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Supplementary Figure 9: Top: The normalized emissivity maps for Cygnus Cocoon (top left panel) and Westerlund
1 (top right panel). The normalized emissivity map is derived by dividing the Wd 1 HESS excess map and Cygnus
Cocoon Fermi LAT residual map by the corresponding gas maps, respectively. The areas indicated by red boxes are
the regions with significant excess caused, most likely, by background or foreground extended sources. Bottom: The
normalized emissivity maps for Cygnus Cocoon after removing the emission corresponding to the excess templates in
the likelihood fitting. The white circles represent the regions used for the extraction of the radial distribution of γ-ray
emissivities. The color bars are in the unit of counts/excessperpixel× cm2.
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WHAT IS THIS COURSE FOR?
THE NON-THERMAL ACTIVITY OF THE UNIVERSE WE LIVE IN 
CAN ALL BE REDUCED TO THREE QUESTIONS, THE BIG Q’s:

 How does Nature accelerate particles, typically from the thermal pool? 

 How do these non thermal particles propagate in the complex environment 
inside the source or/and from the source to us?

 How do such particles radiate?

THE FIRST TWO Q’S DEAL WITH THE FUNDAMENTAL ISSUE OF PARTICLE TRANSPORT IN E-
M FIELDS - THE TOPIC OF THESE LECTURES

THESE ISSUES APPLY IN THE SAME WAY TO THE SOLAR SYSTEM, TO 
SUPERNOVAE, TO AGN, GRBS, CLUSTERS OF GALAXIES, … 2



WHAT IS THIS COURSE FOR?

THE SCHOOL IS FOCUSED, ON PURPOSE, ON THE FOUNDATIONS… THE PILLARS ON 
WHICH THE FIELD IS BUILT

SOME SUCH FOUNDATIONS WERE LAID DOWN A LONG TIME AGO, SOME ARE BEING LAID 
DOWN RIGHT NOW…

IT IS CRUCIAL TO UNDERSTAND THE SOLID AND THE WEAKER POINTS OF THESE 
FOUNDATIONS, SO AS TO IMPROVE ON THEM OR REVISE THEM

SOME OF THE THINGS WE ARE DOING NOW (I WILL TALK ABOUT SOME OF THEM) MIGHT 
BECOME FOUNDATIONAL LATER OR PERHAPS DESTROY SOME OF THE CURRENT 
FOUNDATIONS, OR PERHAPS WILL BE FORGOTTEN…
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PLAN OF THE FIRST LECTURE

 WHY IS IT SO IMPORTANT TO GET TRANSPORT RIGHT?

 DERIVATION OF THE DIFFUSIVE MOTION (SIMPLE)

 DERIVATION OF THE DIFFUSIVE MOTION FROM 
VLASOV EQUATION

 TRANSPORT EQUATION IN PITCH ANGLE
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PLAN OF THE SECOND LECTURE

 FROM PITCH ANGLE TO SPATIAL DIFFUSION 

 APPLICATIONS (DSA, GALAXY TRANSPORT) - SHORT

 ELEMENTS OF PERPENDICULAR TRANSPORT

 SIMULATIONS OF TRANSPORT IN SYNTHETIC AND MHD TURBULENCE

 ELEMENTS OF SELF-GENERATION OF PERTURBATIONS (see course by Marcowith)

 ADVANCED TOPIC 1: SELF-GENERATION IN DSA

 ADVANCED TOPIC 2: SELF-GENERATION AROUND SOURCES

 ADVANCED TOPIC 3: SELF-GENERATION IN AND AROUND THE GALAXY
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HOW DO WE KNOW THAT SOMETHING NONTRIVIAL 
MUST BE GOING ON?

✤ MOST OF THE UNIVERSE IS IN A 
PLASMA STATE: THE ONLY ELECTRIC 
FIELDS YOU GET ARE INDUCED BY 
PLASMA MOTION: δE~(V/c)B

✤ O N LY E L E C T R I C F I E L D S C A N 
CHANGE THE PARTICLE ENERGY 

If the electric field could stay coherent over a 
scale R and the particles were moving at c 
then

But in a plasma this does not usually happen 
(unless some specific conditions are fulfilled)

H e n c e :  N E E D T O S TAY I N T H E 
A C C E L E R AT I O N R E G I O N M U C H 
LONGER THAN R/c

Hillas
Criterion
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HOW DO WE KNOW THAT SOMETHING NONTRIVIAL 
MUST BE GOING ON?

Elements such as B, Be, Li are not copiously produced in the 
Big Bang: the universe became cold and not dense enough too 
quickly for these elements to be synthesised

They are formed but equally well destroyed in stellar 
nucleosynthesis

Hence in the ISM they are exceedingly rare…yet not rare at 
all in the cosmic radiation!

SPALLATION: nuclear fission of heavier elements 
through collisions:

�sp(A) ⇡ 45A0.7 mb ⌧sp ⇡ [nd(h/H)c�sp]
�1 ⇡ 80H4A

�0.7
12 Myr

10Be is unstable with half time of 1.4 Myr. Its abundance is 
related to the time that cosmic rays spend in the Galaxy before 
escape

BOTH TIME SCALES SUGGEST CONFINEMENT TIME 
THAT EXCEED THE BALLISTIC TIME BY MANY ORDERS 
OF MAGNITUDE

See Course by C. Evoli
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CHARGED PARTICLES IN AN ORDERED B-FIELD

where v1 =
p
ẋ2
0 + ẏ20 .

✓0 can be found by plugging in the value for A and the initial values into (2.1.6)
and (2.1.8).

Graphing (2.1.6), (2.1.8), and (2.1.2c) with the initial conditions as x0 = 1, y0 =
0, z0 = 0, ẋ = 1, ẏ = 0, and ż = 1. Using the process described above ✓0 is found to
be 3

2⇡. The field strength, B0, is set to 1.

(a) First angle of 3D motion (b) Second angle of 3D motion

(c) Figure of just the xy plane

Figure 1: Graph of equations (2.1.6), (2.1.8) (2.1.2c)
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IN GENERAL THE EQUATION OF MOTION OF A PARTICLE IN AN 
ELECTROMAGNETIC FIELD IS

GIVEN THE ABSENCE OF REGULAR ELECTRIC FIELDS WE WILL LIMIT 
OURSELVES FIRST TO THE CASE WHERE ONLY B IS PRESENT

IF ONLY B IS PRESENT THE PARTICLE ENERGY CANNOT CHANGE!

B0

} GYRATION
FREQUENCY
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CHARGED PARTICLE IN AN ORDERED B-FIELD

THE SOLUTION CAN BE WRITTEN AS:

WHERE A AND B SATISFY THE INITIAL CONDITIONS THAT 

HENCE:

THE UNPERTURBED MOTION OF THE PARTICLE IS PERIOD IN THE XY PLANE AND RECTILINEAR UNIFORM IN 
THE Z DIRECTION WITH 
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MOTION OF A CHARGED PARTICLE IN B=B0+δB
FOR SIMPLICITY LET US CONSIDER THE CASE OF A PERTURBATION THAT ONLY PROPAGATES ALONG THE ORDERED 
MAGNETIC FIELD                   AND ONLY HAVING COMPONENTS ALONG X AND Y AXES. 

IT REMAINS TRUE THAT IN THE ABSENCE OF AN ELECTRIC FIELD THE ENERGY OF THE PARTICLE REMAINS CONSTANT. 
IN FACT THE PERTURBATIONS CAN ALSO CARRY AN ELECTRIC FIELD, BUT ITS EFFECT IS SUBDOMINANT AND IN FIRST 
APPROXIMATION THE PARTICLE ENERGY CAN BE ASSUMED TO BE CONSTANT (SEE DISCUSSION LATER).

THE EQUATION OF MOTION OF THE PARTICLE IS:
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MOTION OF A CHARGED PARTICLE IN B=B0+δB
<latexit sha1_base64="bXOFAY49Aol4Jp6Ky9aKw6hKVVo="></latexit>

m�
dvz
dt

=
q

c
[vx(t)�By � vy(t)�Bx]

LET US ASSUME THAT THE PERTURBED FIELD IS CIRCULARLY POLARIZED: δBy=±iδBx

}
CLEARLY THE MEAN VALUE OF THE FLUCTUATIONS OVER REALISATIONS IS ZERO!

Take the Real Part
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MOTION OF A CHARGED PARTICLE IN B=B0+δB

HAVING IN MIND THAT THE PERTURBATIONS ARE SOMETHING SIMILAR TO ALFVEN WAVES, FOR WHICH THE 
DISPERSION RELATION IS ω=k vA  ONE CAN COMPARE THE TWO TERMS kz AND ωt

UNLESS μ<<vA/v

Notice that 

NEGLECTING THE TERM ωt WITH RESPECT TO kz IS EQUIVALENT TO ASSUME THAT WE ARE SITTING IN THE 
REFERENCE FRAME IN WHICH THE WAVES ARE STATIONARY. IN TURN THIS IMPLIES THAT THERE IS NO 
ELECTRIC FIELD CARRIED BY THE PERTURBATIONS. WE WILL COMMENT LATER ON THE IMPLICATIONS OF 
THIS ASSUMPTION FOR PARTICLE TRANSPORT. 
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MOTION OF A CHARGED PARTICLE IN B=B0+δB

IN DIFFUSION PROCESSES IT IS THE CASE THAT THERE ARE 
QUANTITIES THAT HAVE ZERO MEAN VALUE AND YET THE MEAN 
VALUE OF THE SQUARE OF THE SAME VALUE IS NOT ZERO

FOR INSTANCE THIS IS THE CASE FOR INK IN WATER… THE MEAN 
VALUE OF THE POSITION OF MOLECULES IS ZERO (IF SYMMETRIC) 
BUT THE STAIN OF INK GETS LARGER… PROPORTIONALLY TO 
TIME

LET US EXPLORE WHETHER THIS MAY BE THE CASE FOR PARTICLES IN PERTURBED MAGNETIC FIELDS…

<latexit sha1_base64="dhPbm1p9MNoLwT6xvu8v28IfOu4="></latexit>

1

2⇡

Z 2⇡

0
d�cos(�� a)cos(�� b) =

1

2
cos(a� b)
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1

2
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MOTION OF A CHARGED PARTICLE IN B=B0+δB

✤ THE MEAN VALUE OF THE SQUARE OF THE PITCH ANGLE VARIATION IS PROPORTIONAL TO THE TIME 
LAPSE (DIFFUSION)

✤ THIS IS ONLY TRUE WHEN THE RESONANCE CONDITION IS FULFILLED: k=kres=Ω/vμ

✤ NOTICE THAT WHEN THE PITCH ANGLE IS CLOSE TO 90O THE WAVENUMBER TENDS TO INFINITY 
(POSSIBLY NO WAVES TO CAUSE SCATTERING)

✤ THE SCATTERING DEPENDS ON THE POWER AVAILABLE AT THE RESONANT SCALE AND IS PROPORTIONAL 
TO THE GYRATION FREQUENCY
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DIFFUSION COEFFICIENT IN THE PRESENCE OF 
A SPECTRUM OF WAVES

WE CAN NOW DEFINE A DIFFUSION COEFFICIENT IN THE FORM: 

 
OR IN THE CASE THAT A SPECTRUM OF WAVES IS PRESENT:

THE QUANTITY F REPRESENTS THE DIMENSIONLESS POWER IN PERTURBATIONS AT THE RESONANT 
WAVENUMBER AND DETERMINES THE EFFECTIVENESS OF THE DIFFUSION PROCESS

16



PHENOMENOLOGICAL CONSIDERATIONS

GIVEN THE DEFINITION OF THE DIFFUSION COEFFICIENT IN PITCH ANGLE WE CAN TRY TO ELABORATE SOME 
CONSIDERATIONS ON THE IMPLICATIONS OF DIFFUSION

FIRST, ONE CAN ALSO DEFINE A DIFFUSION COEFFICIENT IN ANGLE:

SO THAT THE TIME NECESSARY FOR DEFLECTION BY ~90 DEGREES MAY BE ESTIMATED AS: 

SINCE Ω IS THE GYRATION FREQUENCY OF THE PARTICLE IN THE UNPERTURBED MAGNETIC FIELD, THIS 
QUANTITY MEASURES HOW MANY GYRATIONS THE PARTICLE MUST CARRY OUT BEFORE SUFFERING A 
DEFLECTION BY ORDER UNITY

SINCE BY DEFINITION F<<1, TYPICALLY THE DEFLECTION IS A SLOW PROCESS
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PHENOMENOLOGICAL CONSIDERATIONS
DURING THIS TIME THE PARTICLE TRAVELS IN THE Z DIRECTION FOR A DISTANCE

THAT PLAYS THE ROLE OF DIFFUSION PATH LENGTH OF THE PARTICLES! IT IS A MULTIPLE 1/F>>1 OF THE 
LARMOR RADIUS OF THE PARTICLES IN THE UNPERTURBED MAGNETIC FIELD

THIS ALLOWS US TO ESTIMATE THE DIFFUSION COEFFICIENT OF THE PARTICLES IN SPACE RATHER THAN IN 
ANGLE, FOLLOWING THE GENERAL DEFINITION OF A DIFFUSION COEFFICIENT: 

>>DBohm

GIVEN THE PERTURBATIVE APPROACH ADOPTED HERE, δB<<B0, THE DIFFUSION COEFFICIENT IS BOUND 
TO BE LARGER THAN THE BOHM DIFFUSION COEFFICIENT, WHICH IS OFTEN QUOTED AS THE LOWEST D(E) 
ONE CAN GET (ONE LARGE SCATTERING PER LARMOR GYRATION)

<latexit sha1_base64="VVF5xCFStEefZnaQQSfgbvZalOQ="></latexit>

Dzz(p) =
1

3
v�D(p) ⇡ 1

3
rL(p)v

1

F(kres(p))
= DBohm(p)

1

F(kres(p))
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PHENOMENOLOGICAL CONSIDERATIONS

FROM OTHER COURSES IN THIS SCHOOL YOU WILL LEARN THAT OBSERVATIONS OF THE SECONDARY/
PRIMARY RATIOS AND ABUNDANCE OF UNSTABLE ISOTOPES, SUCH AS 10Be, REQUIRE THAT PARTICLES WITH 
ENERGY OF ~10 GeV STAY IN THE GALAXY FOR ABOUT 100 MILLION YEARS AND THE HALO SIZE IS BOUND 
TO BE H~5 kpc

USING THE EXPRESSION FOR THE DIFFUSION COEFFICIENT DERIVED EARLIER WE CAN ESTIMATE THE EXTENT 
THAT THE FIELD NEEDS TO BE PERTURBED TO GET THE REQUIRED DIFFUSION

TINY AMOUNTS OF PERTURBATIONS ARE SUFFICIENT TO HAVE A HUGE IMPACT ON THE MOTION OF CHARGED 
PARTICLES IN MAGNETIC FIELDS AND TRANSFORM THEIR MOTION FROM BALLISTIC TO DIFFUSIVE 
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PHENOMENOLOGICAL CONSIDERATIONS
THIS RAISES THE CRUCIAL QUESTION OF THE ORIGIN OF THESE PERTURBATIONS, WHICH IN TURN REFLECTS ON 
THE ORIGIN OF THE SCATTERING OF PARTICLES 

THERE ARE AT LEAST TWO ORIGINS THAT WE CAN SPECULATE UPON:
- SELF GENERATED PERTURBATIONS (SEE COURSE BY ALEXANDRE MARCOWITH) 
- PRE-EXISTING TURBULENCE (TYPICALLY INJECTED AT SOME LARGE SCALE AND CASCADING TOWARDS 

SMALLER SCALES

ONE OR THE OTHER MAY BE THE MOST IMPORTANT DEPENDING ON WHETHER THE TRANSPORT WE ARE 
INTERESTED IS INSIDE AN ACCELERATOR OR IN THE GALAXY OR A GALAXY CLUSTER OR EVEN DEPENDING ON 
THE ENERGY OF THE PARTICLES (AT A GIVEN ENERGY ONE PROCESS MAY PREVAIL UPON THE OTHER)

FOR THE CASCADING IT IS OFTEN ASSUMED THAT THE POWER SPECTRUM RESULTING FROM THE CASCADE 
PROCESS IS A POWER LAW ON SCALES SMALLER THAN THE INJECTION SCALE: 

KOLMOGOROV PHENOMENOLOGY

KRAICHNAN PHENOMENOLOGY

BOTH APPROACHES ARE FUNDAMENTALLY 
FLAWED IN THE CASE OF MHD ALFVENIC 
TURBULENCE IN THAT THEY NEGLECT THE 
ANISOTROPY OF THE CASCADE PROCESS (SEE 
LATER) 20



PHENOMENOLOGICAL CONSIDERATIONS

LET US SPECIALISE THESE CONSIDERATIONS TO THE CASE OF TRANSPORT OF COSMIC RAYS IN THE GALAXY 
FOR WHICH WE CAN ASSUME THAT THE INJECTION SCALE IS 

THEN WE CAN ESTIMATE HOW MUCH POWER NEEDS TO BE INJECTED AT THE INJECTION SCALE SO THAT THE 
POWER AT 10 GeV IS PRESERVED

THE POWER SPECTRUM IS NORMALIZED AS:

THE POWER AT THE RESONANT SCALE OF PARTICLES OF E=10 GeV IS THEN:

for α=5/3 Kolmogorov phenomenology
for α=3/2 Kraichnan phenomenology

GOOD NEWS: THE PERTURBATIVE APPROACH 
SEEMS TO REMAIN VALID ON ALL SCALES, EVEN 
AT INJECTION
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ONE LAST POINT…
WE HAVE CONSCIOUSLY MADE THE ASSUMPTIONS TO NEGLECT THE ELECTRIC FIELDS ASSOCIATED WITH THE 
PERTURBATIONS…CLEARLY WE NEED TO CHECK WHAT WE MISSED IN DOING SO…

THE ELECTRIC FIELDS CAN CHANGE THE MOMENTUM OF THE PARTICLES… ONE CAN EASILY EXPECT THAT THE 
CHANGE IN MOMENTUM MAY BE OF ORDER:

BEING IT POSITIVE OR NEGATIVE DEPENDING ON THE RELATIVE ORIENTATION OF THE PARTICLE VELOCITY AND 
THE PERTURBATION ELECTRIC FIELD

WE ARE AGAIN IN THE SITUATION IN WHICH THE MOTION OF THE PARTICLE IN MOMENTUM SPACE IS 
DIFFUSIVE: THE MEAN VALUE OF THE MOMENTUM CHANGE VANISHES BUT NOT ITS SQUARE

DIFFUSION IN MOMENTUM SPACE IS WHAT WE CALL SECOND ORDER FERMI ACCELERATION, BUT IT OCCURS 
ON TIME SCALES >> THAN DIFFUSION IN PITCH ANGLE

<latexit sha1_base64="ocTvzDS2v3GkQnSPPQx5D9jQepA="></latexit>

Dpp = h�p�p

T
i ⇡ p2

T

⇣vA
c

⌘2
! ⌧pp =

p2

Dpp
'

✓
c

vA

◆2

⌧90 � ⌧90
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IS PARTICLE MOTION REALLY DIFFUSIVE? 

EARLIER WE HAVE PRESENTED A SIMPLE ARGUMENT TO SHOW THAT CHARGED PARTICLES IN THE PRESENCE 
OF PERTURBATIONS SHOULD ACQUIRE A DIFFUSIVE MOTION. HOW CAN WE BE SURE OF THAT? AND ANYWAY 
WHAT IS THE EQUATION THAT DESCRIBES SUCH A DIFFUSIVE MOTION?

THE DYNAMICS OF AN ENSEMBLE OF CHARGED PARTICLES UNDER THE ACTION OF THE ELECTRO-MAGNETIC 
FIELDS PRODUCED BY THE SAME PARTICLES (PLUS THE PRE-EXISTING FIELDS) IS DESCRIBED BY THE VLASOV 
EQUATION

WHERE f(p, x, t) IS THE PHASE SPACE DENSITY OF PARTICLES, v IS THE PARTICLE VELOCITY:

DENSITY OF PARTICLES 
AT LOCATION x AT TIME t

HERE WE ARE ASSUMING A PRIORI THAT THERE ARE NO LARGE SCALE ELECTRIC FIELDS AND THAT EVEN THE 
EFFECTS OF THE SMALL SCALE PERTURBED ELECTRIC FIELDS ARE NEGLIGIBLE (WE WILL COMMENT ON THAT 
LATER) 23



VLASOV EQUATION AND CR TRANSPORT

LET US INVESTIGATE HOW THE VLASOV EQUATION REACTS TO PERTURBATIONS:

LIMITING OURSELVES TO FIRST ORDER TERMS THE VLASOV EQUATION BECOMES:

FOR THE SAKE OF KEEPING THINGS SIMPLER LET US FOCUS ON WAVES THAT PROPAGATE ALONG THE PRE-
EXISTING MAGNETIC FIELD                   . IN TERMS OF THE FOURIER MODES OF THE PERTURBATIONS THE 
MAXWELL EQUATION                   IMPLIES THAT 

HENCE IF THE WAVES PROPAGATE ALONG B0 THEN THE PERTURBATIONS ONLY HAVE THAT X AND Y 
COMPONENTS

24



VLASOV EQUATION AND CR TRANSPORT

z
x

y

B0
δBx

δBy

IT IS CONVENIENT TO WORK IN CYLINDRICAL COORDINATES: 
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VLASOV EQUATION AND CR TRANSPORT

B a c k t o c y l i n d r i c a l 
coordinates and assuming 
df0/dφ=0

IT IS USEFUL TO INTRODUCE THE TWO FIELD SUPERPOSITIONS: 
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VLASOV EQUATION AND CR TRANSPORT

REPLACING THIS INTO THE PREVIOUS EXPRESSION LEADS TO THE SIMPLE RESULT THAT:

IT IS CUSTOMARY TO INTRODUCE THE OPERATOR H DEFINED AS:

SO THAT THE PERTURBED VLASOV EQUATION READS:

INTRODUCING THE FOURIER TRANSFORM OF THE PERTURBATIONS:

27



VLASOV EQUATION AND CR TRANSPORT

SINCE THE ONLY DEPENDENCE OF φ IS IN THE EXPONENTIALS IT IS NATURAL TO LOOK FOR A SOLUTION IN 
THE FORM:

LOOK FOR SIMILARITIES BETWEEN THIS CALCULATION AND THOSE DISCUSSED IN THE COURSE ON 
INSTABILITIES… THERE WILL BE MANY!… AND WITH PHYSICAL MEANING THAT WILL BECOME CLEAR…

 RECALL THAT WE HAVE ASSUMED THE INDEPENDENCE OF f0 ON φ. THIS MAKES SENSE GIVEN THE 
SYMMETRY, BUT WILL PREVENT US FROM CALCULATING THE PERPENDICULAR DIFFUSION COEFFICIENT!!!

 WHAT WE JUST DEVISED IS AN EXTREMELY POWERFUL TOOL…LET US SEE HOW WE CAN USE IT 28



VLASOV EQUATION AND CR TRANSPORT

TAKE A LOOK AT THE VLASOV EQUATION AGAIN AND CALCULATE ITS ENSEMBLE AVERAGE RECALLING THAT 
ALL THE MEANS OF FIRST ORDER QUANTITIES ARE ZERO: } }

E V O L U T I O N O F 
THE AVERAGE CR 
DISTRIBUTION

SECOND ORDER TERM THAT 
C O N T A I N S A L L T H E 
INFORMATION PREVIOUSLY 
DERIVED

WHERE WE CAN RECALL THAT WE HAVE DEDUCED THE FOURIER COMPONENTS OF THE PERTURBATIONS AND 
THAT WE NEED TO AVERAGE OVER THE COORDINATE φ:}

E V O L U T I O N O F 
THE AVERAGE CR 
DISTRIBUTION 29



VLASOV EQUATION AND CR TRANSPORT

THE CALCULATION IS VERY SIMILAR TO THE ONES WE ALREADY CARRIED OUT, SO YOU WILL ONLY NEED A 
FEW STEPS:

AND INTRODUCING AGAIN THE TWO SUPERPOSITION STATES δB+ AND δB-:
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VLASOV EQUATION AND CR TRANSPORT

RECALL THAT WE HAVE ALREADY CALCULATED THE DEPENDENCE OF δf ON φ

HENCE IT IS EASY TO PUT THINGS TOGETHER, INTRODUCING AGAIN δB+ AND δB- AND OBTAIN THIS 
IMPORTANT RESULT:

AT THIS POINT WE INTRODUCE THE CORRELATION FUNCTION OF THE FIELDS:

REALITY OF 
THE FIELDS
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VLASOV EQUATION AND CR TRANSPORT

AFTER REPLACING THESE IN THE PREVIOUS EXPRESSION AND AFTER A TRIVIAL INTEGRATION OVER THE PHASE Φ 
WE OBTAIN:

NOW YOU HAVE TO REMEMBER THAT THE FREQUENCY IS A COMPLEX NUMBER                           BUT THE RHS OF 
THE EQUATION ABOVE IS REAL:

Lim
ωI—>0

Exercise: SHOW THAT FOR A GIVEN FUNCTION g: 

MATHEMATICALLY, THIS IS 
THE ORIGIN OF RESONANT 

SCATTERING!
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VLASOV EQUATION AND CR TRANSPORT

WE CAN INTRODUCE THE ZERO FREQUENCY LIMIT OF THE SPECTRUM

IN THIS LIMIT, THE ENERGY OF THE PARTICLES CANNOT CHANGE AND WE CAN NEGLECT THE DERIVATIVES 
WITH RESPECT TO THE MODULUS OF THE MOMENTUM. HENCE:

AND THAT IS WHERE WE WANTED TO GET:

DIFFUSION
EQUATION 

DIFFUSION
COEFFICIENT 

(Please show this as an exercise, it’s trivial)

33



FROM PITCH ANGLE DIFFUSION TO SPATIAL DIFFUSION

IT IS INTUITIVELY CLEAR HOW A PARTICLE THAT IS DIFFUSING IN ITS PITCH ANGLE MUST 
BE ALSO DIFFUSING IN SPACE. LET US SEE HOW THE TWO ARE RELATED TO EACH OTHER BY 
INTEGRATING THE BOLTZMANN EQUATION IN PITCH ANGLE:

ISOTROPIC PART OF THE PARTICLE DISTRIBUTION 
FUNCTION. FOR MOST PROBLEMS THIS IS ALSO VERY 
CLOSE TO THE ACTUAL DISTRIBUTION FUNCTION
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ONE CAN SEE THAT THE QUANTITY

BEHAVES AS A PARTICLE CURRENT, AND THE BOLTMANN EQUATION BECOMES: 

NOTICE THAT YOU CAN ALWAYS WRITE: 
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RECONSIDER THE INITIAL EQUATION

AND INTEGRATE IT AGAIN FROM -1 TO μ:

AND MULTIPLYING BY
 

WITH THIS TRICK:
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NOW RECALL THAT THE DISTRIBUTION FUNCTION TENDS TO ISOTROPY, 
SO THAT AT THE LOWEST ORDER IN THE ANISOTROPY ONE HAS:

AND RECALLING THE DEFINITION OF CURRENT:

USING THE TRANSPORT EQ IN TERMS OF CURRENT:
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NOW WE RECALL THE TRANSPORT EQUATION IN CONSERVATIVE FORM:

AND PUTTING THINGS TOGETHER:

BUT IT IS EASY TO SHOW THAT THE FIRST TERM MUST BE NEGLIGIBLE:

IT FOLLOWS THAT THE ISOTROPIC PART OF THE DISTRIBUTION FUNCTION
MUST SATISFY THE DIFFUSION EQUATION:

DIFFUSION EQUATION SPATIAL DIFFUSION COEFFICIENT
38



THE EFFECT OF INHOMOGENEOUS MOTION OF 
THE BACKGROUND PLASMA

WHAT HAPPENS WHEN THE PARTICLES DIFFUSE IN A MEDIUM WHICH IS ITSELF IN MOTION? 

PHYSICALLY IT IS EASY TO EXPECT THAT THE PARTICLES WILL BE ADVECTED WITH THE PLASMA (THE 
DERIVATIVE IN TIME BECOMES THE TOTAL TIME DERIVATIVE) BUT IS THERE MORE THAN THIS?

ONE SHOULD EXPECT THAT AS LONG AS THE PLASMA VELOCITY IS UNIFORM IN SPACE, NOTHING EXCEPTIONAL 
SHOULD BE EXPECTED: IN FACT ONE COULD ALWAYS MOVE TO A REFERENCE FRAME WHERE THE PLASMA IS AT 
REST AND RECOVER THE PREVIOUS RESULT

BUT WHAT HAPPENS IF THE PLASMA VELOCITY IS NOT UNIFORM? IN THIS CASE THERE IS NO UNIQUE 
FRAME IN WHICH THE PLASMA IS AT REST EVERYWHERE

AN OBVIOUS APPLICATION OF THIS SITUATION IS THAT IN WHICH A SHOCK FRONT FORMS IN THE PLASMA, SO 
THAT THERE IS A DISCONTINUITY IN THE VELOCITY OF THE BACKGROUND PLASMA

39



THE EFFECT OF INHOMOGENEOUS MOTION OF 
THE BACKGROUND PLASMA
LET US ASSUME THAT THE BACKGROUND PLASMA MOVES WITH A NON-RELATIVISTIC SPEED u ALONG THE z 
DIRECTION

THEN THE TOTAL VELOCITY OF THE PARTICLE IN THE LAB FRAME IS SIMPLY u+vμ AND THE MOMENTUM 
ALONG THE Z DIRECTION BECOMES pz=-(u/c2)E+pμ WHILE THE MOMENTUM COMPONENTS IN THE X AND 
Y DIRECTIONS ARE UNCHANGED:

RECALLING THAT                                                       AND TRANSFORMING TO SPHERICAL COORDINATES:

IN CONCLUSION THE VLASOV EQUATION GETS MODIFIED AS FOLLOWS:
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THE EFFECT OF INHOMOGENEOUS MOTION OF 
THE BACKGROUND PLASMA
LET US PROCEED IN A SIMILAR WAY AS DONE BEFORE:

}

T H I S R E T U R N S 
Z E R O W H E N 
I N T E G R A T E D 
BETWEEN -1 AND 1

}
THIS IS NEGLIGIBLE 
S I N C E AT Z E R O 
O R D E R f 0 I S 
ISOTROPIC

}

ORDER (u/c)2 THIS RETURNS THE 
SAME RESULT AS 
B E F O R E U P O N 
INTEGRATION

}

HENCE THE EQUATION IN THE GENERAL CASE BECOMES:

WE CONFIRM THAT NO ENERGY CHANGE OCCURS IF THE PLASMA VELOCITY IS UNIFORM!
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A SIMPLE APPLICATION:

THE TRANSPORT EQUATION APPROACH TO DSA

UPSTREAM																					DOWNSTREAM

U1	 										U2

-∞																								0-				0+																								+∞

Advection      Compression                Diffusion

THE EQUATION WE JUST FOUND DESCRIBES MANY 
PROCESSES, SUCH AS THE DIFFUSION OF COSMIC RAYS IN 
THE GALAXY, BUT ALSO THE PARTICLE ACCELERATION 
AT SHOCKS!!!

FOR A PLANE PARALLEL SHOCK:

LET US ALSO ASSUME STATIONARITY!
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UPSTREAM solution
LET US ASSUME STATIONARITY (LATER WE SHALL DISCUSS IMPLICATIONS)


IN THE UPSTREAM THE EQUATION READS


THE SOLUTION THAT HAS VANISHING f AND VANISHING DERIVATIVE AT 
UPSTREAM INFINITY IS

FLUX IS CONSERVED!
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DOWNSTREAM solution
IN THE DOWNSTREAM THE EQUATION READS


NOTICE THAT WE HAVE REQUIRED STATIONARITY AND OBVIOUSLY THE ONLY 
SOLUTION THAT IS CONSISTENT WITH THAT ASSUMPTION IS 

FLUX IS CONSERVED!

time t

time t+dt
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AROUND THE SHOCK 
INTEGRATING THE TRANSPORT EQUATION IN A NARROW NEIGHBORHOOD OF 
THE SHOCK WE GET


WHERE WE USED du/dz=(u2-u1)δ(z)

REPLACING THE EXPRESSIONS FOR THE DERIVATIVES DERIVED BEFORE:


WHICH HAS THE SOLUTION:
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SPECTRUM OF ACCELERATED PARTICLES

THE SPECTRUM OF ACCELERATED PARTICLES IS A POWER 
LAW IN MOMENTUM


THE POWER LAW EXTENDS TO INFINITE MOMENTA!!!


THE SLOPE DEPENDS UNIQUELY ON THE COMPRESSION 
FACTOR AND IS INDEPENDENT OF THE DIFFUSION 
PROPERTIES


NO DEPENDENCE UPON DIFFUSION (MICRO-PHYSICS) 



NOTES ON PERPENDICULAR DIFFUSION

WHATEVER THE SPATIAL COORDINATE IS, IT IS EASY TO WRITE THE DIFFUSION COEFFICIENT STARTING FROM 
THE DEFINITION OF THE SPATIAL DISPLACEMENT:

LET US SEE WHERE THIS LEADS US TO:

WHERE WE USED THE FACT THAT THE CORRELATION CAN ONLY DEPEND UPON THE TIME DIFFERENCE AND 
NOT ON ABSOLUTE TIME (IF THE PERTURBATIONS ARE HOMOGENEOUS IN SPACE). INTEGRATING BY PARTS (SEE 
NOTES):
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NOTES ON PERPENDICULAR DIFFUSION
HENCE, WE CAN DEFINE THE QUANTITY:

LET US CONSIDER THE CASE WITH NO E-FIELDS AND MAGNETIC PERTURBATIONS ONLY IN THE X-Y PLANE

Lim
t—>∞

THE SOLUTION OF THESE EQUATIONS CAN BE WRITTEN IN THE FORM:

BY SUBSTITUTION ONE IMMEDIATELY GETS:

AND A SIMILAR EXPRESSION FOR vy(t)

<latexit sha1_base64="W4gCWxtoKiL/0TNRVNnE3PHwLTc="></latexit>

vx(t) = vx(0)cos(⌦t) + vy(0)sin(⌦t)+

cos(⌦t)

Z t

0
dt0


�vz⌦

�By

B0
cos(⌦t0)� vz⌦

�Bx

B0
sin(⌦t0)

�
+

sin(⌦t)

Z t

0
dt0


�vz⌦

�By

B0
sin(⌦t0) + vz⌦

�Bx

B0
cos(⌦t0)

�
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NOTES ON PERPENDICULAR DIFFUSION
AT THIS POINT WE DEFINE THE VELOCITY OF THE GUIDING CENTER 

AND AFTER SOME ALGEBRAIC STEPS WE SHOW THAT:
ASSUMING THAT THE PERTURBED 

FIELD CHANGES SLOWLY UPON ONE 
GYRATION

NOT THAT EASY AN OBJECT!!! IT IS AN HIGHER ORDER CORRELATOR…

AT ZERO ORDER ONE COULD SPECULATE THAT vz ≈ vμ and dz = vμ dt 

WHERE L IS SOME SCALE OF ORDER OF THE PERTURBATION… THIS SCALING (FIELD LINE RANDOM WALK) IS 
TYPICALLY NOT RIGHT, AS SHOWN IN SIMULATIONS, BUT IT REPRESENTS A FAIR TRY… 49



WHY WOULD YOU WANT MORE?

 THE WHOLE STRUCTURE WE BUILT APPLIES TO SMALL PERTURBATIONS—NOT ALWAYS THE 
CASE

 TURBULENCE IS COMPLICATED, MANY SUBTLE ASPECTS TO TAKE INTO ACCOUNT 
(ANISOTROPY, INTERMITTENCY, COHERENT STRUCTURES, DISSIPATION, …)

 PERPENDICULAR DIFFUSION IS STILL SUBJECT TO MUCH DEBATE, SEMI-ANALYTIC 
APPROACHES OFTEN DO NOT COMPARE WELL WITH SIMULATIONS

 THERE ARE SITUATIONS IN WHICH ONE OR THE OTHER OF THE ASSUMPTIONS FAILS

 DIFFERENT TYPES OF PROBLEMS ARE TREATED WITH DIFFERENT APPROACHES: PIC/
HYBRID SIMS., SYNTHETIC TURBULENCE, MHD TURBULENCE, …) WHICH THEMSELVES 
HAVE DIFFERENT CAVEATS



NUMERICAL SIMULATIONS OF PARTICLE DIFFUSION:

SYNTHETIC TURBULENCE
YOU CAN FIX THE SPECTRUM AND MORPHOLOGY OF THE TURBULENCE AND GENERATE SYNTHETIC MAPS ON 
A GRID…ON TOP OF THAT TURBULENCE YOU CAN PROPAGATE TEST PARTICLES TO INVESTIGATE THEIR 
TRANSPORT PROPERTIES

10
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C. The case �B/B0 ! 1

The particle transport in case without any (globally)
ordered magnetic field has been recently considered [22].
The high-energy limit, i.e., when the particle gyroradius
exceeds the correlation length, is known from literature
(for example, [72]) and reads:

Dxx = Dyy = Dzz =
r2
gv

2lc,iso
. (47)

This expression reflects the fact that the particle’s suc-
cessive deflections are uncorrelated, hence, the deflection
angle performs a Brownian motion. In this case, the
decorrelation required for convergence of the TGK for-
mula is accomplished due to straight line particle trajec-
tory through the magnetic fluctuations, which themselves
decorrelate over a coherence length lc.

In the low-energy limit, although there is no regular
magnetic field present at the largest scale given by the
simulation box, particles with gyroradii smaller than the
correlation length approximately gyrate along the local
magnetic field. The direction/structure of the local field
is determined by fluctuations near the scale of the cor-
relation length lc, where most of the turbulence energy
resides. Both FLRW and resonant scattering in the lo-
cal field a↵ect particle di↵usion. Here we quote the ar-
guments of Ref. [22] and introduce the final analytical
expressions useful for practical proposes since they were
omitted in the original work.

The starting point is the QLT pitch angle di↵usion
coe�cient, properly modified to take into account the
scattering at µ ⇠ 0, that is,

Dµµ =
⇡↵2(1 � µ2)

v
Ey

✓
kz =

⌦g

v

◆
. (48)

Here Ey(kz) =
R
dkxdkySyy(k), ↵ = q/m�c and ⌦g =

↵B, where B is the local field. Note that the reduced
spectrum is the Fourier transform of the corresponding
spatial correlation function Eq. (6) with respect to a sin-
gle coordinate, the other spatial lags set to zero, i.e.,
Ey(kz) = 1

2⇡

R
dzRyy(0, 0, z) exp (�ikzz). We remark

that the one-dimensional reduced spectrum Ey(kz) rep-
resents the energy associated with y fluctuations reduced
by integrating on kx and ky; this di↵ers from the omni-
directional spectral energy E(k) = 2⇡k2Siso(k), though
they have the same dimensions and are functionally re-
lated [37]. Moreover, as discussed above, the resonance
is provided by the local field B.
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FIG. 1. Pitch angle di↵usion coe�cient Dµµ for slab tur-
bulence, as a function of µ, evaluated at the time lag �t =
10�2�k/c (solid red) and �t = 10�1�k/c (solid green), for the
case rL/lslab = 0.02 and �Bslab/B0 = 10�2. The dashed gray
line is the theoretical prediction of QLT (Eq. 26).

By adopting the spectrum in Eq. (20) and by averag-
ing the pitch angle di↵usion coe�cient on a Maxwellian
distribution of the local magnetic field strength, we get:

D̄µµ =

p
2⇡C(4, s)(1 � µ2)

s(s + 2)

v

liso

✓
liso
rg

◆2

I

 
s,

p
3rg

liso

!
,

(49)
where the gyroradius rg is computed using �Brms and

I(s,R) =

Z 1

0
d⇠ ⇠2e�⇠2/2

1 + (1 + s)
⇣

⇠
R

⌘2

✓
1 +
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⌘2
◆ s

2+1
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Finally, by expanding D̄µµ in the limit rg/liso ⌧ 1 and
inserting in Eq. (27), we obtain:

�iso =
3liso
8

A(siso)

✓
rg

liso

◆2�s

, (51)

where �iso = �k = �xx = �yy = �zz and

A(s) =

✓
2
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◆s/2 s(s + 2)

s + 1

�
�

s�1
2

�

�
�

s
2 + 2

�
�
�

3�s
2

� . (52)

In the case of Kolmogorov slope, we recover the scaling
�iso ⇠ (rg/liso)1/3. For a Kraichnan inertial range with

slope �3/2 this becomes �iso ⇠ (rg/liso)
1
2 .

In Ref. [22], authors also developed an extended
low-energy theory, based on the idea that particles
make an unperturbed orbit along the local mean mag-
netic field. Hence, the mean perpendicular displace-
ment is about rg and Ey(kz) is evaluated as Ey(kz) =R
dkxdkySyy(k)e�k2

?r2
g/6. Again, after expanding the ex-

pression in the limit rg/liso ⌧ 1, we retrieve:

�iso =
3liso
8

A(siso)

B(siso)

✓
rg

liso

◆2�s

, (53)

Dundovic+2021

FOR INSTANCE YOU CAN STUDY THE PITCH ANGLE 
DIFFUSION COEFFICIENT AND COMPARE IT WITH THE 
QUASI-LINEAR-THEORY WE INVESTIGATED

THE RESULTS ARE IN EXCELLENT AGREEMENT FOR 
SMALL VALUES OF δB/B0 AND AWAY FROM μ=0

AT μ=0 THE SIMULATIONS SHOW THAT THE RESONANCE 
IS BROAD ENOUGH FOR PARTICLES TO CROSS OVER…
THIS CAN ALSO BE UNDERSTOOD IN A PHYSICAL 
MANNER (FOR FINITE VALUES OF δB/B0)
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NUMERICAL SIMULATIONS OF PARTICLE DIFFUSION:

SYNTHETIC TURBULENCE 16
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FIG. 9. Parallel (triangles) and perpendicular (circles) mean
free paths as functions of rg/liso for several values of �B/B0

(di↵erent colours). The top panel refers to Kolmogorov tur-
bulence and the bottom to Kraichnan turbulence. Parallel
mean free path scales as r1/3

g and r1/2
g for Kolmogorov and

Kraichnan cases, respectively (yellow dashed lines). The sim-
ulations were performed on 2048 and 1024 grids.

range of turbulence, and therefore to a regime in which
there is resonant scattering, one finds that the paral-
lel and perpendicular di↵usion coe�cients have di↵erent
energy dependence. On the other hand, as expected,
increasing the turbulence amplitude �Biso/B0, the dif-
ference between �k and �? reduces towards the limiting
case of no background magnetic field. In that case, there
is, as expected, no distinction between parallel and per-
pendicular directions.

Our simulations, having a large dynamical range com-
pared with previous investigations of this problem, con-
firm previous hints [7] of a di↵erent energy dependence
of the parallel and perpendicular di↵usion coe�cients for
�Biso/B0 . 1. Since there are no theoretical predictions
for the case of particle transport in isotropic turbulence
in the presence of an ordered magnetic field to compare
our simulations against, we have derived these predic-
tions by the straightforward application of NLGC and
UNL theories, as shown above, although, with with the
explicit assumption �Bz = 0 to simplify the presentation.
Unfortunately, both theories return predictions that are
at odds with the results of the simulations, suggesting

that they miss some important pieces of physics of trans-
port in this situation. This can be clearly observed from
Figure 10, where we show the energy dependence of the
ratio of the perpendicular and parallel di↵usion coe�-
cients, especially in the region rg < lc. The dashed lines
in the same figure represent the results of NLGC calcu-
lation for the 3D isotropic model of turbulence, Eq. (40),
while dot dashed lines refer to UNLT, Eq. (45). Both
theories have been evaluated with a2 = 1/3 and simu-
lations points have been used for the Dk input. Fig. 10
displays results only for the Kolmogorov case, for the
sake of clarity, but the same trend is also found in the
Kraichnan case. We stress once more that the problem
is not related to the fact that we neglected the contribu-
tion due to non vanishing �Bz, which can be shown to
be negligible in terms of perpendicular di↵usion.

There is no doubt that further theoretical investigation
is needed to understand the physical reason for the trend
in the ratio. We stress once more that the increasing
trend as a function of energy is opposite to that found
in the case of slab/2D turbulence model discussed above,
where the NLGC theory provides at least a qualitatively
correct description of the results of simulations.

The change of slope of the D?/Dk ratios in the iner-
tial range is also demonstrated in Fig. 11. It displays
the slope for both Kolmogorov (top) and Kraichnan (bot-
tom) models of turbulence as a function of �Biso/B0. The
di↵erent colours of the points correspond to the di↵erent
fitting procedures for obtaining the slope, performed as
follows. For each value of �Biso/B0, we have first se-
lected the optimal range of Larmor radii, within the in-
ertial range defined as where Dk / r2�s

g where s refers
to the spectral index. The results of fits performed on
this “best” range are displayed as the red points. Then,
to verify if the selection procedure of the fit range is not
determining the results, we have repeated the procedures
by reducing the fit range, i.e., by removing edge points.
In particular, we have excluded one point at high-energy
(blue); one point at low-energy (green); or one point at
high-energy and another point at low-energy (orange).
The results of fitting procedures in di↵erent ranges are
consistent among themselves, demonstrating the robust-
ness of the slope results.

V. DISCUSSION AND CONCLUSIONS

We performed numerical simulations of CR transport
in synthetic turbulence in the case of slab, slab/2D and
isotropic turbulence. The dynamical range achieved in
these simulations allows us to reach solid conclusions con-
cerning the energy dependence of the di↵usion coe�cient
in the directions parallel and perpendicular to the large
scale ordered magnetic field B0. For the case of isotropic
turbulence (�Bz 6= 0), we also extend previous simula-
tions [7, 22] to cover a larger dynamical range.

The numerical approach has been tested versus the
case of slab turbulence with di↵erent levels of turbu-

Dundovic+2021

ONE CAN ALSO CALCULATE THE PATH LENGTH FOR PARALLEL AND 
PERPENDICULAR DIFFUSION FOR DIFFERENT TURBULENT SPECTRA (THIS 
IS FOR KOLMOGOROV): 

NOTICE THAT THESE SIMULATIONS ARE EXTREMELY CHALLENGING 
NUMERICALLY, BECAUSE YOU NEED TO HAVE IN THE SAME BOX THE 
LARGE SCALES (>>COHERENCE), IMPORTANT FOR PERPENDICULAR 
TRANSPORT AND THE SMALL SCALES (<<LARMOR RADIUS) TO 
IDENTIFY THE RESONANCES

BOTH D⫽ AND D⫠ GROW WITH ENERGY BUT THERE IS EVIDENCE 
THAT THE ENERGY DEPENDENCE IS DIFFERENT

WE TRIED TO UNDERSTAND THIS IN THE CONTEXT OF THE SO-
CALLED NON-LINEAR GUIDING CENTER THEORY, BUT WE FAILED. 
THERE IS AT PRESENT NO EXPLANATION FOR THIS BEHAVIOUR
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FIG. 10. D?/Dk ratio as a function of gyroradius for di↵erent
values of �B/B0 with the Kolmogorov spectrum. Dashed and
dot dashed lines respectively represent predictions of NLGC
[Eq. (40)] and UNL theories [Eq. 45] for isotropic turbulence,
both evaluated with a2 = 1/3 and where, for the Dk input,
simulation points are used. Gray dotted lines are fits to the
inertial range behavior as used in Fig. 11.

lence �B/B0: the results of numerical simulations for
the pitch angle di↵usion coe�cient and the spatial di↵u-
sion coe�cient are in excellent agreement with QLT as
long as �B/B0 . 0.05. For larger levels of turbulence,
0.05 . �B/B0 . 0.5, the second order QLT provides a
better description of numerical results. For even larger
levels of turbulence, the parallel mean free path derived
numerically seems to be in between the predictions of
QLT and SO-QLT. The behaviour of the pitch angle dif-
fusion coe�cient derived from simulations clearly shows
the resonance broadening around µ ⇠ 0 where QLT be-
comes problematic (the 90o problem).

The slope of Dk as a function of energy, at low en-
ergies is always consistent with what would be naively
expected from QLT for the given spectrum of turbulence
(for instance the slope is 1/3 for Kolmogorov turbulence),
provided the resonant scale k is resolved by the numer-
ical simulation. Typically in the simulations the latter
scale is between two and three orders of magnitude be-
low the correlation length, lslab, for slab turbulence. At
high energies, for which rg � lslab, we find Dk / r2

g , as
expected.

For slab/2D turbulence, the situation is more com-
plex. We investigated two configurations in which energy
is shared between 2D and slab turbulence as 80%/20%
and 50%/50% respectively. The case we investigated has
�B/B0 = 0.3, with �B2 = �B2

slab + �B2
2D. In both cases

and for the whole range of Larmor radii here considered,
the parallel path length is in good agreement with SO-
QLT, thus confirming the powerful nature of this theo-
retical approach, despite its perturbative origin. In the
same conditions the perpendicular path length is basi-
cally energy independent in the low energy regime.

Simulation results for the composite model of turbu-
lence have been also compared with the predictions of
the NLGC and UNL theories for the D?/Dk ratio. Since

FIG. 11. Slope of D?/Dk as a function of �Biso/B0 for the
Kolmogorov (top) and Kraichnan (bottom) spectra. Di↵er-
ent colours correspond to di↵erent ranges of Larmor radii
over which the fitting procedure has been implemented as
described at the end of Sec. IV D.

both theories require as an input the parallel path length,
we adopted �k resulting from SO-QLT, while we consid-
ered a2 = 1/3 [68]. A good agreement between numerical
simulations and theories is recovered in the 80% � 20%
case, while a more significant disagreement is found in
the 50% � 50% case. Moreover UNLT yields slightly
more accurate results with respect to the NLGC the-
ory. We also remark that, the single transition recovered,
for both NLGC and UNL theories, in the ration �?/�k
occurs at rg ⇠ lslab, while no transitions are found at
rg ⇠ l2D = 0.1lslab. This may suggest that, within such
theories, the qualitative behavior of the ratio �?/�k is
mainly governed by �k.

One should also keep in mind that UNL and NLGC
theories make use of a free parameter a2 which is some-
how tuned to fit data or simulations, which is a weak
point of this approach. In our calculations for the
slab/2D case, as in much of the literature, we assume
a2 = 1/3, but it is possible that a di↵erent choice of
a2, perhaps depending on the turbulence intensity, might
provide a better agreement with the simulated D?/Dk.
A rule of thumb seems that the agreement of the NLGC
results with simulations is better when most of the power
is concentrated in the 2D component of the turbulence.
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NUMERICAL SIMULATIONS OF PARTICLE DIFFUSION:

MHD TURBULENCE
INSTEAD OF GENERATING THE TURBULENCE IN A SYNTHETIC MANNER, ONE CAN USE MHD SIMULATIONS OF 

A PLASMA AND STIR THE BOX UNTIL TURBULENCE DEVELOPS 

THE TURBULENCE THAT RESULTS FROM THIS PROCEDURE OFTEN DEPENDS ON THE WAY YOU STIR, BUT SOME 

GENERAL CONSIDERATIONS CAN BE IDENTIFIED:

 IN THE PRESENCE OF AN ORDERED FIELD, ALFVENIC TURBULENCE DEVELOPS ANISOTROPICALLY, WITH 

PERP PREVAILING OVER KPARALLE (THIS PHENOMENON IS KNOWN AS GOLDREICH-SHRIDHAR SPECTRUM) 

AND THE POWER IN PARALLEL MODES QUICKLY BECOMES TO SMALL TO BE HELPFUL FOR SCATTERING (LACK 

OF RESONANCES). DEEP IMPLICATIONS FOR CR (E.G. YAN & LAZARIAN 2004)

 THE SPECTRUM OF FAST MAGNETOSONIC MODES SEEM TO CASCADE ISOTROPICALLY, BUT DAMPING???

 AT SOME SMALL SCALES (THAT IN THE SIMULATIONS ARE DICTATED BY NUMERICS) DISSIPATION OCCURS

 ON THESE SCALES, IN NATURE, ONE CAN EXPECT RECONNECTION EVENTS (SEE LECTURES BY SIRONI)
53



NUMERICAL SIMULATIONS OF PARTICLE DIFFUSION:

MHD TURBULENCE

the timescales involved. The acceleration process is similar to a
first-order mechanism in which the particle trajectory in the
plane perpendicular to the local magnetic field encounters a
gradient of plasma velocity (i.e., of the induced electric field).

The paper is structured as follows. In Section 2 we present
the MHD simulations adopted in the present work, while in
Section 3 we describe the test-particle code and the first results
obtained in terms of physical space transport. Then, in
Section 4 we focus on the main numerical outcomes of the
work concerning particle energization. Section 5 discusses a
simple model of the acceleration region and derives the main
properties of the acceleration mechanism and the main
timescales involved. Moreover, we discuss the implication of
our findings for astrophysical systems. Finally, in Section 6 we
conclude by summarizing our results and illustrating future
developments.

2. MHD Simulation Background

In order to study the transport and acceleration of charged
test particles, we follow particle evolution in electromagnetic
fields obtained through incompressible three-dimensional
MHD simulations. These simulations solve the following set
of equations:

u
u u j B u

t
P

1 1
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r r
n

¶
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+  = -  + ´ + ( · ) ( )

B
u B B u B

t
, 22h

¶
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+  =  + ( · ) ( · ) ( )

u B 0, 3 =  =· · ( )
where u(r, t) is the magnetofluid speed composed only of its
fluctuating part, and B(r, t) is the magnetic field that is
decomposed into a uniform mean B0 and a zero-mean
fluctuation b, B(r, t)=B0 + b(r, t)= B0ez+ b(r, t). Further-
more, P is the thermal pressure, and ρ is the magnetofluid
density. The current density is j=∇× B, while ν and η are the
viscosity and resistivity, respectively. The flow is incompres-
sible ∇ · u= 0, and the density is uniform constr = .

Lengths, time, and velocities in Equations (1)–(3) are
respectively normalized to a typical length LA, time tA, and to
the Alfvén speed v L t B m n4A A A pp= = ¯ ¯ , where B̄ and n̄
are reference values for the magnetic field and for the
background number density. We here adopt LA= 81.5 pc,
corresponding to Lbox= 512 pc, while B G1m=¯ and n =
1 cm 3- . Unless specified, hereafter we assume normalized
variables.

Equations (1)–(3) are solved in a 3D Cartesian periodic box
of size Lbox= 2π, with spatial resolution Nx= Ny= Nz= 1024
adopting a pseudo-spectral method in a Fourier basis. The time
advancement is performed with a second-order Runge–Kutta
scheme and the 2/3 rule for spatial dealiasing is chosen
(Patterson & Orszag 1971). Small values of resistivity and
viscosity η= ν= 2× 10−4 are introduced to define the well-
resolved spectral domain. The dissipative wavenumber kdiss
(the reciprocal of the Kolmogorov length scale) for the
considered runs is always smaller by a factor 2 than the
maximum resolved wavenumber kmax (for further details, see
Bandyopadhyay et al. 2018).

Large-scale uncorrelated fluctuations of u and b are
introduced at t= 0 and turbulence develops, producing small-
scale fluctuations. We focused here on the case with

urms= brms= 1 and B0= 0. The role of a finite background
magnetic field and compressibility will be discussed in a
separate forthcoming work. We then selected the time instant at
which the turbulent activity is strongest (i.e., highest dissipa-
tion). The complex and highly structured pattern of the
turbulence is displayed in Figure 1, showing the contour plot
of j in the 3D domain. Vortices and magnetic islands, as well as
intense current sheets where magnetic reconnection may be at
work, naturally emerge as elementary structures of the
turbulent flow. The omnidirectional spectrum of magnetic
energy (Figure 2) indicates that an inertial range, whose length
is about a decade in wavenumber space, develops before
dissipative effects steepen the spectrum at higher wavenumber
k. In the inertial range, the slope is rather compatible with either
the Kolmogorov or Kraichnan predictions; these are respec-
tively displayed in green and orange dashed lines in Figure 2
(see also the inset in the same figure). By numerically
evaluating the correlation length lc of the magnetic field, we
find lc= 0.218 (lc= 17.7 pc in physical units), corresponding
to protons with energy E∼ 16 PeV in the typical field B̄.

Figure 1. Rendering of the current density j2(r) shows a plethora of intermittent
coherent structures. Such structures form a template for the possibility of rare
acceleration events.

Figure 2. Omnidirectional spectrum of the magnetic energy. The green dashed
(orange dotted–dashed) line shows the Kolmogorov (Kraichnan) prediction.
The small inset displays the magnetic energy spectrum compensated by the
Kolmogorov (green dashed) and the Kraichnan (orange dotted–dashed) slope.
The gray dashed vertical lines indicate the wavenumber associated with the
initial particle gyroradius.
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the timescales involved. The acceleration process is similar to a
first-order mechanism in which the particle trajectory in the
plane perpendicular to the local magnetic field encounters a
gradient of plasma velocity (i.e., of the induced electric field).

The paper is structured as follows. In Section 2 we present
the MHD simulations adopted in the present work, while in
Section 3 we describe the test-particle code and the first results
obtained in terms of physical space transport. Then, in
Section 4 we focus on the main numerical outcomes of the
work concerning particle energization. Section 5 discusses a
simple model of the acceleration region and derives the main
properties of the acceleration mechanism and the main
timescales involved. Moreover, we discuss the implication of
our findings for astrophysical systems. Finally, in Section 6 we
conclude by summarizing our results and illustrating future
developments.

2. MHD Simulation Background

In order to study the transport and acceleration of charged
test particles, we follow particle evolution in electromagnetic
fields obtained through incompressible three-dimensional
MHD simulations. These simulations solve the following set
of equations:

u
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where u(r, t) is the magnetofluid speed composed only of its
fluctuating part, and B(r, t) is the magnetic field that is
decomposed into a uniform mean B0 and a zero-mean
fluctuation b, B(r, t)=B0 + b(r, t)= B0ez+ b(r, t). Further-
more, P is the thermal pressure, and ρ is the magnetofluid
density. The current density is j=∇× B, while ν and η are the
viscosity and resistivity, respectively. The flow is incompres-
sible ∇ · u= 0, and the density is uniform constr = .

Lengths, time, and velocities in Equations (1)–(3) are
respectively normalized to a typical length LA, time tA, and to
the Alfvén speed v L t B m n4A A A pp= = ¯ ¯ , where B̄ and n̄
are reference values for the magnetic field and for the
background number density. We here adopt LA= 81.5 pc,
corresponding to Lbox= 512 pc, while B G1m=¯ and n =
1 cm 3- . Unless specified, hereafter we assume normalized
variables.

Equations (1)–(3) are solved in a 3D Cartesian periodic box
of size Lbox= 2π, with spatial resolution Nx= Ny= Nz= 1024
adopting a pseudo-spectral method in a Fourier basis. The time
advancement is performed with a second-order Runge–Kutta
scheme and the 2/3 rule for spatial dealiasing is chosen
(Patterson & Orszag 1971). Small values of resistivity and
viscosity η= ν= 2× 10−4 are introduced to define the well-
resolved spectral domain. The dissipative wavenumber kdiss
(the reciprocal of the Kolmogorov length scale) for the
considered runs is always smaller by a factor 2 than the
maximum resolved wavenumber kmax (for further details, see
Bandyopadhyay et al. 2018).

Large-scale uncorrelated fluctuations of u and b are
introduced at t= 0 and turbulence develops, producing small-
scale fluctuations. We focused here on the case with

urms= brms= 1 and B0= 0. The role of a finite background
magnetic field and compressibility will be discussed in a
separate forthcoming work. We then selected the time instant at
which the turbulent activity is strongest (i.e., highest dissipa-
tion). The complex and highly structured pattern of the
turbulence is displayed in Figure 1, showing the contour plot
of j in the 3D domain. Vortices and magnetic islands, as well as
intense current sheets where magnetic reconnection may be at
work, naturally emerge as elementary structures of the
turbulent flow. The omnidirectional spectrum of magnetic
energy (Figure 2) indicates that an inertial range, whose length
is about a decade in wavenumber space, develops before
dissipative effects steepen the spectrum at higher wavenumber
k. In the inertial range, the slope is rather compatible with either
the Kolmogorov or Kraichnan predictions; these are respec-
tively displayed in green and orange dashed lines in Figure 2
(see also the inset in the same figure). By numerically
evaluating the correlation length lc of the magnetic field, we
find lc= 0.218 (lc= 17.7 pc in physical units), corresponding
to protons with energy E∼ 16 PeV in the typical field B̄.

Figure 1. Rendering of the current density j2(r) shows a plethora of intermittent
coherent structures. Such structures form a template for the possibility of rare
acceleration events.

Figure 2. Omnidirectional spectrum of the magnetic energy. The green dashed
(orange dotted–dashed) line shows the Kolmogorov (Kraichnan) prediction.
The small inset displays the magnetic energy spectrum compensated by the
Kolmogorov (green dashed) and the Kraichnan (orange dotted–dashed) slope.
The gray dashed vertical lines indicate the wavenumber associated with the
initial particle gyroradius.
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MANY GROUPS HAVE CARRIED OUT THE EXERCISE OF GENERATING 
MHD TURBULENCE AND DESCRIBE PARTICLE TRANSPORT

THE DYNAMIC RANGE IS TYPICALLY VERY SMALL AND IT IS 
DIFFICULT TO INFER VERY DEEP CONCLUSIONS ON CR TRANSPORT 
IN THE RANGE WE ARE INTERESTED IN

3. Methods: Test-particle Propagation Details

We numerically integrate the motion equations of Np= 105

relativistic test particles of positive charge e and mass mp
moving in the turbulent electromagnetic field obtained by
means of the incompressible MHD simulations described
above. The normalized particle equations of motion are

x
v

d
dt

, 4= ( )

p
E v B

d
dt

, 5a= + ´( ) ( )

where x= (x, y, z), v, and p= γv are the particle position,
velocity, and momentum, while E and B are the electric and
magnetic fields. Equations (4)–(5) are scaled analogously to
MHD simulations. In normalized units, the Lorentz factor reads

v p1 1 1A A
2 2g b b= - = +( ) ( ) , where βA= vA/c. The

electric field in Equation (5) is derived through Ohm’s law:
E=−u× B+ ηj.

The parameter α= tAΩ0, where eB m cp0W = ¯ is the proton
cyclotron frequency, can be easily rewritten as α= LA/dp, with
dp the proton skin depth of the background plasma. α is thus
connected to the extension of the inertial range of the
turbulence with respect to kinetic, dissipative scales (Dmitruk
et al. 2004; González et al. 2016). In a βp∼ 1 plasma (with βp
the thermal to magnetic pressure ratio), the parameter α
corresponds to the inverse of the normalized gyroradius of
nonrelativistic particles moving with speed∼ vA. Previous
works considering the injection of thermal particles into the
acceleration region were hence forced to reduce α to much
smaller and computationally feasible values. Such a require-
ment provides particles with a gyroradius at least larger than
the grid size, so that resonant scattering might be properly
taken into account. On the other hand, relativistic particles
moving at the speed of light have a much larger gyroradius
because γ? 1, thus removing the constraint on the value of α.
For the parameters described above, α∼ 1012 and βA∼ 10−5.
To save computational resources, we only artificially increase
βA= 5× 10−2.

Because we are interested in the energization of relativistic
particles moving in a nonrelativistic environment, we assume
stationary electromagnetic fields, i.e., ∂B/∂t= ∂E/∂t= 0
(magnetostatic approximation), and we consider a static
snapshot of these fields when turbulence is fully developed.

Equations (4)–(5) are integrated by adopting the relativistic
Boris method (Ripperda et al. 2018; Dundovic et al. 2020). The
electric and magnetic fields are interpolated at the particle
position through a trilinear interpolation method (Birdsall &
Langdon 2004). We verified that the results presented here are
not affected by adopting a more accurate yet significantly
slower 3D cubic spline method (not shown here). Particles are
injected homogeneously throughout the computational box at a
given energy and with isotropic velocity direction on the unit
3D sphere. The time step is set to 1/50 of the initial gyroperiod.

Most of the results here adopt the initial gyroradius to be
rg,0; 0.1lc= 0.02, corresponding to E0; 1.6 PeV. The reso-
nant wavenumber k r1 50r gg = = , reported in Figure 2 with a
vertical dashed gray line, resides in the inertial range of
turbulence, and it is also quite far from the dissipative scales
where the resistive electric field is expected to become
important. This ensures that the acceleration process studied
here is mainly driven by the inductive electric field, this being

the most relevant term for analyzing the energization of
relativistic particles whose gyroradius is much larger than the
typical length where dissipative and resistive effects are
expected to steepen the magnetic spectrum. To double-check,
we also verified that our results are not affected by the resistive
field, in that if we exclude the resistive component from the
computation of the electric field, the energization process is
basically unchanged. This shows that for the high-energy
particles we are interested in, namely when the Larmor radius
exceeds the thickness of the reconnection regions, the
energization is not due to the resistive fields but rather to the
induced electric fields due to the plasma motion.
Although here we are most interested in how particles react

to electric fields in the simulation box, it is first worth studying
how particles move in the magnetic field, especially to confirm
that we find diffusive motion and to identify possible
differences with respect to cases where turbulence is synthetic
rather being the result of an MHD simulation.
In order to study particle transport in physical space, we

performed a subset of test-particle simulations by excluding the
electric field. A diffusive regime after a ballistic transient is
always recovered. When reaching the diffusive plateau, the
isotropic diffusion coefficient is computed as Diso= (Dxx+
Dyy+Dzz)/3 with

D t
x t

t2
. 6xx

2
D =

á D D ñ
D

( ) ( ( )) ( )

Figure 3 shows the isotropic mean free path λiso= 3Diso/c as
a function of the particle gyroradius rg, normalized in the usual
way to the correlation scale lc. The typical behavior of the path
length as a function of energy is the same as that found in
synthetic turbulence, with a low-energy trend that reflects the
shape expected from a given isotropic power spectrum (Subedi
et al. 2017; Dundovic et al. 2020). In particular, the dotted–
dashed red line in Figure 3 implements Equation (53) of
Dundovic et al. (2020) for the Kolmogorov case, where liso is
the bend-over scale of the synthetic model in Dundovic et al.
(2020), being liso∼ 2lc. At variance with synthetic models of
the turbulent field, the slope of the isotropic power spectrum is
not very well defined here because of the limited dynamical
range (see Figure 2).

Figure 3. Mean free path λiso as a function of the particle gyroradius. The
vertical dashed and dotted–dashed gray lines correspond to the particle
gyroradius adopted here and to the gyroradius corresponding to the dissipative
scale, respectively. The blue dotted–dashed line refers to the QLT prediction
D rgiso

2~ obtained for rg  lc. The red dashed line reports the prediction of
Subedi et al. (2017) (Equation (53) of Dundovic et al. (2020)).
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SO FAR SO GOOD…BUT SOMETHING NEW 
POPPED OUT — PARTICLE TRAPPING

RELATIVISTIC PARTICLE TRANSPORT AND ACCELERATION IN STRUCTURED PLASMA TURBULENCE 9

Figure 8. Particle trajectory in the 3D domain, being points coloured with the particle energy, where the color scale goes from blue to red as the
particle energy increases. Magnetic field lines, coloured with the magnitude of the magnetic field itself (again from blue to red as the magnetic
field magnitude is larger), indicate that the particle is trapped in a flux tube and it is accelerated when the flux-tube is feeling the gradients
associated with the interaction with another large-scale structure. The right panel shows a inset of the left plot zoomed in the trapping region
and limited in time to few particle gyrations. The green line in each panel corresponds to the correlation length lc.

the magnetic field: in particular, a non-null magnetic helicity
indicates twisted, helical magnetic structures.

The values of these variables at the particle position are
displayed in Fig. 9. The exponential phase is limited by the
green dashed vertical lines. The structure responsible for the
exponential growth of the particle energy is a relatively quiet
region in which the current density is relatively smooth. In
comparison, the current outside the structure easily reaches
intense values j & 4jrms, but such intense peaks are not evi-
dent within the structure. The magnetic fluctuations are also
less intense within the structure, as the r.m.s. value of mag-
netic fluctuations reduces there by a factor 3� 4 with respect
to the global value.

The structure is furthermore characterized by a finite mag-
netic helicity, suggesting a flux-tube and/or plasmoid-like
shape where magnetic field lines wrap helically on them-
selves. A finite magnetic helicity also suggests that the struc-
ture tends to be force-free as a||b ! j||b, i.e. it may be
a large-scale quasi-equilibrium structure typical of intermit-
tent plasma turbulence, where nonlinearities are deplected
(Matthaeus et al. 2015).

The properties of the particle trapped in the accelerating
coherent structure are also remarkable. The top panel of Fig.
10 illustrates the pitch-angle cosine of the particle, here de-
fined as

µloc =
B · v
|B||v| = cos ✓vB, (8)

since the regular field is absent.

Figure 9. Current density j = r ⇥ B (top), scaled to its r.m.s.
value, and normalized magnetic helicity hm = a · B/(|a||B|)
(bottom), computed at the particle position, as a function of time.
The red dashed line corresponds to a large-scale current average
performed over �t ' 0.5lc/vA.

A FEW OUT OF 100,000 PARTICLES SEEM TO EXPERIENCE THIS PHENOMENON— 
BUT THOSE FEW PARTICLES BEHAVE IN VERY PECULIAR MANNER

Pezzi, PB & Matthaeus 2022



PARTICLE TRAPPING — 
EXPONENTIAL ENERGY INCREASE

✤ FOR THE LONGEST TIME 
PARTICLES SIMPLY DIFFUSE IN 
SPACE (AND ENERGY)

✤ THEN EVENTUALLY A FEW OF 
THEM GET TRAPPED 
SOMEWHERE

✤ DURING THOSE PERIODS THE 
ENERGY GROWS 
EXPONENTIALLY

✤ …UNTIL THEY EVENTUALLY 
ESCAPE THE TRAPPING REGION

8 PEZZI ET AL.
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Figure 7. Typical behavior of a trapped particle showing an expo-
nential growth of energy, that occurs within the two vertical green
dashed lines. The particle gyroradius for the trapped particles in-
creases exponentially over a time-scale ⌧ & 10lc/vA. This growth
is much faster than the growth of the averaged gyroradius, where
the average is performed on the full ensemble of test-particles (red
dashed line). The dashed red area represents the standard deviation
of the averaged gyroradius. The bottom panel shows the particle
trajectory illustrating that the particle is trapped.

processes and a role of mirroring or drifts. The multiscale
complexity of the overall energization dynamics is evidenced
by the appearance of at least four timescales in Figure 7 – the
exponential time scale, the gyromotion, the modulation seen
in the inset, and the second order energy gain seen to the left
and right sides of the exponential phase.

The peculiar behaviour of the particles during the expo-
nential phase is best illustrated in the bottom panel of Fig.
7, where we show the particle’s trajectory. One can see that
during the stage of exponential energy growth, the particle
is trapped in a small region of the computational domain of
size ⇠ 0.5lc. In fact, the spatial excursion per unit lc/vA is
about ten times smaller between the dashed lines than outside
that region. The particle escapes from the trapping region
when its gyroradius becomes comparable with the island size
lisl ⇠ lc.

The phenomenology of this trapping can be also appreci-
ated by looking at the particle trajectory in the 3D domain.
Fig. 8 shows the particle trajectory as dots coloured with the

particle energy, where the color scale goes from blue to red
as particle energy increases. Magnetic field lines near the
trapping region are also displayed, coloured with the ampli-
tude of the field itself (again going from blue to red as the
magnetic field amplitude increases). When the particle is not
trapped, it carries out an erratic motion in the whole com-
putational domain, akin to an unconstrained random walk.
The trapping is associated with a spherical-like motion con-
strained within a flux-tube like structure. The energization
occurs when the flux-tube is perturbed by another large-scale
structure, more easily appreciated in the right panel of Fig.
8. This confirms the scenario that an intense acceleration
can occur when magnetic islands and, more in general, large-
scale plasma structures, are interacting (collapsing, merging,
etc) with other similar structures (Drake et al. 2006; Kowal
et al. 2011), leading to a locally strong magnetic field gradi-
ent.

It is important to point out here that there is not an evident
association of the structure responsible for the exponential
growth of the particle energy with the process of magnetic
reconnection. Magnetic reconnection is a sufficient condi-
tion for generating large-scale islands where particles can be
trapped. Indeed, it can be expected that when magnetic field
reconnects in a turbulent environment, the magnetic islands
produced by reconnection interact, thus allowing the intense
and fast energization process. However it is apparently not
necessary that reconnection be present during the energiza-
tion process itself. Other configurations without the explicit
invocation of magnetic reconnection, such as the interaction
of two large-scale turbulent structures (e.g. flux ropes, as re-
cently reported in recent Parker Solar Probe observations by
Pecora et al. (2021)), may provide a similar behavior, pro-
vided that the magnetic geometry of the interaction region
favors particle trapping. We remark that the direct accelera-
tion due to the electric field at the reconnection site is neg-
ligible for the relativistic particles considered in the present
work, given that such particles have a gyroradius much larger
than the typical width of current sheets.

4.3. Characterization of trapping and concomitant energy
gain

In order to characterize the coherent structure that entraps
and gives a significant boost to the particle energy, we cal-
culate the current density j = r ⇥ B and the normalized
magnetic helicity hm = a ·B/(|a||B|), being B = r⇥ a,
interpolated at the particle position. The current density is
a direct proxy of the small-scale gradients of the magnetic
field and an intense current density is expected to highlight
small-scale structures and current sheets where magnetic re-
connection and, in general, dissipative processes may occur
(see Pezzi et al. (2021a) and references therein). On the
other hand, the magnetic helicity measures the topology of

Pezzi, PB & Matthaeus 2022



SELF-GENERATION OF PERTURBATIONS
CHARGED PARTICLES MOVING IN A PLASMA CAN GENERATE UNSTABLE ALFVEN MODES WHICH IN TURN 
LEAD TO AN ENHANCEMENT OF PARTICLE SCATTERING: WE CALL THIS PHENOMENON SELF-GENERATION, 
AND WILL BE COVERED IN DETAIL IN THE LECTURES OF A. MARCOWITH

THE FORMAL DERIVATION RELIES ON AN ANALYSIS NOT VERY DIFFERENT FROM THE ONE DISCUSSED EARLIER, 
BUT THERE IS A MORE PHYSICAL WAY TO ESTIMATE THE RATE OF GROWTH OF THESE PERTURBATIONS, AS 
SUGGESTED BY KULSRUD

DIFFUSION IN THE Z DIRECTION LEADS TO SLOWING DOWN OF THE CR BEAM: THE MEAN MOMENTUM 
DECREASES WHILE PARTICLES TRY TO SLOW DOWN FROM THEIR DRIFT SPEED TO THE ALFVEN SPEED

THIS “LOST” MOMENTUM NEEDS TO BE TRANSFERRED TO THE OTHER ACTORS ON THE SCENE (THERMAL  
MOMENTUM AND MOMENTUM OF THE WAVES)

ALL THIS SHOULD HAPPEN ON THE TIME SCALE SCALE FOR DEFLECTION BY 90 DEGREES
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SELF-GENERATION OF PERTURBATIONS

€ 

nCRmvD → nCRmVA ⇒
dPCR
dt

=
nCRm(vD −VA )

τ

€ 

γW = 2 nCR
ngas

vD −VA
VA

Ωcyc

€ 

dPw
dt

= γW
δB2

8π
1
VA

RATE OF MOMENTUM LOST BY CR BEAM                RATE OF MOMENTUM GAINED BY WAVES

BY REQUIRING A SORT OF BALANCE BETWEEN  THE TWO RATES ONE CAN ESTIMATE THE RATE OF 
GROWTH OF THE WAVES:

WITHIN A FACTOR OF ORDER 2 THIS IS THE CORRECT GROWTH RATE
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MANIFESTATIONS IN DSA
WE HAVE SEEN THAT THE SPECTRUM OF PARTICLES ACCELERATED AT A SHOCK IS A POWER LAW IN 
MOMENTUM. IN THE LECTURES OF D. CAPRIOLI YOU WILL SEE THAT FOR A STRONG SHOCK THE SLOPE IN 
MOMENTUM TENDS TO 4. IF PARTICLES CARRY AWAY A FRACTION ξCR OF THE RAM PRESSURE, IT IS EASY TO SEE 
THAT

HENCE, REPLACING IN THE PREVIOUS EXPRESSION AND REARRANGING THINGS:

UPON INTRODUCING THE ALFVEN MACH NUMBER MA=VS/VA

FOR TYPICAL
PARAMETERS
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MANIFESTATIONS IN DSA:EMAX

YOU WILL SEE IN THE COURSES OF MARCOWITH AND CAPRIOLI THAT 
1) OTHER INSTABILITIES ARE GENERATED BY THE CR STREAMING
2) THE EFFECTS OF ONE OF THOSE INSTABILITIES (NON-RESONANT CR STREAMING INSTABILITY) IS MORE 

IMPORTANT THAN THIS ONE FOR REACHING HIGH VALUES OF THE MAXIMUM ENERGY 

BUT IT IS INSTRUCTIVE TO SEE THAT SINCE MOST OF THE ACCELERATION AT THE HIGHEST ENERGIES IN 
SUPERNOVA REMNANTS OCCURS AT THE BEGINNING OF THE SEDOV-TAYLOR PHASE (TYPICALLY A FEW 
HUNDRED YEARS AFTER EXPLOSION) THE MAX ENERGY CANNOT BE HIGHER THAN A FEW TENS OF TeV

IT GETS WORSE, SINCE THE ALFVENIC MACH NUMBER RAPIDLY DROPS WITH TIME AND WE NEGLECTED 
DAMPING OF THE PERTURBATIONS, WHICH ARE CRUCIAL IN THIS PROBLEM

YOU JUST TOUCHED BY HAND WHY IT IS SO DIFFICULT TO ACCELERATE PARTICLES IN ASTROPHYSICAL 
SOURCES

…AND IN THE ABSENCE OF THESE INSTABILITIES IT IS BASICALLY IMPOSSIBLE TO REACH ENERGIES LARGER 
THAN A FEW GEV
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MANIFESTATIONS IN GALACTIC CR TRANSPORT

Galactic disc

Galactic Halo
THIS IS ANOTHER APPLICATION OF OUR SIMPLE TRANSPORT EQUATION: 
OUTSIDE THE DISC OF THE GALAXY THE SIMPLEST VERSION OF THE TRANSPORT 
EQUATION READS: 

TOGETHER WITH THE BOUNDARY CONDITION THAT F(Z=|H|)=0 (FREE ESCAPE 
BOUNDARY CONDITION) LEADS TO 

H
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MANIFESTATIONS IN GALACTIC CR TRANSPORT

IF ONE TAKES THE REFERENCE VALUES OF THE PARAMETERS FOR THE HALO, AND RECALLS THAT FOR 
PARTICLES IN THE GEV ENERGY RANGE THE PRESSURE IS SIMILAR TO THAT OF THE MAGNETIC FIELD, THE 
GROWTH TIME CAN BE ESTIMATED AS ~(H/VA)F ~ 500 YRS.

IN THE CASE OF THE GALAXY THE GROWTH OF UNSTABLE ALFVEN WAVES IN THE HALO IS MAINLY LIMITED 
BY NON-LINEAR LANDAU DAMPING, FOR WHICH

THE CR PRESSURE DROPS WITH ENERGY AS PCR~E-0.7  (PURE OBSERVATION!) HENCE:

NOTE HOW IN THESE APPROACHES THE 
DIFFUSION COEFFICIENT IS AN OUTPUT OF 
THE PROBLEM
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MANIFESTATIONS IN GALACTIC CR TRANSPORT

THE COMBINATION OF SCATTERING OFF PRE-EXISTING TURBULENCE AND SELF-GENERATED TURBULENCE 
LEADS TO A CHANGE IN D(P) AT FEW HUNDRED GV [PB, AMATO & SERPICO 2012, ALOISIO & PB 2014, 
ALOISIO, PB & SERPICO 2015, EVOLI+ 2019] — THIS PHENOMENON REFLECTS IN SPECTRAL BREAKS R. Aloisio, P. Blasi and P. D. Serpico : Non-linear cosmic ray Galactic transport in the light of AMS-02 and Voyager data (RN)

injected on a scale lc ∼ 50 − 100 pc, for instance by super-
nova explosions. This means that qW(k) ∝ δ(k − 1/lc). The
level of pre-existing turbulence is normalized to the total power
ηB = δB2/B20 =

∫

dkW(k). Strictly speaking the wave number
that appears in this formalism is the one in the direction parallel
to that of the ordered magnetic field. In a more realistic situation
in which most power is on large spatial scales, the role of the
ordered field is probably played by the local magnetic field on
the largest scale.

The term ΓCRW in Eq. (6) describes the generation of wave
power through CR induced streaming instability, with a growth
rate (Skilling 1975):

Γcr(k) =
16π2

3
vA

kW(k)B20

∑

α

[

p4v(p)
∂ fα
∂z

]

p=ZαeB0/kc
, (7)

where α is the index labeling nuclei of different types. All nu-
clei, including all stable isotopes for a given value of charge,
are included in the calculations. As discussed in much previous
literature, this is very important to compute properly the diffu-
sion coefficient and thus for a meaningful comparison with the
flux spectra and secondary to primary ratios, notably B/C. The
growth rate, written as in Eq. (7), refers to waves with wave num-
ber k along the ordered magnetic field. It is basically impossible
to generalize the growth rate to a more realistic field geometry
by operating in the context of quasi-linear theory, therefore we
will use here this expression but keeping in mind its limitations.

The solution of Eq. (6) can be written in an implicit form

W(k) =














W1+α2
0

(

k
k0

)1−α1
+

+
1 + α2
CKvA

∫ ∞

k

dk′

k′α2

∫ k′

k0
dk̃ΓCR(k̃)W(k̃)

]

1
1+α2

, (8)

being k0 = 1/lc. In the present paper we assume a Kolmogorov
phenomenology for the cascading turbulence, so that α1 = 7/2
and α2 = 1/2, and an unperturbed magnetic field B0 = 1µG.
The two terms in Eq. (8) refer respectively to the pre-existing
magnetic turbulence and the CR induced turbulence. In the limit
in which there are no CRs (or CRs do not play an appreciable
role) one finds the standard Kolmogorov wave spectrum

W(k) = W0

(

k
k0

)−s

s =
α1 − 1
α2 + 1

=
5
3

(9)

normalized, as discussed above, to the total power W0 = (s −
1)lcηB.

The equations for the waves and for CR transport are solved
together in an iterative way, so as to return the spectra of par-
ticles and the diffusion coefficient for each nuclear species and
the associated grammage. The procedure is started by choosing
guess injection factors for each type of nuclei, and a guess for
the diffusion coefficient, which is assumed to coincide with the
one predicted by quasi-linear theory in the presence of a back-
ground turbulence. The first iteration returns the spectra of each
nuclear specie and a spectrum of waves, that can be used now
to calculate the diffusion coefficient self-consistently. The pro-
cedure is repeated until convergence, which is typically reached
in a few steps, and the resulting fluxes and ratios are compared
with available data. This allows us to renormalize the injection
rates and restart the whole procedure, which is repeated until a
satisfactory fit is achieved. Since the fluxes of individual nuclei
affect the grammage through the rate of excitation of stream-
ing instability and viceversa the grammage affects the fluxes, the
procedure is all but trivial.
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Fig. 1. Spectrum of protons measured by Voyager (blue empty cir-
cles), AMS-02 (black filled circles) (Aguilar et al. 2015), PAMELA
(green empty squares) (Adriani 2011) and CREAM (blue filled squares)
(Yoon et al. 2011), compared with the prediction of our calculations
(lines). The solid line is the flux at the Earth after the correction due to
solar modulation, while the dashed line is the spectrum in the ISM.
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solid line is the flux at the Earth after the correction due to solar modu-
lation, while the dashed line is the spectrum in the ISM.

3. Results

The main evidence for a transition from self-generated waves to
pre-existing turbulence can be searched for in the spectra of the
light elements, protons and helium nuclei. A spectral break was
in fact found by the PAMELA experiment (Adriani 2011) in both
spectra and later confirmed by AMS-02, although at the time
of writing this paper only the results of AMS on protons have
been published (Aguilar et al. 2015), while a preliminary version
of the spectrum of helium has been presented (AMS-02 2015).
The spectra of both elements were also measured by the Voyager
(Stone et al. 2013) outside the heliosphere, so as to make this
the first measurement in human history of the CR spectra in the
interstellar medium. This is a very important results in that it
also allows us to refine our understanding of the effects of solar
modulation (Potgieter 2013).

The spectrum of protons and helium nuclei as calculated
in this paper is shown in Figs. 1 and 2, respectively: the solid
lines indicate the spectra at the Earth, namely after solar mod-
ulation modelled using the force-free approximation (Gleeson
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injected on a scale lc ∼ 50 − 100 pc, for instance by super-
nova explosions. This means that qW(k) ∝ δ(k − 1/lc). The
level of pre-existing turbulence is normalized to the total power
ηB = δB2/B20 =

∫

dkW(k). Strictly speaking the wave number
that appears in this formalism is the one in the direction parallel
to that of the ordered magnetic field. In a more realistic situation
in which most power is on large spatial scales, the role of the
ordered field is probably played by the local magnetic field on
the largest scale.

The term ΓCRW in Eq. (6) describes the generation of wave
power through CR induced streaming instability, with a growth
rate (Skilling 1975):

Γcr(k) =
16π2

3
vA

kW(k)B20

∑

α

[

p4v(p)
∂ fα
∂z

]

p=ZαeB0/kc
, (7)

where α is the index labeling nuclei of different types. All nu-
clei, including all stable isotopes for a given value of charge,
are included in the calculations. As discussed in much previous
literature, this is very important to compute properly the diffu-
sion coefficient and thus for a meaningful comparison with the
flux spectra and secondary to primary ratios, notably B/C. The
growth rate, written as in Eq. (7), refers to waves with wave num-
ber k along the ordered magnetic field. It is basically impossible
to generalize the growth rate to a more realistic field geometry
by operating in the context of quasi-linear theory, therefore we
will use here this expression but keeping in mind its limitations.

The solution of Eq. (6) can be written in an implicit form

W(k) =














W1+α2
0

(

k
k0

)1−α1
+

+
1 + α2
CKvA

∫ ∞

k

dk′

k′α2

∫ k′

k0
dk̃ΓCR(k̃)W(k̃)

]

1
1+α2

, (8)

being k0 = 1/lc. In the present paper we assume a Kolmogorov
phenomenology for the cascading turbulence, so that α1 = 7/2
and α2 = 1/2, and an unperturbed magnetic field B0 = 1µG.
The two terms in Eq. (8) refer respectively to the pre-existing
magnetic turbulence and the CR induced turbulence. In the limit
in which there are no CRs (or CRs do not play an appreciable
role) one finds the standard Kolmogorov wave spectrum

W(k) = W0

(

k
k0

)−s

s =
α1 − 1
α2 + 1

=
5
3

(9)

normalized, as discussed above, to the total power W0 = (s −
1)lcηB.

The equations for the waves and for CR transport are solved
together in an iterative way, so as to return the spectra of par-
ticles and the diffusion coefficient for each nuclear species and
the associated grammage. The procedure is started by choosing
guess injection factors for each type of nuclei, and a guess for
the diffusion coefficient, which is assumed to coincide with the
one predicted by quasi-linear theory in the presence of a back-
ground turbulence. The first iteration returns the spectra of each
nuclear specie and a spectrum of waves, that can be used now
to calculate the diffusion coefficient self-consistently. The pro-
cedure is repeated until convergence, which is typically reached
in a few steps, and the resulting fluxes and ratios are compared
with available data. This allows us to renormalize the injection
rates and restart the whole procedure, which is repeated until a
satisfactory fit is achieved. Since the fluxes of individual nuclei
affect the grammage through the rate of excitation of stream-
ing instability and viceversa the grammage affects the fluxes, the
procedure is all but trivial.
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3. Results

The main evidence for a transition from self-generated waves to
pre-existing turbulence can be searched for in the spectra of the
light elements, protons and helium nuclei. A spectral break was
in fact found by the PAMELA experiment (Adriani 2011) in both
spectra and later confirmed by AMS-02, although at the time
of writing this paper only the results of AMS on protons have
been published (Aguilar et al. 2015), while a preliminary version
of the spectrum of helium has been presented (AMS-02 2015).
The spectra of both elements were also measured by the Voyager
(Stone et al. 2013) outside the heliosphere, so as to make this
the first measurement in human history of the CR spectra in the
interstellar medium. This is a very important results in that it
also allows us to refine our understanding of the effects of solar
modulation (Potgieter 2013).

The spectrum of protons and helium nuclei as calculated
in this paper is shown in Figs. 1 and 2, respectively: the solid
lines indicate the spectra at the Earth, namely after solar mod-
ulation modelled using the force-free approximation (Gleeson
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INTERESTINGLY THE REAL PROBLEM SEEMS TO BE TO UNDERSTAND THE SCATTERING FOR HIGH ENERGY CR, 
MAINLY DUE TO THE FACT THAT ALFVENIC TURBULENCE BECOMES ANISOTROPIC AND FAST WAVES DAMP 
(KEMPSKI&QUATAERT 2022) 
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INSTABILITIES AND ESCAPE 
THE PROBLEM OF HOW PARTICLES LEAVE THEIR ACCELERATION SITES OR THEIR CONFINEMENT REGION IS 
CENTRAL AND UNSOLVED 

WE MODEL IT WITH BOUNDARY CONDITIONS, BUT WE DO NOT HAVE A PHYSICAL PICTURE OF WHY 
SHOULD THE GALACTIC HALO HAVE A FREE ESCAPE BOUNDARY OR WHY THE PARTICLES SHOULD LEAVE 
THE SHOCK REGION OF A SNR

MOST LIKELY THESE ARE LINKED TO THE DEVELOPMENT OF CR INDUCED INSTABILITIES

WE LOOK FOR MANIFESTATIONS OF THE IMPLICATIONS OF CR ESCAPE 

TWO CASES HERE:

 ESCAPE OF PARTICLES FROM A SUPERNOVA REMNANT

 ESCAPE OF COSMIC RAYS FROM OUR GALAXY
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ESCAPE FROM A SNR
THE GRADIENTS IN THE PARTICLE DISTRIBUTION AROUND A SOURCE ARE VERY LARGE AND CAN LEAD TO 
EXCITATION OF FAST STREAMING INSTABILITY

Lc

SNR

IN THE ABSENCE OF NON-LINEAR EFFECTS THE CR DENSITY INSIDE LC REMAINS > THAN THE 
GALACTIC AVERAGE FOR A TIME

AFTER THAT, PROPAGATION BECOMES 3D AND THE DENSITY DROPS RAPIDLY

2

bility), that in turn slow down the CR propagation in the
near-source region. Within a distance of about 1-2 Lc,
with Lc = 50�150 pc [3], the problem can be well approx-
imated as one dimensional (see also [4, 5, 7]). We show
that for particle energies up to a few TeV, the grammage
accumulated by CRs within such distances, as due to
non-linear di↵usive transport in the dense Galactic disc
(nd ⇠ 1 cm�3), may become comparable with the global
grammage expected in the standard picture of propaga-
tion throughout the whole Galaxy, as deduced from the
measurement of the B/C ratio. The implications of this
finding for our understanding of the origin of CRs will be
discussed.

Calculations – As a benchmark for the Galac-
tic di↵usion coe�cient we adopt the functional form

Dg(E) = 3.6 ⇥ 1028E1/3
GeV cm2

/s, as derived in
Ref. [8] from a leaky-box fit to GALPROP [9] (see
http://galprop.stanford.edu) results for a Kolmogorov
turbulence spectrum (here, for simplicity, we restrict our-
selves to the relativistic regime). The scenario we have
in mind is as follows: a supernova (SN) explodes in the
Galactic disc, where the magnetic field is assumed to have
a well established direction on a scale Lc ⇠ 50� 150 pc.
In fact the magnetic field direction will not experience
dramatic changes even on scales somewhat larger than
Lc if the turbulence level is low, �B/B < 1. Describ-
ing the particle transport as di↵usive on scales . Lc

can only be done for particles with a mean free path
3Dg(p)/c << Lc. This condition is easily seen to be
satisfied up to at least ⇠ 105 � 106 GeV for the stan-
dard Galactic di↵usion coe�cient Dg: we will only be
concerned with particles well below this energy. After a

time ⇠ L
2
c/Dg(E) ⇠ 9 ⇥ 104E�1/3

GeV years, particles start
di↵using out of the region where the magnetic field can
be assumed to have a given orientation and the problem
should be treated as 3-dimensional di↵usion. In such
a phase, within a distance from the source

p
Dg(E)ts,

the CR density due to the source itself remains larger
than the mean galactic density for a time ts that we
can estimate by equating the individual source contri-
bution, N(E)/(4⇡Dg(E)t)3/2, to the average Galactic
density, N(E)RH/(2⇡R2

dDg(E)), with N(E) the aver-
age spectrum that a source of CRs injects in the Galaxy,
R the SN rate, Rd and H the size of the galactic disc
and halo respectively. For typical values of the parame-
ters, R = 1/30 yr�1, Rd = 30 kpc (from [8]) and H = 4

kpc, one finds ts ⇠ 2 ⇥ 104E�1/3
GeV yr, which indicates

that the density of locally accelerated CRs quickly drops
to the galactic average as soon as propagation becomes
3-dimensional. Hence we formulate our problem start-
ing from the solution of the one-dimensional transport
equation,

@f

@t
+vA

@f

@z
� @

@z


D(p, z, t)

@f

@z

�
= q0(p)�(z)⇥(TSN � t) ,

(1)
in a box of size 2Lc with the boundary condition that

f(p, |z| = Lc, t) = fg(p). We have in mind a situation
in which di↵usion is due to self-generated waves moving
away from the source at the Alfvén speed vA (advection
term in Eq. 1).
Injection is assumed to be constant in time from t = 0

to a time TSN , which characterizes the duration of the re-
lease phase of CRs into the ISM. Since we are interested
in CRs with energies below ⇠ 100 TeV or so (for higher
energies the density of particles close to the source is too
small to lead to e↵ective growth of the streaming instabil-
ity), the escape of CRs is expected to occur at the time

of shock dissipation. The function q0(p) = A

⇣
p

mpc

⌘�4

mimics injection at a strong SNR shock, with the nor-
malisation constant A = ⇠CRESN/⇡R

2
SNTSNI, and I =R1

0 dp4⇡p2 (p/mpc)
�4

✏(p), where ✏(p) is the kinetic en-
ergy of a particle with momentum p. The normalization
is such that a fraction ⇠CR of the kinetic energy ESN

of the SNR shock is converted into CRs. The radius of
the SNR at the time of escape of CRs is chosen to be
RSN ⇡ 20 pc, of order the size of the slowly varying
radius of a SNR during the Sedov phase in the ISM. In-
tegrating Eq. 1 in a neighbourhood of z = 0 one finds:

@f

@z
|z=0 = �q0(p)⇥(TSN � t)

2D(p, z, t)|z=0
, (2)

which is an additional boundary condition on Eq. 1.
The di↵usion coe�cient in Eq. 1 is self-generated by

CRs leaving the source:

D(p, z, t) =
1

3
rL(p)v(p)

1

F(k, z, t)
|k=1/rL(p), (3)

where the spectrum of the self-generated waves F(k, z, t)
satisfies the di↵erential equation:

@F
@t

+ vA
@F
@z

= (�CR � �D)F . (4)

Here waves grow at a rate

�CR(k) =
16⇡2

3

vA

FB
2
0


p
4
v(p)

@f

@z

�

p=qB0/kc

(5)

because of CR driven streaming instability [11], and are
damped because of ion-neutral damping (IND) at rate
�IN [? ] and non-linear Landau damping (NLLD) [10].
We use the following rate of NLLD:

�NL = (2cK)�3/2
kvAF1/2

cK ⇡ 3.6. (6)

In Eq. 4, �D = �IN + �NL. The relative importance
of IND and NLLD depends on the presence of neutral
atoms in the region surrounding the SN. Below we con-
sider three cases: 1) No neutrals and gas density 1 cm�3;
2) Neutral density nn = 0.05 cm�3 and ion density
ni = 1 cm�3; 3) rarefied totally ionized medium with
density ni = 0.01 cm�3. In order to avoid artificial di-
vergences in the di↵usion coe�cient we assume that there
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4

parable with the one accumulated inside the source.
As pointed out above, following [19], it seems plausi-

ble that most of the neutral gas in the warm-hot phase
is made of helium, whose charge exchange cross section
with ionized hydrogen is very small. Ref. [19] suggests
an upper bound to the density of neutral hydrogen of
⇠ 0.03cm�3. This case is accounted for as Case (3)
above.

Case (4) corresponds to a small grammage (due to the
low gas density) but it is important to realize that in
fact Cases (1) and (4) correspond to roughly the same
propagation time in the near-source region. This might
have important observational consequences in the case in
which a dense target for pp collisions, such as a molec-
ular cloud, is present in a region where the gas density
(outside the cloud) is very low and IND is absent: the
long escape times and the correspondingly enhanced CR
density will reflect in enhanced gamma-ray emission.

The time needed for CR escape from the region of size
Lc = 100 pc around a source is shown in Fig. 2 for the
four cases of interest, compared with the di↵usion time
in the same region estimated by using the Galactic dif-
fusion coe�cient Dg (dotted line). This plot shows once
more that the escape time is weekly dependent upon the
density of ions provided there is no appreciable IND. The
small di↵erence between the two cases (dash-dotted and
dashed lines) is to be attributed to the weak advection
with Alfvén waves, since the waves’ velocity is somewhat
di↵erent in the two cases.

In the absence of neutrals, the near-source grammage
increases with increasing Lc and with increasing CR ac-

celeration e�ciency ⇠CR, proportional to ⇠ L
2/3
c and

/ ⇠
2/3
CR respectively. It is interesting to notice that these

trends are the same shown by the self-similar solution
obtained in Ref. [6] for a similar problem, though with
di↵erent boundary conditions and under the assumption
of impulsive CR release by the source. In the cases in
which neutral atoms are absent, for particles with ener-
gies up to ⇠ 1 TeV, the grammage decreases with energy
in roughly the same way as the observed grammage [11],
as a result of the dependence of the NLD rate on k in
Eq. 6.

The enhanced grammage illustrated in Fig. 1 is the re-
sult of streaming instability excited by CRs leaving the
source. This e↵ect is particularly important for parti-
cles with energy . 10 TeV, because of the large density
of particles at such energies, that reflects into a corre-
spondingly high growth rate of the instability (see Eq. 4).
In Fig. 3 we show the power spectrum F(k) at z = 50
pc for a case with Lc = 100 pc. On the top x-axis we
show the momentum of particles that can resonate with
waves of given wavenumber k (bottom x-axis). The solid
(dashed) line refers to case (1) at time t = 104 (t = 105)
years. In Case (2), the presence of neutrals decreases
the level of self-generated waves (see dotted line, com-
puted at t = 104 years), which however remains appre-
ciably higher than the Galactic turbulence level F0(k),
also shown in Fig. 3 as a thick dot-dashed curve. Parti-
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FIG. 1: Grammage accumulated by CRs in the near-source
region for Lc = 100 pc in the three cases: (1) nn = 0,
ni = 0.45cm�3; (2) ni = 0.45cm�3 and nn = 0.05cm�3;
(3) nn = 0, ni = 0.01cm�3, as labelled. The thin dotted
(red) line corresponds to case (2) but with slope of the injec-
tion spectrum 4.2. The thick dashed line (labelled as XPSS09)
shows the grammage inferred from the measured B/C ratio
[11], while the thick solid line (labelled as XAB13) shows the
results of the non-linear propagation of Ref. [8]. The hori-
zontal (thick dotted) line (labelled as XABS15) is the source
grammage, as estimated in Ref. [21].
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FIG. 2: Escape time of CRs from the near-source region for
Lc = 100 pc in the three cases: (1) nn = 0, ni = 0.45cm�3;
(2) ni = 0.45cm�3 and nn = 0.05cm�3; (3) nn = 0, ni =
0.01cm�3. The dotted line refers to the escape time calculated
using the Galactic di↵usion coe�cient Dg.

cles di↵using away from the source keep pumping waves
into the environment for about 105 years. At later times,
higher energy particles start escaping the near-source re-
gion, the gradients diminish and F(k) approaches again
F0(k), starting from low values of k.
The e↵ect of particle self-confinement is illustrated in

Fig. 4, where we show the density of particles (or more
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an upper bound to the density of neutral hydrogen of
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Case (4) corresponds to a small grammage (due to the
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fact Cases (1) and (4) correspond to roughly the same
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which a dense target for pp collisions, such as a molec-
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(outside the cloud) is very low and IND is absent: the
long escape times and the correspondingly enhanced CR
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The time needed for CR escape from the region of size
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source. This e↵ect is particularly important for parti-
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of particles at such energies, that reflects into a corre-
spondingly high growth rate of the instability (see Eq. 4).
In Fig. 3 we show the power spectrum F(k) at z = 50
pc for a case with Lc = 100 pc. On the top x-axis we
show the momentum of particles that can resonate with
waves of given wavenumber k (bottom x-axis). The solid
(dashed) line refers to case (1) at time t = 104 (t = 105)
years. In Case (2), the presence of neutrals decreases
the level of self-generated waves (see dotted line, com-
puted at t = 104 years), which however remains appre-
ciably higher than the Galactic turbulence level F0(k),
also shown in Fig. 3 as a thick dot-dashed curve. Parti-

10
-2

10
-1

10
0

10
1

10
1

10
2

10
3

10
4

X
(g

/c
m

2
)

p(GeV/c)

XAB13
XABS15
XPSS09

p -4.2

no neutrals n
i = 0.01 cm-3

no neutrals n
i = 0.45 cm-3

n
n  = 0.03 cm -3

 

nn = 0.05 cm
-3 

FIG. 1: Grammage accumulated by CRs in the near-source
region for Lc = 100 pc in the three cases: (1) nn = 0,
ni = 0.45cm�3; (2) ni = 0.45cm�3 and nn = 0.05cm�3;
(3) nn = 0, ni = 0.01cm�3, as labelled. The thin dotted
(red) line corresponds to case (2) but with slope of the injec-
tion spectrum 4.2. The thick dashed line (labelled as XPSS09)
shows the grammage inferred from the measured B/C ratio
[11], while the thick solid line (labelled as XAB13) shows the
results of the non-linear propagation of Ref. [8]. The hori-
zontal (thick dotted) line (labelled as XABS15) is the source
grammage, as estimated in Ref. [21].

10
3

10
4

10
5

10
6

10
7

10
1

10
2

10
3

10
4

t e
sc

ap
e(

y
r)

E(GeV)

ni=0.45 cm
-3

ni=0.45 cm
-3

 nn=0.05 cm
-3

ni=0.01 cm
-3

tdif

FIG. 2: Escape time of CRs from the near-source region for
Lc = 100 pc in the three cases: (1) nn = 0, ni = 0.45cm�3;
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cles di↵using away from the source keep pumping waves
into the environment for about 105 years. At later times,
higher energy particles start escaping the near-source re-
gion, the gradients diminish and F(k) approaches again
F0(k), starting from low values of k.
The e↵ect of particle self-confinement is illustrated in

Fig. 4, where we show the density of particles (or more

D’Angelo, PB & Amato 2017

A BULK OF WORK ALREADY DONE (MALKOV+2013,NAVA+2016,D’ANGELO+2017,RECCHIA+2022)…
DEPENDING ON CONDITIONS (DENSITY, IONISATION) THE EFFECT OF CR MAY BE MORE OR LESS IMPORTANT 
AND AFFECT THE GRAMMAGE ACCUMULATED BY CR AROUND SOURCES
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HYBRID SIMULATIONS
3

self-consistently simulate the long-term, large-scale cou-
pling of CRs and background plasma than fully-kinetic
PIC codes since they do not need to resolve small electron
scales, usually dynamically negligible.

In simulations, physical quantities are normalized to
the number density (n0) and magnetic field strength
(B0) of the initial background plasma. Lengths, time
and velocities are respectively normalized to the ion in-
ertial length di = c/!pi, to the inverse ion cyclotron fre-
quency ⌦�1

ci , and to the Alfvén speed vA, being c the
light speed, !pi the ion plasma frequency and mi the
ion mass. The background ion temperature is chosen
such that �i = 2v2th,i/v

2
A = 2, i.e. thermal ions gyro-

radius rg,i = di. The system is 2D (x � y) in physical
space and retains all three components of the momenta
and electromagnetic fields. We discretized the simulation
grid, of size 5000 ⇥ 7000 di, with 7500 ⇥ 10500 cells (i.e.
�x = �y ' 0.66di). Open boundary conditions are im-
posed in each direction for the CRs and on x for the back-
ground plasma; the y direction is periodic for thermal
particles. A background magnetic field, directed along x
and of strength B0, is embedded in the simulation do-
main. The background plasma, described with Nppc = 4
particles per cell, has density n0 and its distribution is
Maxwellian. The speed of light is set to 20 vA and the
time step is 0.01⌦�1

ci . CRs, discretized with Nppc = 16,
are injected at the left boundary at x = 0 in a small
stripe 3200di < y < 3800di with an isotropic momentum
distribution with ptotal = 100mvA, i.e. Lorentz factor
� ⇡ 5, and nCR = 0.0133n0.

Results - As discussed above, the excitation of stream-
ing instability acts as a bootstrapping process for seed-
ing the over-pressurised region around the source. Al-
though this may be expected to take place even due to
resonant streaming instability alone, we showed above
that, around a source, CRs streaming away ballistically
(at least in the beginning) can excite a non-resonant
Bell instability. In principle, this configuration may
also produce other instabilities, e.g. driven by pressure
anisotropies [34] Once the particles start scattering on
these instabilities, they will start to move slower in the
x-direction, hence their spatial density increases. This
can be seen in the top three panels of Fig. 1, where we
plot the CR density nCR at three di↵erent times in the
simulation. Several interesting aspects arise from this
figure: first, at early times, CR presence is limited to a
small region around the injection location, and the region
occupied by CRs has basically the same transverse size
as the source itself (in fact somewhat larger because the
particles are injected isotropically, hence CRs are initially
distributed on a region that exceeds the source size by a
Larmor radius on both sides of the injection region). Par-
ticles are still streaming ballistically in the x-direction.
At later times, the density of CRs around the source
increases and the region filled by CRs expands in the
transverse direction as a result of the over-pressurisation
of the flux tube due to scattering. The force associated

FIG. 1. Contour plots of the CR density (top row), of the
background plasma density (center), and of the perpendicular
component of the magnetic field (bottom) at three times in
the simulation. A movie showing the time evolution of these
quantities is provided as Supplemental Material [35] .

with the gradient of CR pressure in the perpendicular
direction causes a partial evacuation of the plasma pre-
viously located inside the bubble, as can be seen in the
central panels of Fig. 1 (gas density, ngas). While the
bubble expands, the gas density in the center of the bub-
ble decreases while the gas density on the outskirts of
the bubble increases and density waves are launched out-
wards in the simulation box. In fact we stop the simu-
lation when those waves reach the boundary, where we
impose periodic conditions in the y direction.
The bubble expansion triggered by CR scattering is

due to the generation of magnetic perturbations in the
directions perpendicular to the initial background mag-
netic field, which are initially absent. This is illustrated
in the last row of plots of Fig. 1, where we show B?
at three di↵erent times. At early times there is virtually
no turbulent magnetic field. The streaming of particles
along the x-direction drives the formation of a highly-
structured B?. The self-generated magnetic field follows
the expansion of the bubble and determines the local rate
of particle scattering in the whole volume filled by CRs.
There is no doubt that the magnetized region extends in
the perpendicular direction as the bubble expands. The
magnetic field seems particularly strong on the edges of
the bubble, signalling that the bubble is wrapped in an
envelope of swept up compressed field lines. Inside the
bubble the field is irregular, as it should be if responsible
for CR scattering.
The fact that CR transport in the region surround-

ing the source gets profoundly a↵ected by this turbulent

Schroer+, 2021 and 2022

 THE EXCITATION OF THE INSTABILITY LEADS TO 
STRONG PARTICLE SCATTERING, WHICH IN TURN 
INCREASES CR DENSITY NEAR THE SOURCE 


 THE PRESSURE GRADIENT THAT DEVELOPS 
CREATES A FORCE THAT LEADS TO THE INFLATION 
OF A BUBBLE AROUND THE SOURCE

 THE SAME FORCE EVACUATES THE BUBBLE OF 
MOST PLASMA

 THERE IS NO FIELD IN THE PERP DIRECTION TO 
START WITH, BUT CR CREATE IT AT LATER TIMES 
(SUPPRESSED DIFFUSION, ABOUT 10 TIMES BOHM)
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NON-RESONANT CR CURRENT DRIVEN INSTABILITY: 
A PRIMER
IT WILL BE SHOWN ELSEWHERE THAT, UNDER SOME CIRCUMSTANCES, CR CAN DRIVE A NON-RESONANT 
INSTABILITY, THAT GROWS FASTER THAN THE RESONANT ONE (BELL 2004)

SINCE IT IS NON RESONANT, AT LEAST TO START WITH, THE CURRENT OF CR IS ONLY PERTURBED WEAKLY AND 
IT KEEPS DRIVING THE INSTABILITY, ON SCALES MUCH SMALLER THAN RL. THE INSTABILITY IS EXCITED IF THE 
ENERGY DENSITY IN THE CURRENT IS LARGER THAN THAT OF THE PRE-EXISTING B0 

IN THE CASE OF TRANSPORT IN THE GALAXY:

THE SPECTRUM OF COSMIC RAYS OBSERVED BY AN OBSERVER OUTSIDE 
OUR GALAXY IS THE SAME AS INJECTED BY SOURCES, NOT THE SAME AS 
WE MEASURE AT THE EARTH!
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ESCAPE OF GALACTIC CR
Escaping

Cosmic Rays
As discussed above, the current of 
escaping CRs is very well known

JCR(p) = eD
@f

@z
|z=H =

eQ0(p)

2⇡R2
d
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Such current in the typical IGM excites a non-
resonant Bell-like instability provided: 

2

assumed for simplicity that the sources of CRs are lo-
calized in an infinitely thin disc and that CRs can freely
escape at the edge of the halo |z| = H, where nCR ! 0.
This results in

nCR(z, E) = ngal(E)

✓
1� |z|

H

◆
, (2)

which implies that CRs escape from the boundary of the
halo with a flux

�CR(E) = �D(E)
@ngal

@z
= D

ngal

H
=

LCR

2⇡R2
d
⇤
E

�2
, (3)

where we have assumed that CRs are injected in the
Galaxy with a luminosity LCR and a spectrum /
E

�2 extending between Emin and Emax, and ⇤ =
ln(Emax/Emin). Eq. 3 clearly shows that, as expected,
the spectrum of escaping CRs is the same as the injected
spectrum. If, as commonly assumed, CRs propagate bal-
listically outside the Galactic halo and into the inter-
galactic medium, then their density immediately outside
the halo boundary can be easily estimated from flux con-
servation as nCR,ext(E) = 3�CR/c. For our purposes,
however, the assumption of ballistic motion is not essen-
tial. In fact we focus on the current carried by CRs with
energy > E, given by JCR = eE�CR(E). As discussed
in [6] a non-resonant instability is induced by this cur-
rent provided the energy flux associated with the escap-
ing particles is larger than c times the magnetic energy
density pre-existing the current:

E
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c
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B
2
0

4⇡
, (4)

where we assumed that a regular magnetic field of
strength B0 is present in the circumgalactic medium
(CGM) around our Galaxy. The instability is excited on
scales that are initially much smaller than the Larmor
radius of the particles dominating the current, namely at
wavenumber

kmax =
4⇡

cB0
JCR =

4⇡

cB
2
0

E
2
�CR

rL(E)
, (5)

and with a growth rate �max = kmaxvA, where vA =
B0/

p
4⇡⇢ is the Alfvén speed in the unperturbed field

and the density ⇢ is written as �G⌦b⇢cr, where ⇢cr =
1.88⇥ 10�29

h
2 g cm�3 is the critical density of the uni-

verse and we use ⌦bh
2 = 0.022. The parameter �G & 1

allows us to account for an overdensity of baryons around
the Galaxy.

The condition for the excitation of the non-resonant
instability, Eq. 4, translates into a condition on the back-
ground magnetic field

B0  Bsat ⇡ 2.4⇥ 10�8
L
1/2
41 R

�1
10 G (6)

where L41 is the CR luminosity of the Galaxy in units of
1041 erg s�1 and R10 is the radius of the galactic disk in

units of 10 kpc. We assumed Emax = 1PeV . However
this parameter only enters all estimates logarithmically.
In order to check whether Eq. 6 is likely to be sat-

isfied, one can estimate an upper limit on B0 based
on equipartition with the thermal energy density: for
a CGM density �G⇢cr⌦b and temperature T , this results

in Bth  2⇥10�9G�
1/2
G

T
1/2
4 , where T4 is the gas temper-

ature in units of 104 K. We expect B0 well below Bth in
most cases, which suggests that it is safe to assume that
the condition for the development of the non resonant
instability is typically satisfied away from the Galaxy,
where �G . a few hundreds.
When the instability is excited, its growth proceeds at

a rate

�max = kmaxvA ⇡ 0.5 yr�1
�
�1/2
G

E
�1
GeVL41R

�2
10 . (7)

For reasonable values of �G the time for growth is ex-
tremely short compared to all other relevant timescales,
so that the field rapidly grows. The growth initially hap-
pens on scales k

�1
max

much smaller than the Larmor ra-
dius of the particles dominating the current, so that the
current is only weakly a↵ected by the growth. On the
other hand, at the same time a force ⇠ JCR�B/c is ex-
erted on the background plasma, that gets displaced by
an amount �r ⇠ �BJCR/c⇢�

2
max

. The instability even-
tually saturates when the scale �r becomes of the same
order of magnitude of the Larmor radius, which implies

�B ⇡ Bsat ⇡

s
2LCR

c R
2
d
⇤

(8)

It is important to notice that, for a spectrum N(E) /
E

�2, �B is the same on all scales, so that the di↵usion
coe�cient is expected to be Bohm-like. Moreover �B is
independent of the initial magnetic field strength and the
density of background plasma.
The Bohm di↵usion coe�cient corresponding to this

situation is

D(E) =
1

3

E c

e�B
⇡ 1.4⇥1024 EGeV L

1/2
41 R10 cm

2 s�1
. (9)

In other words, the original assumption of free streaming
of CRs after escaping our Galaxy leads to the apparently
contradicting result that the instability they excite is suf-
ficient to induce a di↵usive motion with short scattering
length, hence particle di↵use very e↵ectively as soon as
they find themselves in a region where condition 6 is sat-
isfied. On the other hand this conclusion does not really
depend on any specific assumption on the physics of par-
ticle propagation, while only based on conservation of the
energy flux constantly injected in our Galaxy in the form
of CRs.
Much discussion has appeared in the literature con-

cerning the saturation of the instability. A comprehen-
sive study of the topic [3] has highlighted two processes
that may limit the saturation field to lower values than
the one derived above. The first is the progressive in-
crease with growing field strength of the fastest growing
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�1
max

much smaller than the Larmor ra-
dius of the particles dominating the current, so that the
current is only weakly a↵ected by the growth. On the
other hand, at the same time a force ⇠ JCR�B/c is ex-
erted on the background plasma, that gets displaced by
an amount �r ⇠ �BJCR/c⇢�

2
max

. The instability even-
tually saturates when the scale �r becomes of the same
order of magnitude of the Larmor radius, which implies

�B ⇡ Bsat ⇡

s
2LCR

c R
2
d
⇤

(8)

It is important to notice that, for a spectrum N(E) /
E

�2, �B is the same on all scales, so that the di↵usion
coe�cient is expected to be Bohm-like. Moreover �B is
independent of the initial magnetic field strength and the
density of background plasma.
The Bohm di↵usion coe�cient corresponding to this

situation is

D(E) =
1

3

E c

e�B
⇡ 1.4⇥1024 EGeV L

1/2
41 R10 cm

2 s�1
. (9)

In other words, the original assumption of free streaming
of CRs after escaping our Galaxy leads to the apparently
contradicting result that the instability they excite is suf-
ficient to induce a di↵usive motion with short scattering
length, hence particle di↵use very e↵ectively as soon as
they find themselves in a region where condition 6 is sat-
isfied. On the other hand this conclusion does not really
depend on any specific assumption on the physics of par-
ticle propagation, while only based on conservation of the
energy flux constantly injected in our Galaxy in the form
of CRs.
Much discussion has appeared in the literature con-

cerning the saturation of the instability. A comprehen-
sive study of the topic [3] has highlighted two processes
that may limit the saturation field to lower values than
the one derived above. The first is the progressive in-
crease with growing field strength of the fastest growing

At a wavenumber

and with a growth rate: 
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ESCAPE OF GALACTIC CR

COSMIC RAYS SHOULD EVENTUALLY SLOW DOWN 
THEIR FREE ESCAPE AND ACCUMULATE AT LARGE 
DISTANCES FROM THE GALAXY (~30 KPC)

AROUND EVERY GALAXY THERE SHOULD BE A REGION 
WITH B~LCR1/2 DUE TO THE ACTION OF ESCAPING CR

THE INTERACTION OF CR WITH THE LOCALLY 
OVERDENSE INTERGALACTIC MEDIUM LEADS TO 
PRODUCTION OF A QUASI-ISOTROPIC FLUX OF 
SECONDARIES (FOR INSTANCE NEUTRINOS)

4

FIG. 1. Flux of isotropic di↵use gamma ray emission (blue)

as measured by Fermi-LAT [8] and flux of astrophysical neu-

trinos as measured by IceCube [4, 5] (red). The (green) hori-

zontal lines show the expected flux of neutrinos from pp col-

lisions in the circumgalactic medium, for the overdensity �G
as indicated.

obtain

F⌫(E⌫)E
2
⌫
⇡

✓
LCR

⇤

◆ 1
2
✓
c�G⌦b⇢cr

2⇡

◆3/2
⌘�pp

mp

=

5⇥ 10�12
�
3/2
G

GeVcm�2s�1sr�1
, (16)

where we assumed that the neutrino energy is related
to the energy of the parent proton by E⌫ = ⌘E, with
⌘ ⇠ 0.05. For simplicity we neglected the weak energy
dependence of the cross section for neutrino production,
which is known to increase slowly with energy, so as to
lead to a slight increase in the neutrino flux at high en-
ergy.

The estimated flux of di↵use neutrinos is plotted in
Fig. 1 (green horizontal lines) for di↵erent values of the
overdensity �G. In the same figure we show the flux of
astrophysical neutrinos measured by IceCube [4, 5] and,
for comparison, the flux of gamma rays that Fermi-LAT
associates with an isotropic extragalactic origin [8]. One
can see that the if the overdensity of baryonic gas in
the circumgalactic medium is of order ⇠ 100, then the

expected neutrino flux is comparable with the one mea-
sured by IceCube. It is worthwhile to mention that the
virial radius of our Galaxy, which is of order ⇠ 100 kpc,
is defined as the radius inside which the mean overden-
sity is 200. Hence a value of �G ⇠ 100 � 200 appears to
be quite well justified on scales of ⇠ 10 kpc.
A few caveats should be stressed: 1) the fluxes shown

in Fig. 1 have been obtained in the simple case that the
injection spectrum from individual supernovae (or what-
ever other sources of Galactic CRs) is N(E) ⇠ E

�2. A
steeper injection spectrum reflects in a correspondingly
steeper spectrum of the neutrino flux. At the present
level of investigation of the complex phenomenon of in-
teraction of escaping CRs with the CGM, considering
additional complications would shed no more light on
the relevant physics. 2) In the estimate above we did
not include a spectral suppression at some maximum en-
ergy. Such suppression is expected to reflect in a change
of slope rather than a cuto↵ in the CR source spectrum
[9, 10], that would lead to a somewhat lower neutrino
flux at the highest energies.

Conclusions: the escape of CRs from our Galaxy is
required by the assumption that at energies & 10 GeV
stationarity is reached between injection at the sources
and escape. This equilibrium is observationally visible in
the decrease with energy of the ratio between the fluxes
of secondary and primary nuclei, most notably the B/C
ratio. Escape is not well understood and is usually mod-
elled by imposing the existence of a free escape boundary
located at a few kpc from the disc. At such boundary it
is assumed that the CR transport becomes ballistic in
nature. In reality we expect that the di↵usion coe�cient
becomes increasingly larger away from the disc, so that
at some point particles can be assumed to stream freely.
We showed that, independently of the details of the prop-
agation physics, the current of such escaping CRs in the
circumgalactic medium is such that a rapidly growing,
non resonant instability is excited as soon as the back-
ground magnetic field is lower than ⇠ 2 ⇥ 10�8 Gauss.
The growth of the instability leads to three main con-
sequences: 1) a quasi-scale invariant magnetic field is
generated with a strength ⇠ 2 ⇥ 10�8 Gauss over a dis-
tance ⇠ 10 kpc from the Galaxy. 2) The pressure gradi-
ent of CRs scattering on such magnetic fluctuations sets
the background plasma around our Galaxy in motion, so
that CRs are advected away with the plasma at a speed
⇠ 10� 100 km/s. 3) The occasional interactions of CRs
with the CGM produce a quasi-isotropic neutrino flux
at Earth, that is comparable with the flux observed by
IceCube, provided the local baryon overdensity is ⇠ 100.
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