
aligned basis to a loss of the �⇡/2 phase shift with respect
to the magnetic perturbation necessary to the growth of the
NR mode, as expected from the fluid model of the instability
presented in Sec. 2.1. As a consequence, the parallel induced
electric field changes sign and no longer slows down the cos-
mic rays drift velocity (Eq. 5), leading to the magnetic field
saturation. This saturation mechanism is well observed in all
our simulations. The normal velocity component decrease
during the non-linear phase is due both to the conversion
of the remaining rotational kinetic energy accumulated dur-
ing the linear phase into magnetic energy via the induced
electric field, and to the loss of the coupling between the
magnetic perturbation and the main protons fluid rotation
as the magnetic force driving term no longer operates, which
leads to a decrease of the normal velocity component (and
an increase of the perpendicular one) in the local magnetic
field aligned basis.

The saturated magnetic field intensity is a key parame-
ter of the instability in the context of supernova shocks, as it
dictates whether cosmic rays can be confined and accelerated
via first order Fermi acceleration. As discussed in Sec. 2.1,
the fluid model predicts that at saturation the magnetic en-
ergy density equals the cosmic rays drift kinetic energy den-
sity. An estimate for the saturated magnetic field can then
be found by assuming the cosmic rays to be drifting with
a constant velocity (Bell 2004). A di↵erent estimate can be
found by considering energy exchange rates within quasi-
linear theory calculations (Winske & Leroy 1984, Winske &
Quest 1986), which yield that the rate of energy gained by
the magnetic field is half of the rate of loss of the cosmic rays
drift kinetic energy. Extrapolating this result to saturation
and supposing that the cosmic rays drift velocity is null at
saturation, one obtains for the magnetic energy density:

B2

2µ0
⇠ 1

4
ncrmpu2

kcr (32)

which is half of the fluid prediction obtained from the con-
dition kmin = kmax.

However, kinetic theory calculations show that for the
instability to exist, the cosmic rays drift velocity must be
larger than the Alfvén speed in the amplified field (Gary
et al. 1984). In some regimes, this condition is violated and
the growth of the instability is halted before the kmin =
kmax limit is reached (Riquelme & Spitkovsky 2009). All the
di�culty lies in assessing the highly non-linear evolution of
the cosmic rays drift velocity, which would then determine
whether the conditions kmin = kmax or ukcr ⇠ vA will give
the most accurate saturation mechanism, and whether the
assumption of constant or completely depleted drift kinetic
energy is relevant to estimate the saturated magnetic field.
As such, only numerical simulations can provide a precise
answer.

Fig. 5 presents the ratio between the magnetic field en-
ergy density WB = B2/2µ0 and the initial cosmic rays ki-
netic energy density Wcr = ncrmpu2

kcr/2, at non-linear tran-
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FIGURE – From Marret et al 2021 ibidem.
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The streaming instability in the shock context

The non-resonant streaming instability is easily triggered at shocks [Caprioli & Spitkovsky
(2014) (hybrid), Bai et al (2015) (MHD-PIC), van Marle et al (2018) (MHD-PIC)]. Fig. 42
shows the onset of the non-resonant mode upstream at k = kmax = JCR

2B0
.

PIC-MHD models of shocks and particles 3401

Figure 5. Energy spectra of non-thermal particles injected at energy
Einj/mic2 = 4 × 10−5. The various spectra correspond to simulation dis-
played in Figs 2–4. A non-thermal tail is forming in the late stages of the
simulation tending to a power-law spectrum in agreement with a diffusive
shock acceleration process.

progresses particle distribution broadens. Beyond t = 350ω−1
c a

high-energy tail appears and tends to form a power law whose in-
dex is in agreement with diffusive shock acceleration theory, namely
f(E) ∝ E−3/2, where E is the kinetic energy of the particles. In our
simulation, the tail formation stalls beyond t = 600ω−1

c mainly due

to the deformation of the shock front leading to a deficient particle
injection.

Finally, we have performed a simulation without any AMR refine-
ment while setting all the computational domain to the most refined
level. With such settings, we have basically recovered all the results
from the previous simulation. In Fig. 6, we plot in dashed line the
power spectrum of the transverse magnetic fluctuations obtained in
the case where no AMR grid is triggered: the downstream magnetic
spectrum is recovered and the same dominant mode of the turbu-
lence is present in each phase of the simulation. Such a test proves
that the use of an AMR grid is suitable to perform PI[MHD]C sim-
ulations and even recommended for future applications requiring a
much larger computational domain.

3.3 Higher Mach number simulations

We repeat above simulations for an increased Alfvénic Mach num-
ber (MA = 300), which corresponds more closely to the type of
shock expected of the early phase of a supernova remnant expan-
sion into the interstellar medium (ISM). Higher Mach numbers
are achieved by increasing the velocity of the thermal fluid by an
order of magnitude. The initial velocity of newly injected parti-
cles is increased by the same amount. In order to keep the other
quantities (density, magnetic field strength) identical, we also

Figure 6. Transverse magnetic power spectrum and CR current along the mean magnetic field in both upstream and downstream media. Upper panels
correspond to an early stage of the simulation corresponding to Fig. 2, while lower panels stand for a later stage corresponding to Fig. 4. Let us note that
the red dashed line in both power spectrum plots corresponds to the upstream spectrum obtained by performing the same simulation but without any AMR
refinement/coarsening, namely by setting the entire grid at the highest resolution. The relatively good agreement between upstream spectra shows that the use
of AMR MHD is suitable to depict the CR/magnetic field/thermal plasma interaction.
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FIGURE – Left : Fourier power spectrum up-/downstream at two times. From van Marle et al 2018 ibidem.
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The streaming instability in the shock context

The non-resonant streaming instability is easily triggered at shocks [Caprioli & Spitkovsky
(2014) (hybrid), Bai et al ApJ (2015) (MHD-PIC), van Marle et al (2018) (MHD-PIC)]. Fig. 42
(left) shows the onset of the non-resonant mode upstream at k = kmax = JCR

2B0
. Fig.42 (right)

shows the filamentary structure and the strong shock corrugation produced by CR-driven
turbulence.

PIC-MHD models of shocks and particles 3401

Figure 5. Energy spectra of non-thermal particles injected at energy
Einj/mic2 = 4 × 10−5. The various spectra correspond to simulation dis-
played in Figs 2–4. A non-thermal tail is forming in the late stages of the
simulation tending to a power-law spectrum in agreement with a diffusive
shock acceleration process.

progresses particle distribution broadens. Beyond t = 350ω−1
c a

high-energy tail appears and tends to form a power law whose in-
dex is in agreement with diffusive shock acceleration theory, namely
f(E) ∝ E−3/2, where E is the kinetic energy of the particles. In our
simulation, the tail formation stalls beyond t = 600ω−1

c mainly due

to the deformation of the shock front leading to a deficient particle
injection.

Finally, we have performed a simulation without any AMR refine-
ment while setting all the computational domain to the most refined
level. With such settings, we have basically recovered all the results
from the previous simulation. In Fig. 6, we plot in dashed line the
power spectrum of the transverse magnetic fluctuations obtained in
the case where no AMR grid is triggered: the downstream magnetic
spectrum is recovered and the same dominant mode of the turbu-
lence is present in each phase of the simulation. Such a test proves
that the use of an AMR grid is suitable to perform PI[MHD]C sim-
ulations and even recommended for future applications requiring a
much larger computational domain.

3.3 Higher Mach number simulations

We repeat above simulations for an increased Alfvénic Mach num-
ber (MA = 300), which corresponds more closely to the type of
shock expected of the early phase of a supernova remnant expan-
sion into the interstellar medium (ISM). Higher Mach numbers
are achieved by increasing the velocity of the thermal fluid by an
order of magnitude. The initial velocity of newly injected parti-
cles is increased by the same amount. In order to keep the other
quantities (density, magnetic field strength) identical, we also

Figure 6. Transverse magnetic power spectrum and CR current along the mean magnetic field in both upstream and downstream media. Upper panels
correspond to an early stage of the simulation corresponding to Fig. 2, while lower panels stand for a later stage corresponding to Fig. 4. Let us note that
the red dashed line in both power spectrum plots corresponds to the upstream spectrum obtained by performing the same simulation but without any AMR
refinement/coarsening, namely by setting the entire grid at the highest resolution. The relatively good agreement between upstream spectra shows that the use
of AMR MHD is suitable to depict the CR/magnetic field/thermal plasma interaction.
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Figure 7. Same plots than in Fig. 2 showing the temporal evolution of a high Alfvénic Mach number shock (θB = 0, MA = 300). In all the stages of the
simulation we recover the same patterns than in the slower shock simulation displayed in Figs 2–4. However, one difference arises, namely the amplification
of the magnetic field. In this simulation, the average magnetic field in the downstream medium has been amplified by a factor of 3 with respect to slow shock
case. This result is in relative good agreement with the pure kinetic simulations of Caprioli & Spitkovsky (2014a,b).

Figure 8. Energy spectra of non-thermal particles injected at energy
Einj/mc2 = 4 × 10−3. The various spectra correspond to simulation dis-
played in Fig. 7.

increase the Larmor radius by a factor of 10 and increase the size
of the simulation box accordingly, while maintaining the PIC res-
olution (the number of grid cells per Larmor radius). As shown in
Figs 7 and 8, the behaviour of the shock follows the same pattern
as for the MA = 30 case, albeit that the local magnetic field am-
plification is approximately three times as strong. This last result is
in agreement with the pure kinetic (hybrid PIC) computations pre-
sented by Caprioli & Spitkovsky (2014b) where the authors have
investigated the role of the Alfvénic Mach number of the shock over
the magnetic field amplification near a non-relativistic shock. We
have considered here a MA = 300 shock and found that the am-
plified magnetic field at saturation follows the same relation where
<B2

tot/B
2
0 > ∼0.45MA. Such an agreement between full PIC sim-

ulation and PI[MHD]C computations highlights the viability of the
latter method. It is important to mention that we have performed
simulations of shocks exhibiting an Alfvénic Mach number up to
MA = 3000 thanks to the robustness of the PI[MHD]C method
and again recover the basic same patterns than in the MA = 30
case. In a forthcoming study we will explore the process of mag-
netic field amplification and particle acceleration in relativistic
shocks.

4 PA RT I C L E AC C E L E R ATI O N AT
M AG N E T I C A L LY O B L I QU E SH O C K S

In this section we consider the process of particle acceleration near
oblique astrophysical shocks where a mean magnetic field is in-
clined at an angle θB with the propagation direction of the shock.
Pure kinetic computations have considered such a configuration
and have concluded that when θB > 45◦, neither magnetic field am-
plification nor significant particle acceleration is taking place (see
for instance Caprioli & Spitkovsky 2014a and reference therein).
The goal of the simulations presented in this section is to put this
statement to the test by investigating over a long period of time
the interplay between suprathermal particles and an oblique super-
Alfvénic MHD shock. To do so, we choose to consider a θB = 70◦

oblique shock with various Alfvénic Mach numbers fulfilling the
Rankine–Hugoniot jump conditions in the shock frame.

4.1 Moderate Alfvénic Mach case (MA = 30)

The injection process of suprathermal particles follows the same
recipe than in the parallel case, namely injecting particles with an
isotropic velocity vinj = 3VSh in the downstream frame. Injection
occurs close to the shock front in the downstream medium. As men-
tioned in previous studies (see e.g. Caprioli, Pop & Spitkovsky 2015,
and references therein), injected particles reaching the shock can be
reflected at the shock front because of the obliquity of the magnetic
field. Return to the shock is then quite unlikely in the early phase of
the magnetic field amplification as there are no significant magnetic
fluctuations that can alter the trajectory of the particles. The various
toy models presented in previous studies agree to state that shocks
exhibiting oblique magnetic field verifying θB > 45◦ are not allow-
ing a sufficient amount of particle to get into the upstream medium
to trigger NRS instability.

4.1.1 Initial shock drift acceleration

As we inject particles near the shock, we notice that in the very first
stages of the simulation, the particle energy distribution function,
originally peaked around injection energy, is now expanding rapidly
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FIGURE – Left : Fourier power spectrum up-/downstream at two times. Right : 2D shock structure. From van Marle et al (2018) ibidem.
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Other CR-driven instability - The CR-pressure-anisotropy-driven instabilities :
MHD-PIC simulations

Lebiga et al (2018 ibidem) investigate the gyroresonant pressure-driven instability (see Eq. 78)
using MHD-PIC techniques

The linear growth rate is well reproduced (see
Fig. 44, left) but at high k where numerical
dissipation dominates.

CR gyroresonance instability 2783

Table 2. Model parameters.

Run A0 ncr/ni βcr |"max |/#0 |Bk0|2/B2
0 P σH tend#0 NX NP/NX

d1 −0.3 10−4 5.2 1.4 × 10−3 5 × 10−4 R(+1) +1 103 4096 4096
d2 −0.3 10−4 5.2 1.4 × 10−3 5 × 10−4 L(−1) −1 103 4096 4096

l1 +0.1 10−4 5.2 3 × 10−4 10−12 L(−1) 0 2 × 103 4096 4096
l2 +0.2 10−4 5.2 6 × 10−4 10−12 L(−1) 0 2 × 103 4096 4096
l3 +0.3 10−4 5.2 9 × 10−4 10−12 L(−1) 0 2 × 103 4096 4096
l4 +0.2 2.5 × 10−5 1.3 2 × 10−4 10−12 L(−1) 0 2 × 103 4096 4096
l5 +0.2 4 × 10−4 20.8 2.4 × 10−3 10−12 L(−1) 0 2 × 103 4096 4096

s1 +0.1 10−4 5.2 3 × 10−4 2 × 10−12 R, L 0 2 × 105 4096 1024
s2 0 10−4 5.2 0 2 × 10−12 R, L 0 2 × 105 4096 1024
s3 −0.1 10−4 5.2 4 × 10−4 2 × 10−12 R, L 0 2 × 105 4096 1024
s4 −0.2 10−4 5.2 8 × 10−4 2 × 10−12 R, L 0 2 × 105 4096 1024
s5 −0.3 10−4 5.2 1.4 × 10−3 2 × 10−12 R, L 0 2 × 105 4096 1024
s6 0 10−4 5.2 0 2 × 10−12 R, L 0 105 4096 512
s7 0 10−4 5.2 0 2 × 10−12 R, L 0 105 4096 2048

YL11. The high values of βcr and A0 (compared to the estimates
by YL11) are chosen in order to maximize the growth rate of the
fluctuations in the resonant energy interval, so that the waves ampli-
fied by the instability achieve higher amplitudes than the magnetic
fluctuations (noise) caused by the limited number of macroparticles
that sample the CR distribution function.

4.2 Linear phase of instability

Figs 1 and 2 show the dispersion relation extracted from the runs d1
and d2 (A0 = −0.3, waves with polarization R and L, respectively).
Each point in the figures is calculated by fitting the time-series
of one Fourier component of the magnetic field, between t = 0
and tend (all the points of the same colour/style in each plot of
Figs 1 and 2 are extracted from one single run). In this way, we
determine for each wavenumber k the phase, the phase speed, and the
growth/damping rate. Fig. 1 shows the growth/damping rate "(k),
while Fig. 2 shows the real frequency ωr(k) of the wave spectrum.
The analytical solution from the dispersion relation (equation 14)
is shown for comparison. The fitted values agree quite well with
the theoretical values, except for large wavenumbers (inside the
grey area), for which the numerical dissipation ∝ k2 dominates
"(k). Such agreement is observed also in the other runs, with the
agreement in "(k) better for the simulations with larger values of
|"max |. For anisotropies smaller than |A0| = 0.1 (and vA/c = 10−2,
ncr/ni = 10−4), for the same resolution and number of particles, the
quality of the fitted values for "(k) decays faster, due to the noise
caused by the limited number of particles.

We present in the left column of Fig. 3 the magnetic field power
spectrum of models with different initial anisotropies A0 = +0.1,
+0.2, +0.3 (models l1–l3) at different times during the linear phase
of the instability, when the distribution of particles is still almost
identical to the initial one and the magnetic energy in the waves in-
creases exponentially. The blue shaded region shows the wavenum-
bers for which the growth rate (for waves with polarization L) is
a power law with index related to the CR momentum distribution
power-law index. The power spectrum in this region increases in
amplitude but keeping the slope during the measured times constant,
this increase is faster for the higher absolute initial anisotropy. For
wavenumbers smaller than those in the blue shaded region, the am-
plitude remains nearly constant, as expected for the zero growth
rate in this region.

Using this magnetic energy spectrum, we estimate the lower
limit of the pitch-angle diffusion coefficient D̃QL

µµ (δt) provided by

Figure 1. Wave growth/damping rate for models with initial anisotropy
A0 = −0.3 (models d1 and d2 in Table 2). Upper plot: damping rate of waves
with polarization L. Lower plot: growth rate of waves with polarization R.
The theoretical value given by equation (14) is shown for comparison (solid
black line). The grey area comprehends the wavelengths ≤32 grid cells,
where the growth/damping rate is dominated by the numerical dissipation.

the QLT [equation (A32) in Appendix]:

D̃QL
µµ (t, µ, p, δt) ≡ #2(1 − µ2)

2

∫ ∞

0
dk

|B(k, t)|2
B2

0

×
{

[1 + σH(k, t)]
sin [(vµk + #) δt]

(vµk + #)

+ [1 − σH(k, t)]
sin [(vµk − #) δt]

(vµk − #)

}
, (33)
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Figure 5. Time evolution of the total magnetic energy in fluctuations nor-
malized by the energy in the mean field (bottom panel) and CR total
pressure anisotropy (upper panel) for models starting with different ini-
tial anisotropies A0: +0.1 (red dashed line), 0 (blue solid line), −0.1 (green
long-dashed line), −0.2 (black dot–dashed line), −0.3 (magenta dotted line),
which correspond to models s1–s5 in Table 2. The vertical lines mark four
different stages of the instability evolution: linear, early saturation, and late
saturation times (from smaller to larger t).

Figure 6. Time evolution of the total magnetic energy in fluctuations nor-
malized by the energy in the mean field for models starting with initial
anisotropies A0 = 0 and different numbers of particles NP/NX: 512 (red
dashed line), 1024 (blue solid line), 2048 (green dot–dashed line), which
correspond respectively to models s6, s2, and s7 in Table 2.

The diffusion coefficients in Fig. 7 are calculated using time
intervals δt"0 = 103 (δt#max ≈ 1.4 for model s5 that has the high-
est #max ). During the linear phase, Dµµ(δt) compares well with
D̃QL

µµ (δt). For the later times, these values are still comparable
by a factor of 3. The fluctuation is stronger for the higher initial
anisotropy model A0 = +0.3, at the beginning of the saturation

phase (t"0 = 2 × 104, red dashed line in Fig. 7), when the magnetic
energy spectrum is more irregular inside the wavenumber interval of
main resonance (blue area). This effect can be caused by the short-
ness of the time interval δt compared to the correlation time tc of the
rate of change of the pitch angle (see Appendix) for the particles of
higher energies, as the deviation is larger for these particles.

For the initial linear phase, the anisotropy distribution of both
models is shown to be almost identical to the initial one. In the
beginning of the saturation phase, however, the low-energy CRs (the
bulk of the CR distribution) are already almost totally isotropized
(at the same time the instability growth drops for the corresponding
resonant wavenumbers). The relatively strong fluctuations in A seen
at p ≈ pmin are an artefact caused by the discontinuity at p = pmin of
the distribution function f(p) employed (equation 19). These peaks
disappear when we repeat the simulations extending f(p) towards
smaller p with a steep, growing power law (Fig. 8). The single
power law in the interval [pmin , pmax ], however, has the advantage
of the simplicity in the analytical treatment. At the final time of the
simulation, the CRs of the highest energies still preserve the initial
anisotropy.

In Fig. 9, we show the scattering rate νscatt ≡
〈2Dµµ(δt)/(1 − µ2)〉µ during the saturated phase (at the final time
of the simulation) for three models A0 = −0.1, −0.2, −0.3. The
distribution as a function of the CR momentum is almost flat for
the momentum range that is isotropized by this time, but decaying
for larger energies. This is expected as the high-energy particles are
resonant with waves that are still growing.

5 SU M M A RY A N D C O N C L U S I O N S

Using one-dimensional hybrid PIC–MHD simulations, we study
numerically the evolution of the CR gyroresonance instability, trig-
gered by a distribution of CR protons with initial anisotropy (with re-
spect to the local mean magnetic field direction) in pressure (Pcr,‖ (=
Pcr,⊥). We restricted our analysis to parallel-propagating modes,
which are the fastest growing modes. During the linear phase of the
instability, the growth rate and phase speed of the modes with right
and left circular polarization show excellent agreement with the the-
oretical dispersion relation, for both initial setups with Pcr,‖ > Pcr,⊥
and Pcr,‖ < Pcr,⊥.

In all our simulations, the non-linear wave–particle effects are
important. After a short initial period of exponential growth of
the waves, the scattering and consequent isotropization of the CR
momentum distribution is the mechanism that gradually saturates
the instability growth. The low-energy CRs are isotropized faster
than those of the higher energies. The amplitude of the waves and
the scattering rate of particles during the saturation phase are larger
for initially larger maximum instability growth rate #max .

We extracted from the simulations the pitch-angle diffusion co-
efficient Dµµ for the evolution of the CR distribution function aver-
aged over a time-scale δt ! #−1

max, and we find the empirical values
in good agreement with the QLT estimates for static waves (within
a factor of 3). This agreement is shown to be better for our simula-
tions with smaller #max . Indeed, due to limitations imposed by the
noise caused by the low sample of macroparticles in the PIC tech-
nique, all our simulations have parameters that produce a maximum
growth rate of the instability much higher than expected in realistic
situations. None the less, this direct confirmation of the applicabil-
ity of the QLT to estimate the CR scattering by the gyroresonance
instability is a valuable support for theoretical models connecting
the large-scale turbulence cascade with the ‘microphysics’ of the
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FIGURE – Left : Growth rate for Left and Right handed polarised modes (black
analytical / red simulations) Right : Time evolution of the pressure anisotropy and
magnetic field energy density. From Lebiga et al (2018) ibidem
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Other CR-driven instability - The CR-pressure-anisotropy-driven instabilities :
MHD-PIC simulations

Lebiga et al (2018 ibidem) investigate the gyroresonant pressure-driven instability (see Eq. 78)
using MHD-PIC techniques

The linear growth rate is well reproduced (see
Fig. 44, left) but at high k where numerical
dissipation dominates.

Pressure anisotropy (positive or negative) drops
with time (see Fig. 44,right). The magnetic
saturation is connected with the pitch-angle
scattering process. Low energy CRs are
isotropised first (not shown see Lebiga et al §7)

CR gyroresonance instability 2783

Table 2. Model parameters.

Run A0 ncr/ni βcr |"max |/#0 |Bk0|2/B2
0 P σH tend#0 NX NP/NX

d1 −0.3 10−4 5.2 1.4 × 10−3 5 × 10−4 R(+1) +1 103 4096 4096
d2 −0.3 10−4 5.2 1.4 × 10−3 5 × 10−4 L(−1) −1 103 4096 4096

l1 +0.1 10−4 5.2 3 × 10−4 10−12 L(−1) 0 2 × 103 4096 4096
l2 +0.2 10−4 5.2 6 × 10−4 10−12 L(−1) 0 2 × 103 4096 4096
l3 +0.3 10−4 5.2 9 × 10−4 10−12 L(−1) 0 2 × 103 4096 4096
l4 +0.2 2.5 × 10−5 1.3 2 × 10−4 10−12 L(−1) 0 2 × 103 4096 4096
l5 +0.2 4 × 10−4 20.8 2.4 × 10−3 10−12 L(−1) 0 2 × 103 4096 4096

s1 +0.1 10−4 5.2 3 × 10−4 2 × 10−12 R, L 0 2 × 105 4096 1024
s2 0 10−4 5.2 0 2 × 10−12 R, L 0 2 × 105 4096 1024
s3 −0.1 10−4 5.2 4 × 10−4 2 × 10−12 R, L 0 2 × 105 4096 1024
s4 −0.2 10−4 5.2 8 × 10−4 2 × 10−12 R, L 0 2 × 105 4096 1024
s5 −0.3 10−4 5.2 1.4 × 10−3 2 × 10−12 R, L 0 2 × 105 4096 1024
s6 0 10−4 5.2 0 2 × 10−12 R, L 0 105 4096 512
s7 0 10−4 5.2 0 2 × 10−12 R, L 0 105 4096 2048

YL11. The high values of βcr and A0 (compared to the estimates
by YL11) are chosen in order to maximize the growth rate of the
fluctuations in the resonant energy interval, so that the waves ampli-
fied by the instability achieve higher amplitudes than the magnetic
fluctuations (noise) caused by the limited number of macroparticles
that sample the CR distribution function.

4.2 Linear phase of instability

Figs 1 and 2 show the dispersion relation extracted from the runs d1
and d2 (A0 = −0.3, waves with polarization R and L, respectively).
Each point in the figures is calculated by fitting the time-series
of one Fourier component of the magnetic field, between t = 0
and tend (all the points of the same colour/style in each plot of
Figs 1 and 2 are extracted from one single run). In this way, we
determine for each wavenumber k the phase, the phase speed, and the
growth/damping rate. Fig. 1 shows the growth/damping rate "(k),
while Fig. 2 shows the real frequency ωr(k) of the wave spectrum.
The analytical solution from the dispersion relation (equation 14)
is shown for comparison. The fitted values agree quite well with
the theoretical values, except for large wavenumbers (inside the
grey area), for which the numerical dissipation ∝ k2 dominates
"(k). Such agreement is observed also in the other runs, with the
agreement in "(k) better for the simulations with larger values of
|"max |. For anisotropies smaller than |A0| = 0.1 (and vA/c = 10−2,
ncr/ni = 10−4), for the same resolution and number of particles, the
quality of the fitted values for "(k) decays faster, due to the noise
caused by the limited number of particles.

We present in the left column of Fig. 3 the magnetic field power
spectrum of models with different initial anisotropies A0 = +0.1,
+0.2, +0.3 (models l1–l3) at different times during the linear phase
of the instability, when the distribution of particles is still almost
identical to the initial one and the magnetic energy in the waves in-
creases exponentially. The blue shaded region shows the wavenum-
bers for which the growth rate (for waves with polarization L) is
a power law with index related to the CR momentum distribution
power-law index. The power spectrum in this region increases in
amplitude but keeping the slope during the measured times constant,
this increase is faster for the higher absolute initial anisotropy. For
wavenumbers smaller than those in the blue shaded region, the am-
plitude remains nearly constant, as expected for the zero growth
rate in this region.

Using this magnetic energy spectrum, we estimate the lower
limit of the pitch-angle diffusion coefficient D̃QL

µµ (δt) provided by

Figure 1. Wave growth/damping rate for models with initial anisotropy
A0 = −0.3 (models d1 and d2 in Table 2). Upper plot: damping rate of waves
with polarization L. Lower plot: growth rate of waves with polarization R.
The theoretical value given by equation (14) is shown for comparison (solid
black line). The grey area comprehends the wavelengths ≤32 grid cells,
where the growth/damping rate is dominated by the numerical dissipation.

the QLT [equation (A32) in Appendix]:

D̃QL
µµ (t, µ, p, δt) ≡ #2(1 − µ2)

2

∫ ∞

0
dk

|B(k, t)|2
B2

0

×
{

[1 + σH(k, t)]
sin [(vµk + #) δt]

(vµk + #)

+ [1 − σH(k, t)]
sin [(vµk − #) δt]

(vµk − #)

}
, (33)
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Figure 5. Time evolution of the total magnetic energy in fluctuations nor-
malized by the energy in the mean field (bottom panel) and CR total
pressure anisotropy (upper panel) for models starting with different ini-
tial anisotropies A0: +0.1 (red dashed line), 0 (blue solid line), −0.1 (green
long-dashed line), −0.2 (black dot–dashed line), −0.3 (magenta dotted line),
which correspond to models s1–s5 in Table 2. The vertical lines mark four
different stages of the instability evolution: linear, early saturation, and late
saturation times (from smaller to larger t).

Figure 6. Time evolution of the total magnetic energy in fluctuations nor-
malized by the energy in the mean field for models starting with initial
anisotropies A0 = 0 and different numbers of particles NP/NX: 512 (red
dashed line), 1024 (blue solid line), 2048 (green dot–dashed line), which
correspond respectively to models s6, s2, and s7 in Table 2.

The diffusion coefficients in Fig. 7 are calculated using time
intervals δt"0 = 103 (δt#max ≈ 1.4 for model s5 that has the high-
est #max ). During the linear phase, Dµµ(δt) compares well with
D̃QL

µµ (δt). For the later times, these values are still comparable
by a factor of 3. The fluctuation is stronger for the higher initial
anisotropy model A0 = +0.3, at the beginning of the saturation

phase (t"0 = 2 × 104, red dashed line in Fig. 7), when the magnetic
energy spectrum is more irregular inside the wavenumber interval of
main resonance (blue area). This effect can be caused by the short-
ness of the time interval δt compared to the correlation time tc of the
rate of change of the pitch angle (see Appendix) for the particles of
higher energies, as the deviation is larger for these particles.

For the initial linear phase, the anisotropy distribution of both
models is shown to be almost identical to the initial one. In the
beginning of the saturation phase, however, the low-energy CRs (the
bulk of the CR distribution) are already almost totally isotropized
(at the same time the instability growth drops for the corresponding
resonant wavenumbers). The relatively strong fluctuations in A seen
at p ≈ pmin are an artefact caused by the discontinuity at p = pmin of
the distribution function f(p) employed (equation 19). These peaks
disappear when we repeat the simulations extending f(p) towards
smaller p with a steep, growing power law (Fig. 8). The single
power law in the interval [pmin , pmax ], however, has the advantage
of the simplicity in the analytical treatment. At the final time of the
simulation, the CRs of the highest energies still preserve the initial
anisotropy.

In Fig. 9, we show the scattering rate νscatt ≡
〈2Dµµ(δt)/(1 − µ2)〉µ during the saturated phase (at the final time
of the simulation) for three models A0 = −0.1, −0.2, −0.3. The
distribution as a function of the CR momentum is almost flat for
the momentum range that is isotropized by this time, but decaying
for larger energies. This is expected as the high-energy particles are
resonant with waves that are still growing.

5 SU M M A RY A N D C O N C L U S I O N S

Using one-dimensional hybrid PIC–MHD simulations, we study
numerically the evolution of the CR gyroresonance instability, trig-
gered by a distribution of CR protons with initial anisotropy (with re-
spect to the local mean magnetic field direction) in pressure (Pcr,‖ (=
Pcr,⊥). We restricted our analysis to parallel-propagating modes,
which are the fastest growing modes. During the linear phase of the
instability, the growth rate and phase speed of the modes with right
and left circular polarization show excellent agreement with the the-
oretical dispersion relation, for both initial setups with Pcr,‖ > Pcr,⊥
and Pcr,‖ < Pcr,⊥.

In all our simulations, the non-linear wave–particle effects are
important. After a short initial period of exponential growth of
the waves, the scattering and consequent isotropization of the CR
momentum distribution is the mechanism that gradually saturates
the instability growth. The low-energy CRs are isotropized faster
than those of the higher energies. The amplitude of the waves and
the scattering rate of particles during the saturation phase are larger
for initially larger maximum instability growth rate #max .

We extracted from the simulations the pitch-angle diffusion co-
efficient Dµµ for the evolution of the CR distribution function aver-
aged over a time-scale δt ! #−1

max, and we find the empirical values
in good agreement with the QLT estimates for static waves (within
a factor of 3). This agreement is shown to be better for our simula-
tions with smaller #max . Indeed, due to limitations imposed by the
noise caused by the low sample of macroparticles in the PIC tech-
nique, all our simulations have parameters that produce a maximum
growth rate of the instability much higher than expected in realistic
situations. None the less, this direct confirmation of the applicabil-
ity of the QLT to estimate the CR scattering by the gyroresonance
instability is a valuable support for theoretical models connecting
the large-scale turbulence cascade with the ‘microphysics’ of the
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FIGURE – Left : Growth rate for Left and Right handed polarised modes (black
analytical / red simulations) Right : Time evolution of the pressure anisotropy and
magnetic field energy density. From Lebiga et al (2018 ibidem)
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Summary and conclusion

Cosmic Ray the non-thermal component of the interstellar even if subdominant in density
carry as much as pressure as thermal gas and ambient magnetic field.
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Summary and conclusion

Cosmic Ray the non-thermal component of the interstellar even if subdominant in density
carry as much as pressure as thermal gas and ambient magnetic field.

Because of their pressure CRs can modify ISM dynamics by increasing the gas
compressibility. Because they can favor buoyancy CRs can enhance the Parker-Jeans
instability and contribute to the generation of magnetic field in our Galaxy.
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Summary and conclusion

Cosmic Ray the non-thermal component of the interstellar even if subdominant in density
carry as much as pressure as thermal gas and ambient magnetic field.

Because of their pressure CRs can modify ISM dynamics by increasing the gas
compressibility. Because they can favor buoyancy CRs can enhance the Parker-Jeans
instability and contribute to the generation of magnetic field in our Galaxy.

Because of their pressure gradient and because they carry some current CRs can trigger
their own instability and/or amplify some pre-existing one.
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Summary and conclusion

Cosmic Ray the non-thermal component of the interstellar even if subdominant in density
carry as much as pressure as thermal gas and ambient magnetic field.

Because of their pressure CRs can modify ISM dynamics by increasing the gas
compressibility. Because they can favor buoyancy CRs can enhance the Parker-Jeans
instability and contribute to the generation of magnetic field in our Galaxy.

Because of their pressure gradient and because they carry some current CRs can trigger
their own instability and/or amplify some pre-existing one.

A CR anisotropic distribution contributes to trigger the streaming instability. This
instability is important and likely at the heart of many phenomena : magnetic field
amplification at fast shocks, CR self-control transport in our Galaxy, production of galactic
winds. The latter playing an essential role in the star formation rate.
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Summary and conclusion

Cosmic Ray the non-thermal component of the interstellar even if subdominant in density
carry as much as pressure as thermal gas and ambient magnetic field.

Because of their pressure CRs can modify ISM dynamics by increasing the gas
compressibility. Because they can favor buoyancy CRs can enhance the Parker-Jeans
instability and contribute to the generation of magnetic field in our Galaxy.

Because of their pressure gradient and because they carry some current CRs can trigger
their own instability and/or amplify some pre-existing one.

A CR anisotropic distribution contributes to trigger the streaming instability. This
instability is important and likely at the heart of many phenomena : magnetic field
amplification at fast shocks, CR self-control transport in our Galaxy, production of galactic
winds. The latter playing an essential role in the star formation rate.

Still a lot to do, in particular to understand more evolved phases of these instability : the
non-linear growth phase and the saturation stage, usually by the mean of numerical
simulations. Once this is done then it is important to investigate sustained sources of
instability and revise our knowledge (growth rate out of the quasi-linear limit, enhanced
magnetic field production ...)
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