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ABSTRACT: Coding theory (English: coding theory) is a branch of mathematics (mathematics) and computer science (computer 

science) that deals with error-prone situations in the process of transmitting data over communication channels. noise channels), 

using sophisticated methods that make the majority of errors that occur can be corrected. It also deals with the characteristics of 

the codes (codes), and thus makes them suitable for specific applications. 

One of the most important scientific and technical problems at the present stage is the creation of automated control and 

monitoring systems for performing various tasks. In the process of automated control and monitoring, there is an intensive 

exchange of information between the individual parts of the systems, while the volume of information, as well as the speed of 

processing and transmitting it, are constantly growing. Increasingly high requirements are imposed on the reliability of transmitted 

messages, which leads to the need to apply special measures that reduce the frequency of errors to a certain acceptable level. 

 

1. INTRODUCTION 

One of the most effective measures is the use of error-correcting coding.The purpose of my work was to describe the properties 

of linear and cyclic codes, solve the problems of encoding and decoding linear (including cyclic) codes using syndromes (syndromic 

polynomials), which allow detecting and correcting errors. The term catching errors arose from the fact that we described a 

procedure (algorithm) by which we find and correct errors in received messages (𝑛, 𝑘)- code, if these errors are located on the 

section of length ≤ 𝑚, where 𝑚 = 𝑛 − 𝑘. 

The beginnings of mathematical coding theory go back to the seminal paper by Claude Shannon (1948) and the invention 

of Hamming codes (1950). Thus began the history of error-correcting coding. The source and recipient of information are 

interconnected by the following scheme of the canonical infra communication system. 
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In the encoder, the input input message is written into a digital sequence a (information word) in alphabetical 𝑭𝒒order 

(most often in bits). In the encoder channel , the information word is converted (encoded) into a code word c, written in the same 

alphabet 𝑭𝒒. This is the most important part of coding. Since discrete symbols are not suitable for transmission over physical 

communication channels, a modulator is used (recording of alphabet units), through which the converted message enters the 

communication channel, which can be affected by noise , and then this physical message (generally speaking, distorted) enters 

demodulator, where it is converted into a digital sequence 𝑣. Errors are corrected in the decoder channel (if it can be done) and 

a digital sequence is obtained 𝑐̅̂ (usually  𝑐̅̂  = 𝑐). In the decoder 𝑐̅̂, it is converted into an information word 𝑎̂̅and sent to the 

recipient. Ideally 𝑎̂̅ = 𝑎, otherwise a decoding error occurs . 

 

2. LITERATURE REVIEW HISTORY  

2.1 Block Line Codes 

Data entering the communication system from the source of information is first of all processed by the source encoder, 

which represents this data in some digital alphabet (for example, as a sequence of characters from the final field 𝑭𝒒). Thus, the 

input signal from the information source is written as an information word 𝑎(this is the final sequence of characters in the chosen 

alphabet 𝑭𝒒 = {0, 1, . . ., 𝑞 − 1}). The channel encoder converts the information word a into a longer word c (usually written in 

the same alphabet 𝑭𝒒), called a codeword . The modulator then converts each codeword symbol into a corresponding analog 

symbol from a finite set of valid analog symbols. A sequence of analog symbols is transmitted over a channel, which can be subject 

to various noise, distortion, and interference. Therefore, the output of the channel, generally speaking, differs from the input. The 

demodulator converts each symbol received at the input of the channel into a sequence of symbols of the selected digital alphabet. 

The demodulated sequence is called the received word, we will denote it by the symbol 𝑣. Due to potential errors, generally 

speaking, 𝑣≠  𝑐. The task of the decoder, using the redundant record 𝑣for the information word  𝑎, is to recover the corresponding 

code word 𝑐, and then 𝑎. 

Example 1 . Let 𝑎 = (110) in the alphabet 𝐹2 = {0,1}. Let's denote 𝑐 = (111111111100000). 

The word 𝑐is obtained from 𝑎repeating each character 𝑎five times. As a result of channel noise, the word𝑣 

=(110110011100011). We see that in each consecutive five characters 

11011′00111′00011 

more often, respectively, symbols 1,1,0,and therefore we conclude that the code word 

𝑐 = (111111111100000). 

The code used is called a repeat code . It is reliable but very slow. 

Example 2 . Each information word 𝑎of length𝑘, 

 𝑎 = (𝑎1, . . . , 𝑎𝑘)in the alphabet we F2match the code word c of length 

 𝑘 + 1, 𝑐 = (𝑐1, . . . , 𝑐𝑘, 𝑐𝑘 + 1),  

where 𝑐𝑖  =  𝑎𝑖 , if 1 ≤ 𝑖 ≤ 𝑘, and 𝑐𝑘+1 = 𝑎1 + ⋯ + 𝑎𝑘. Such a code is called a parity-check code . If no more than one 

error was made in the code word during the passage of the communication channel, then it can be found out from the received 

word v, although the distorted symbol cannot be determined. 

It can be seen from the above examples that an increase in the length of code words, generally speaking, increases the 

ability of the code to recover the code word after the distortion of its symbols in the communication channel. 

In the future, we will study the so-called block codes. This means that we consider informational words in the alphabet 

𝐅𝒒of the same length 𝑘. It is clear that the set of informational words is the space 𝐅𝒒
𝒌  = {(𝑎1, . . . , 𝑎𝑘) ∣ 𝑎𝑖 ∈ 𝐹𝑞 , 𝑖 = 1, . . . , 𝑘}. The 

power of this set is 𝑞𝑘. Each information word a is associated with the word 𝑐 ∈ 𝐹𝑞
𝑛. Since different information words must 

correspond to different code words, the cardinality of the set of 𝐶 code words is also equal to 𝑞𝑘, and therefore for we have  ∣ 𝐶 ∣

= 𝑞𝑘 < 𝑞𝑛, and hence 𝐶is a proper subset in 𝐅𝒒
𝒌. 

Thus, to specify the encoding of information words of length 𝑘into code words of length 𝑛, it is sufficient to specify a one-

to-one mapping 𝐅𝒒
𝒌in 𝐅𝒒

𝒏. Since the most natural (and easily implemented) mappings of a linear space 𝐅𝒒
𝒌to 𝐅𝒒

𝒏 are linear mappings, 

the images of such mappings are called linear codes . Therefore, a linear code for information words from 𝐅𝒒
𝒌is any subspace of 

𝐶 ⊂ 𝐅𝒒
𝒏dimension k. We denote 𝐶(𝑛, 𝑘)the linear length code 𝑛 with the length of information words as 𝑘-code. 

So, to construct a linear (𝑛, 𝑘)-code in the alphabet 𝐅𝑞and describe the encoding procedure in this code, we proceed as 

follows: 

We choose 𝑘linearly independent vectors in the space 𝐅𝒒
𝒏: 𝑔1, 𝑔2, . . . , 𝑔𝑘. Their linear span 
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𝐿(𝑔
1
, 𝑔

2
, . . . 𝑔

𝑘
) ∶= {∑𝛼𝑖

𝑘

𝑖=1

𝑔𝑖 ∣. 𝛼1 . . . , 𝛼𝑘 ∈ 𝐅𝒒} 

forms a linear (𝑛, 𝑘)-code. 

Now the (𝑛, 𝑘)-code itself as a set of code words is defined. But the coding procedure, that is, the rule for the transition 

of information words into code words, is determined by a specific isomorphic mapping 

𝐅𝒒
𝒌  

𝜑
→ 𝐿( 𝑔

1
, . . . 𝑔

𝑘
). 

Since the isomorphism of linear spaces is completely determined by the rule for comparing the basis vectors of these 

spaces, we fix a 𝐅𝒒
𝒌standard basis in the space of information words 

𝑓1 = (1, 0, 0, . . . , 0), 

𝑓2 = (0, 1, 0, . . . , 0), 

. . . . . . . . . . . . . . . . . . . 

𝑓𝑘 = (0, 0, 0, . . . , 1). 

vectors 𝑔
1
 in coordinate form for the standard space basis 𝐅𝒒

𝒏: 

 𝑔
1

= (𝑔11, 𝑔12, . . . , 𝑔1𝑛), 

 𝑔
2

= ((𝑔11, 𝑔12, . . . , 𝑔1𝑛), 

. . . . . . . . . . . . . . . . . . . . . . 

 𝑔
𝑘

= ((𝑔11, 𝑔12, . . . , 𝑔1𝑛), 

The mapping 𝑓
𝑗
⇌ 𝑔

𝑗
, 𝑗 = 1, . . . , 𝑘, gives the encoding procedure for the linear-th (𝑛, 𝑘)-code. 

Choosing in 𝐿(𝑔1, . . . , 𝑔𝑘) another basis 𝑔′1,...,  𝑔′𝑘, we get the same code 𝐶, but with a different rule for converting 

information words into code words. 

Denote by the 𝐺matrix composed of the coordinate rows of the basis vectors 𝑔
1
, . . . , 𝑔

𝑘
. Then the comparison 𝑎 → 𝑐given 

by the equality 

𝑐 = 𝑎𝐺, 

defines the rule for constructing code words of a linear (𝑛, 𝑘)-code 𝐶. The matrix 𝐺is called the generator matrix of the linear 

(𝑛, 𝑘)-code 𝐶. 

The matrix G has rank equal to k, and therefore among its columns there are k linearly independent. 

Let, for definiteness, these be the first k columns. It follows from the linear algebra course that by elementary 

transformations over rows, a matrix 𝐺can be reduced to the form 

𝐺0 = (

𝑔11 … 𝑔1𝑛−𝑘 1 0 … 0
𝑔21 … 𝑔2𝑛−𝑘 0 1 … 0
⋮ … ⋮ ⋮ ⋮ … ⋮

𝑔𝑘1 … 𝑔𝑘,𝑛−𝑘 0 0 … 1

) 

and therefore the rows of this matrix determine the coordinate rows of the new basis of the subspace of the same code 𝐶, and 

the coding rule 

𝑎 → 𝑐 = 𝑎𝐺0 

we will call the systematic (or canonical) form of the C code. 

With systematic coding, the last 𝑘symbols of the code word 𝑐corresponding to the information word 𝑎coincide with the 

coordinates of the vector 𝑎. We will write the 𝐺 = (𝐴𝐼𝑘)matrix in the form 𝐺0, where 𝐼𝑘 is the unit matrix of order 𝑘, and 𝐴is the 

matrix of size 𝑘 × (𝑛 − 𝑘), notation  (𝐴𝐼𝑘), means the concatenation of matrices 𝐴and 𝐼𝑘. 

For a linear  (𝑛, 𝑘)-code 𝐶with a generating matrix 𝐺, denote by the  𝐻matrix whose rows form the basis of the solution 

space of the system of linear homogeneous equations over the field 𝐅𝑞with the matrix 𝐺: 

𝐺𝑋 = 0, 𝑋 = (

𝑥1

⋮
𝑥𝑛

) , 0 = (
0
⋮
0
). 

Obviously, 𝐺𝐻𝑇 = 0where the sign " T " means the transposition of the corresponding matrix, 0 is a zero matrix of size 

𝑘 × (𝑛 − 𝑘). We have: rank 𝐻 = 𝑛 − 𝑘. Let's denote 𝑚 = 𝑛 − 𝑘. Obviously, it 𝑚characterizes the number of redundant (check) 

code symbols 𝐶. 

follows 𝐻𝐺𝑇 = 0from equality 𝐺𝐻𝑇 = 0. 

The matrix H is called the code 𝐶check matrix . 

http://www.ijmra.in/
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It is easy to check that if G = G 0=(  𝐴𝐼𝑘), then 

H =(( 𝐼𝑚(−𝐴)𝑇). 

From the above reasoning, it can be seen that with each linear (𝑛, 𝑘)- code 𝐶with a generator matrix 𝐺and a check matrix 

𝐻, it is possible to associate a linear (𝑛,𝑚) - code  𝐶𝑔with a generator matrix 𝐻and a check matrix 𝐺. Codes 𝐶and 𝐶𝑔are called 

dual to each other, and any code vector from 𝐶is orthogonal (in the sense of the standard scalar product) to each vector from 𝐶𝑔, 

and vice versa. 

Example 3 . Build Linear(7,4) - code 𝐶above 𝐹2. We choose a 4×7 matrix of rank 4: 

𝐺 = (

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

) 

Display 𝑎 → 𝑎𝐺 = 𝑐sets code 

(0 0 0 0) → (0 0 0 0 0 0 0) 

(1 0 0 0) → (1 10 1  0 0 0) 

(0 1 0 0) → (0 1 1 0 1 0 0) 

(0 0 1 0) → (0 0 1 1 0 1 0) 

(0 0 0 1) → (0 0 0 1 1 0 1) 

(1 1 0 0) → (1 0 1 1 1 0 0) 

(0 1 1 0) → (0 1 0 1 1 1 0) 

(0 0 1 1) → (0 0 1 0 1 0 1) 

(1 0 1 0) → (1 1 1 0 0 1 0) 

(0 1 0 1) → (0 1 1 1 0 0 1) 

(1 0 0 1) → (1 1 0 0 1 0 1) 

(1 1 1 0) → (1 0 0 0 1 1 0) 

(0 1 1 1) → (0 1 0 0 0 1 1) 

(1 1 0 1) → (1 0 1 0 0 0 1) 

(1 0 1 1) → (1 1 1 1 1 1 1) 

(1 1 1 1) → (1 0 0 1 0 1 1) 

We find the check matrix 𝐻. To do this, consider a system of linear homogeneous equations with a matrix 𝐺: 

{

𝑥1 + 𝑥1 + 𝑥1 = 0
𝑥2 + 𝑥3 + 𝑥5 = 0
𝑥3 + 𝑥4 + 𝑥6 = 0
𝑥4 + 𝑥5 + 𝑥7 = 0

 

It has a trapezoidal form (see matrix 𝐺), therefore 𝑥5, 𝑥6, are 𝑥7its free unknowns. 

 

 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 

𝑓1 one 0 one one one 0 0 

𝑓2 one one one 0 0 one 0 

𝑓3 0 one one one 0 0 one 

 

Consequently, 

𝐻 = (
1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

). 

This code is not systematic. However, from the matrix, by 𝐺 elementary row transformations, we arrive at the matrix 
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𝐺 = (

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

)  ~   (

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 0 1 1 1
0 0 0 1 1 0 1

)~ 

 ~  (

1 1 0 1 0 0 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

)   ~  (

1 0 0 0 1 1 0
0 1 0 0 1 1 0
0 0 1 0 0 1 0
0 0 0 1 1 0 1

) = 

= 𝐺0=  (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 𝐴), where𝐴 = (

1 1 0
1 1 0
0 1 0
1 0 0

 ) 

That's why 

𝐻0 = ((−𝐴)𝑇𝐼𝑛−𝑘) =(
1 1 0 1 1 0 0
1 1 1 0 0 1 0
0 0 0 0 0 0 1

) 

Consider the information word 𝑎 = (0110). When encoding with a matrix 𝐺, we have: 

𝑎 → 𝑐 = 𝑎𝐺 = (0 1 0 1 1 1 0), 

and when encoding with matrix 𝐺0: 

𝑎 → 𝑐 = 𝑎𝐺0 = (0 1 1 0 1 0 0). 

 Example 4 . Construct a systematic (7,3) -code in the alphabet 𝐹3. To solve the problem, you need to find a matrix of size 

3 × 7 and rank 3 over the field 

𝐹3 = {0,1,2}. We choose two non-proportional vectors of length 7: 

𝑔1 = (1 0 2 1 1 0 0),      𝑔2 = (2 1 1 0 2 1 0). 

It is clear that any vector g3 with a nonzero last coordinate forms, together with 𝑔
1
, 𝑔

2
, a system of three linearly 

independent vectors. 

Let 𝑔3 = (0 1 2 1 2 0 1). Then matrices 

𝐺 = (

𝑔
1

𝑔
2

𝑔
3

)= (
1 0 2 1 1 0 0
2 1 1 0 2 1 0
0 1 2 1 2 0 1

). 

Since over the field the 𝐹3determinant 

|
1 0 2
2 1 1
0 1 2

|= 2  ≠0, 

then we bring the matrix G to a systematic form: 

𝐺 = (
1 0 2 1 1 0 0
2 1 1 0 2 1 0
0 1 2 1 2 0 0

) ~~ (
1 0 2 1 1 0 0
0 1 0 1 0 1 0
0 1 2 1 2 0 1

)_ 

~~~  (
1 0 2 1 1 0 0
0 1 0 1 0 1 0
0 0 2 0 2 2 1

)_  (
1 0 0 1 2 1 2
0 1 0 1 0 1 0
0 0 2 0 2 2 1

)_ 

== (
1 0 0 1 2 1 2
0 1 0 1 0 1 0
0 0 1 0 1 1 2

), _𝐺0 = (𝐼3  𝐴) 

Where 

𝐴 = (
1 2 1 2
1 0 1 0
0 1 1 1

). 

From here, 

𝐻0 = ((−𝐴)𝑇𝐼4) = (

2 2 0 1 0 0 0
1 0 2 0 1 0 0
2 2 2 0 0 1 0
1 0 1 0 0 0 1

) 

We are now able to encode the information word a =(210) in a systematic code form. We have 

𝑎 → 𝑎𝐺0 = (2 1 0 0 1 0 1).  
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 Consider a block linear (𝑛, 𝑘)- code 𝐶in the alphabet 𝐹𝑞. Let be 𝐺the generating matrix of this code. Let us fix 

the check matrix 𝐻of this code. Then 𝐻 ⋅ 𝐺𝑇 = 0, where 𝑘 × 𝑛, (𝑚 × 𝑛), (𝑚 × 𝑘)are the dimensions of the matrices , respectively 

𝐺,𝐻, 𝑂. Fixing the matrix 𝐻means that only codewords 𝑐(i.e., vectors from the space of  𝐶codewords) satisfy the equality 𝐻𝑐
𝑇
 =

0. Therefore, if for the received word 𝑣we have 𝐻𝑣
𝑇
 = 0. , we conclude that the code word has been distorted in the channel 𝑐, 

and therefore 𝑣 =  𝑐 + 𝑒. 

Since 𝐻𝑣
𝑇
 =  𝐻𝑐

𝑇
 +  𝐻𝑒

𝑇
 =  𝐻𝑒

𝑇
 , then the vector 𝐻𝑒

𝑇
 indicates the presence of errors in the received message and 

it is called the error sector syndrome . However, if the error vector coincides with some code vector, then we will get that 𝐻𝑒
𝑇
 =

𝑂, and therefore we will not know about errors in the communication channel, and therefore we will perform incorrect decoding. 

Definition 1. An arbitrary vector syndrome with 𝑦 ∈ 𝐅𝒒𝒏
respect to a linear (𝑛, 𝑘)code 𝐶(or its check matrix  𝐻) is a vector 

𝐻𝑦
𝑇

∈ 𝐅𝑞
𝑚. Designated 𝑆(𝑦) = (𝑠0, 𝑠1, . . . , 𝑠𝑚−1). 

Assuming that the communication channel is sufficiently "good, i.e., the number of distortions in one code word" is small 

, we can exclude the situation 𝑆(𝑒) = 0if code vectors are chosen knowingly different from possible error vectors. 

Definition 2 . Let be 𝑦 = (𝑦0, 𝑦1, . . . , 𝑦𝑛−1)an arbitrary vector from 𝐅𝑞
𝑚. The Hamming weight of a vector 𝑦is the number 

of non-zero coordinates of this vector. 

Definition 3 . Hamming distance between vectors 

 𝑥 и 𝑦 ∈ 𝐅𝑞
𝑚is the number of non-zero coordinates of the vector 𝑥 − 𝑦. 

If 𝑤(𝑥)means the Hamming weight for 𝑥, and 𝑑(𝑥, 𝑦)is the Hamming distance between 𝑥and 𝑦, then we have 

𝑑(𝑥, 𝑦) = 𝑤(𝑥 − 𝑦). 

It is easy to check that the Hamming distance on 𝐅𝑞
𝑛defines a matrix on the space 𝐅𝑞

𝑛, and the triangle inequality holds 

𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑦) 

for any 𝑥, 𝑦, 𝑧 ∈ 𝐅𝑞
𝑛 . 

 Definition 4 . Let a linear (𝑛, 𝑘)-code over be given 𝐅𝑞. The minimum code distance for 𝐶(denoted by 𝑑𝑐) is the minimum 

weight of non-zero code words; 𝑑𝑐 = 𝑚𝑖𝑛(0≠𝑐∈ ∁)𝑤(𝑐). 

 Since the difference of code words is a code word (since is a 𝐶subspace of 𝐅𝑞.), we have 

𝑑𝑐 = 𝑚𝑖𝑛(𝑐1,𝑐2∈ ∁,𝑐1≠𝑐2)(𝑑(𝑐1, 𝑐2)). 

For example, let 𝑐1 = (101011), 𝑐2=(111001) ∈ 𝐹2
6. Then 𝑤(𝑐1) = 4, 𝑤( 𝑐2) = 4, 𝑑 (𝑐1, 𝑐2) = 𝑤(𝑐1 − 𝑐2) = 2. This 

shows that if 𝑑𝑐 ≥ 5, and the communication channel is such that no more 3𝑥errors can be made in each word passing through 

the channel, then for the received word v its syndrome (and hence the syndrome of the error vector) will be different from the 

zero vector. 

In coding theory, the following principle of decoding in channels with noise is confessed: "the received word is 𝑣decoded 

into the nearest (in the sense of the Hamming distance) code word. If for a given v there are at least two code words for which 

𝑑(𝑣, 𝑐1) = 𝑑(𝑣, 𝑐2) ≥ 𝑑(𝑣, 𝑐)for all code words 𝑐 ∈ 𝐶, 𝑐 ≠ 𝑐1, 𝑐 ≠ 𝑐2, then a collision occurs, leading to decoding failure". 

Definition 5 . A sphere of radius 𝑡, 𝑡 ∈ 𝑁centered at a point 𝑦
0

∈ 𝐅𝑞
𝑛is a set of vectors 𝑦 ∈ 𝐅𝑞

𝑛for which 𝑑(𝑦
0
, 𝑦) ≤ 𝑡. 

(Designation: 𝐵𝑡(𝑦0)). 

Definition 6 . A code is said  𝐶to correct 𝑡errors and less if each 𝑦 ∈ 𝐅𝑞
𝑛sphere 𝐵𝑡(𝑦)contains no more than one codeword. 

Theorem 1 . Linear (𝑛, 𝑘)-code 𝐶corrects 𝑡errors and less if and only if 𝑑𝐶 ≥ 2𝑡 + 1. 

Proof . If the code C corrects 𝑡errors, then for any codewords 𝑐1, 𝑐2, 𝑐1  ≠ 𝑐2the assumption 𝑑(𝑐1, 𝑐2) ≤ 2𝑡follows 

𝑤(𝑐2 − 𝑐1) ≤ 2𝑡.. Take as y a vector whose first 𝑡non-zero coordinates are the same as those of the vector 𝑐2 − 𝑐1, and the 

remaining coordinates are equal to 0. For such a vector y we have 𝑑(𝑦, 𝑐2 − 𝑐1) = 𝑡, 𝑑(𝑦, 0) ≤ 𝑡, and therefore the sphere radius 

𝑡centered at the point y contains two code words 0and 𝑐2 − 𝑐1, which is contradictory. 

 And vice versa, if 𝑑𝐶 ≥ 2𝑡 + 1, then for each 𝑦 ∈ 𝐹𝑞
∗we have 

𝑑(𝑦, 𝑐1) + 𝑑(𝑦, 𝑐2) ≥ 𝑑(𝑐1, 𝑐2) ≥ 2𝑡 + 1 

for any 𝑐1, 𝑐2 ∈ 𝐶, 𝑐1 ≠ 𝑐2, which means that at least one of the inequalities 

𝑑(𝑦, 𝑐1) > 𝑡, 𝑑(𝑦, 𝑐2) > 𝑡 

is performed, i.e. sphere 𝐵𝑡(𝑦)contains at most one vector  

 𝑐1, 𝑐1 ∈ 𝐶, 𝑐1 ≠ 𝑐2. 

 Theorem 2 . Let a C-linear (𝑛, 𝑘)-code over 𝐹𝑞. For each code word 𝑐with Hamming weight 𝑙, 𝑙 ≠ 0, there are 𝑙columns 

of the check matrix 𝐻of this code, such that the linear combination of these columns, whose coefficients are non-zero coordinates 
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of the vector 𝑐, is equal to zero. And vice versa, if there are 𝑙matrix columns 𝐻and non-zero , 𝑙field 𝐹𝑞elements 𝑎1, . . . , 𝑎𝑙so that 

the linear combination of these columns with coefficients 𝑎1, . . . , 𝑎𝑙is equal to zero, then there is a code vector whose non-zero 

components are equal 𝑎1, . . . , 𝑎𝑙and located on the numbers of the selected columns of the matrix 𝐻. 

 Proof. Indeed, for any vector , 𝑣 = (𝑣1, . . . , 𝑣𝑛)the product 𝑣𝐻𝑇 = 𝑣1ℎ1 + ⋯+ 𝑣𝑛ℎ𝑛, where ℎ𝑖is the i-th column of the 

matrix 𝐻. Hence, the validity of the theorem is easily verified in both directions. 

 Corollary 1 . If the check matrix of a 𝐻linear (𝑛, 𝑘)-code is such that any of its s columns are linearly independent over 

Fq, then the (𝑛, 𝑘)-code 𝐶in the alphabet 𝐹𝑞has a minimum code distance ≥ 𝑠 + 1. 

 Consequence 5 . Let 𝐶-linear (𝑛, 𝑘)-code over 𝐹2. Then 𝑑𝐶 it is equal to the least number of columns of the check matrix 

𝐻whose sum is equal to 𝑂. 

 Example 5 . Let 𝐶 − (7,4)-code over 𝐹2. with check matrix 

𝐻 = (
1 1 0 1 0 0 1
0 0 1 1 0 1 1
0 1 0 1 1 1 0

) 

The matrix 𝐻has no proportional columns (hence any two columns are linearly independent). But the sum of the second, 

third and fourth columns is zero. Therefore, 𝑑𝐶 = 3, and, by virtue of Theorem 1, this code corrects single errors. 

From now until the end of this section, we will consider linear (𝑛, 𝑘)codes in the alphabet 𝐹2, although the theory 

presented is also valid over an arbitrary alphabet 𝐹𝑞. 

If a code vector was sent over the communication channel 𝑐AND there were 𝑙symbol distortions in the channel, then for 

the received word v we have 𝑑(𝑐, 𝑣) = 𝑙, which means that at , the 𝑙 < 𝑑𝐶word 𝑣will not coincide with any code word. For such 

a code, a corruption of 1 𝑑𝐶 − 1or fewer symbols will not result in a codeword. This means that a linear (𝑛, 𝑘)-code 𝐶with a 

minimum code distance dC is able to detect the occurrence of errors in the amount 𝑑𝐶 − 1or less (but not necessarily correct 

them). 

We will assume that the number of distortions in code words after passing through a noisy channel is less than 𝑑𝐶 , i.e. 

the probability of the opposite event is quite small. Only under these assumptions does it make sense to use this code. 

Let be 𝐶a given linear (𝑛, 𝑘)-code in the alphabet 𝐹2. The code 𝐶contains 2𝑘words, and in space 𝐹2
𝑛there are 2𝑛vectors. 

We divide the set of vectors 𝐹2
𝑛into classes as follows: 

the class 𝐾1consists of 2𝑘code words; 

the class 𝐾2consists of vectors of the form 𝑒2 + 𝑐, where the 𝑐entire set runs 𝐶, and the vector 𝑒2has the least weight 

among the vectors from 𝐹𝑞 ∖ 𝐶; 

the class K3 consists of vectors of the form 𝑒3 + 𝑐, 𝑐 ∈ 𝐶, 𝑒3the vector of the smallest Hamming weight from 𝐹𝑞 ∖

(𝐶⋃𝐾2), and so on. 

Each class 𝐾𝑖contains exactly 2𝑘vectors, these vectors are different, and the classes 𝐾𝑖and 𝐾𝑗do not intersect at 𝑖 ≠

𝑗(Indeed, from 𝐾𝑖⋂𝐾𝑗 ≠ ∅ it follows that there are vectors 𝑐𝑙and 𝑐𝑚from 𝐶such that 

𝑒𝑖 + 𝑐𝑙 = 𝑒𝑖 + 𝑐𝑚. 

Let for definiteness 𝑗 > 𝑖. Then we have 

𝑒𝑗 = 𝑒𝑖 + (𝑐𝑙 + 𝑐𝑚) = 𝑒𝑖 + 𝑐, где 𝑐 ∈ 𝐶, 

but this contradicts the choice 𝑒𝑗as the vector with the least weight and not lying in any of the previous classes. 

 The classes 𝐾𝑖will be called the cosets of the space 𝐹2by the code 𝐶. It is clear that we will have a total of six 2𝑛−𝑘 =

2𝑚classes. Selected vectors 𝑒𝑖 ∈ 𝐾𝑖 , (𝑒𝑖 = 0), have the smallest Hamming weight in the class 𝐾𝑖, but in this class, in addition to 

the vector , there 𝑒𝑖may be other vectors with a weight equal to the weight 𝑒𝑖. 

 results 𝐹2
𝑛of splitting the set of space vectors into classes using the table 

 The allocated vectors 𝑒𝑖 , 𝑖 = 2,3, . . . , 2𝑚,are called class leaders 𝐾𝑖. The leader of the class 𝐾1 = 𝐶is the null vector 

𝑒1=(0,...,0). 

Leader Class elements𝐾𝑗{𝑒𝑗} leader syndrome 

𝑐1 = 0 𝑐2 … 𝑐𝑗  … 𝑐2𝑘  𝑆(0 = 0) 

𝑒2 𝑐2 + 𝑒2 … 𝑐1 + 𝑒2 … 𝑐2𝑘 + 𝑒2 𝑠(𝑒2) 

𝑒3 𝑐2 + 𝑒3 … 𝑐𝑗 + 𝑒3 … 𝑐2𝑘 + 𝑒3 𝑠(𝑒3) 

….. ….. … ….. … ….. ……. 

𝑒2𝑚 𝑐2 + 𝑒2𝑚  … 𝑐1 + 𝑒2𝑚  … 𝑐2𝑘 + 𝑒2𝑚  𝑠(𝑒2𝑚) 
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Example 6 . Let 𝐶-linear (6,3)-code сby generating matrix 

𝐺 = (
1 0 1 0 1 0
0 1 0 1 1 0
1 1 0 0 0 1

) 

The generating matrix allows you to write all code words as all possible linear combinations of matrix rows 𝐺with coefficients from 

𝐹2. We have 

𝑐1 = (000000), 𝑐2 = (101010), 𝑐3 = (010110), 𝑐4 = (110001) 

𝑐5 = (111100), 𝑐6 = (011011), 𝑐7 = (100111), 𝑐8 = (001101) 

Therefore, we have such a class table 

(000000) (101010) (010110) (110001) (111100) (011011) (100111) (001101) 

(100000) (001010) (110110) (010001) (011100) (111001) (000111) (101101) 

(010000) (111010) (000110) (100001) (101100) (001011) (110111) (011101) 

(001000) (100010) (011110) (111001) (110100) (010011) (101111) (000101) 

(000100) (101110) (010010) (110101) (111000) (011111) (100011) (001001) 

(000010) (101000) (010100) (110011) (111110) (011001) (100101) (001111) 

(000001) (101011) (010111) (110000) (111101) (011010) (100110) (001100) 

(100100) (001110) (110010) (010101) (011000) (111111) (000011) (101001) 

 

Consider an arbitrary class 

𝐾𝑗 = { 𝑒𝑗 + 𝑐𝑗 ∣ 𝑐𝑗 ∈ 𝐶, 𝑖 = 1,1, . . . , 2𝑘}. 

Then we have 

𝑆(𝑒𝑗 + 𝑐𝑗) = 𝑆(𝑒𝑗) + 𝑆(𝑐𝑗) = 𝑆(𝑒𝑗), 𝑖 = 1, . . . , 2𝑘 .  

This means that elements of the same class have equal syndromes. Using the principle of choosing the coset leader, we, 

by virtue of the decoding method to the nearest code number, obtain the decoding algorithm by the coset leader: 

Step I Calculate the received vector syndrome 𝑣: 𝑆(𝑣) = 𝐻𝑣
𝑇

. 

Step II In the table of syndromes, we find the line for which 𝑆(𝑣) = 𝑆(𝑒𝑗). 

Step III Decode the received word 𝑣for word 𝑐 = 𝑣 + 𝑒𝑗 . 

This decoding method minimizes the decoding error, since, according to our agreement, the probability of the word v 

appearing at the channel input decreases with an increase in the number of distorted symbols. This encoding method is also 

supported by the fact that the Hamming distance between the received word 𝑣and the code word 𝑐(see step III) is not greater 

than the distance between 𝑣and another (other than 𝑐) code word. Really, 

𝑑(𝑣, 𝑐′) = 𝑤(𝑣 + 𝑐′) = 𝑤(𝑒𝑗 + 𝑐 + 𝑐′) = 𝑤(𝑒𝑗 + 𝑐′′), 𝑐′′ = 𝑐 + 𝑐′ 

And since the leader 𝑒𝑗and the vector 𝑒𝑗 + 𝑐′′are in the same adjacent class, then, by virtue of the choice of the leader in 

the adjacent class, we conclude 

𝑤(𝑒𝑗) ≤  𝑤(𝑒𝑗 + 𝑐′′), and therefore 𝑑(𝑣, 𝑐) ≤ 𝑑(𝑣, 𝑐′). 

 The above reasoning also shows that in cases where the coset leader can be chosen in a unique way, then decoding by 

the coset leader has a minimum decoding error. | indent Denote by the 𝐴number of coset leaders with weight j . The numbers 

𝐴0, 𝐴1, . . . , 𝐴𝑛will be called the weight distribution of leaders . 

In some cases, the weight distribution makes it possible to estimate the probability of a decoding error. Let us consider a 

binary symmetric channel (BSC) with the probability 𝑝of one symbol distortion, i.e. 

𝑃(0 ∣ 1) = 𝑃(1 ∣ 0) = 𝑝 

(here 𝑃(0 ∣ 1) means the probability that the sent character 1 will go to the character 0). 

 Since a decoding error occurs if and only if the error vector is not the leader of an adjacent class, we get that the 

probability of incorrect decoding in such a channel is equal to 

𝑃(𝐸) = 1 − ∑𝐴𝑖𝑝
𝑖

𝑛

𝑖=0

 (1 − 𝑝)𝑛−𝑖 . 

In Example 15 considered above, for a linear (6,3)-code with generator matrix G, we have the following weight 

distribution: 

𝐴0 = 1, 𝐴1 = 6, 𝐴2 = 1, 𝐴3 = 𝐴4 = 𝐴5 = 𝐴6 = 1. 
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That's why 

𝑃(𝐸) = 1 − (1 − 𝑝)6 − 6𝑝(1 − 𝑝)5 − 𝑝2(1 − 𝑝)4. 

For 𝑝 = 10−2we get 𝑃(𝐸) ≈ 1.4 ⋅ 10−3. 

Theorem 3 . Let a 𝐶 −linear (𝑛, 𝑘)-code be the сminimum code distance 𝑑𝐶 . Then all weight vectors 𝑡 =
𝑑𝐶−1

2
 and less 

can be examined as coclass leaders, but at least one weight vector 𝑡 + 1cannot be a coset leader. 

The assertion of the theorem follows from the definition of an error-correcting 𝑡code; а the considered example 16 

illustrates what was said for 𝑡 = 1. (For example, a vector (010001)cannot be a leader). 

Example 7 . Consider the (7,4) -code с by the generating matrix 

𝐺 = (

1 0 1 0 1 0 0
0 0 1 1 0 1 0
1 1 1 0 0 1 0
1 0 0 0 0 1 1

) 

The check matrix 𝐻has size (7,3) so the number of cosets is 23=8 and it looks like 

𝐻 = (
0 1 1 1 1 0 0
1 1 1 0 0 1 0
1 0 1 1 0 0 1

) 

In a matrix 𝐻, no two columns are equal, but the first column is equal to the sum of the last two. Therefore, 𝑑𝐶 = 3. Therefore, 

the code 𝐶corrects single errors. This is also evidenced by the fact that any two vectors with weight 1 cannot be in the same coset. 

There are only 7 such vectors, which, together with the zero row, give eight different leaders, i.e. each coset has a weight vector 

≤ 1 as its leader, which makes it possible to uniquely correct single errors. 

 For example, if a message v=(0010010) is received, we compute   𝑆𝑣 = 𝐻𝑣
𝑇

= (
1
0
1
)and compare with the 

weight vector syndromes of 1: 

𝑆(1000000) = (
0
1
1
),  𝑆(0100000) = (

1
1
0
) 

𝑆(0010000) = (
1
1
1
),  𝑆(0001000) = (

1
0
1
) 

 

𝑆(0000100) = (
1
0
1
),  𝑆(0000010) = (

0
1
0
) 

𝑆(0000001) = (
0
0
1
),   

Where do we conclude that the error is in the fourth position, and therefore    𝑐 = (0011010). 

If there was a double error, for example, 𝑒 = (0010010),and we got 𝑣 = (1001110), then the calculations give 𝑆(𝑣 =

𝑆(𝑒)) = (
0
0
1
). Now, when decoding by the method of adjacent classes, we would have an erroneous result 𝑒 = (0000001), 𝑐 =

(1001111)instead of a sent message 𝑐0 = (1011100). 

Thus, exaggerating the possibilities of decoding using the coset method, we can come to an erroneous result. 

2.2  Hamming Codes 

The Hamming code was the first example of a linear (𝑛, 𝑘)-code to detect and correct single errors. We fix a natural 

number 𝑚 ≥ 3and consider a matrix whose columns are the 𝑚-valued notation of numbers from 1 to 2𝑚−1. We will get a matrix 

H of size 2𝑚−1 × 𝑚, which we will consider as a check matrix of a linear (𝑛, 𝑘)-code, where 𝑛 = 2𝑚 − 1, 𝑘 = 𝑛 − 𝑚 = 2𝑚 − 𝑚 −

1. This code is called the Hamming code. Obviously, the columns of the matrix H are different, but there is a column equal to the 

sum of the other two. Therefore, this code corrects single errors. There are 2𝑛−𝑘 = 2𝑚cosets, and vectors 

(000⋯00), (100⋯00), (010⋯00), . . . , (000⋯10), (000⋯01) 

belong to different cosets. 
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 Each sphere of radius 1 contains n + 1 points from 𝐹2
𝑛, and therefore non-intersecting spheres with centers in code words 

contain    (𝑛 + 1)2𝑘 = 2𝑚 ⋅ 2𝑘 = 2𝑛points from 𝐹2
𝑛, i.e. these spheres cover the entire space without 

intersections 𝐹2
𝑛. 

 Definition 7 . A code correcting 𝑡-errors and less is called a perfect code if all vectors with Hamming weight ≤ 𝑡are coset 

leaders and there are no other leaders. 

 Therefore, the Hamming code is a perfect code that corrects single errors. In addition to the Hamming code, there is 

another binary perfect (23,12) Galey code. The (7,4)-code considered in Example 17 is a binary Hamming code. There are also 

perfect codes in the alphabet .𝐹𝑞 

 Let us construct a generalized Hamming code. Let 𝑚 ≥ 3. We put n =
𝑞𝑚−1 

𝑞−1
and denote by α the primitive element of the 

field 𝐹𝑞𝑚. Then the order of α in the group 𝐹𝑞𝑚
∗ is 𝑞𝑚 − 1. Recall that each element of the field 𝐹𝑞𝑚 is uniquely represented by a 

linear combination of elements  1, 𝛼, . . . , 𝛼𝑚−1with coefficients from 𝐹𝑞: 

𝛼𝑗 = 𝑚 ∑ 𝑎𝑖𝑗𝛼
𝑖

𝑚−1

𝑖=0

, 𝑗 = 0,1, . . . , 𝑛 − 1. 

We form a matrix H , whose columns are ℎ𝑗 = (

𝑎0𝑗

⋮
𝑎𝑚−1,𝑗

), i.e. 

𝐻 = (

𝑎00 𝑎01 … 𝑎0,𝑛−1

𝑎10 𝑎11 ⋯ 𝑎1,𝑛−1

⋮ ⋮ ⋱ ⋮
𝑎𝑚−1,0 𝑎𝑚−1,1 ⋯ 𝑎𝑚−1.𝑛−1

) 

A generalized Hamming code is a linear (𝑛, 𝑘)-code in the alphabet 𝐹𝑞, whose check matrix is equal to 𝐻(here 𝑘 = 𝑛 −

𝑚). 

Theorem 4 . The generalized Hamming code is a perfect single error correcting code . 

Proof . The different columns of the matrix represent different powers of α, and therefore their proportionality implies 

that          𝛼𝑖  = 𝑎𝛼𝑗, 𝑎 ∈ 𝐹𝑞 , 0 ≤ 𝑗 < 𝑖 ≤ 𝑛 − 1. But then 𝑎 = 𝛼𝑖−𝑗, but because    1 = 𝛼𝑞−1 =

𝛼(𝑖−𝑗)(𝑞−1), which is impossible, since 0 < (𝑖 − 𝑗)(𝑞 − 1) < 𝑛(𝑞 − 1) = 𝑞𝑚−1, and the order of α is equal to 𝑞𝑚−1. Thus, for the 

considered code: 𝑑𝐶 ≥ 3, i.e. the code corrects single errors. Each sphere 𝐵1(𝑦), 𝑦 ∈ 𝐹𝑞contains a point y and more 𝑛(𝑞 −

1)points at a distance of 1 from y, i.e. ∣ 𝐵1(𝑦) ∣= 1 + 𝑛(𝑞 − 1) = 𝑞𝑚. When the set of all 𝑦code words runs through , then the 

set𝑞𝑘  ⋃ 𝐵1(𝑐)𝑐∈𝐶 will contain 𝑞𝑘 ⋅∣ 𝐵1(𝑦) ∣= 𝑞𝑘+𝑚 = 𝑞𝑛vectors. Hence, these spheres cover the entire space 𝐹𝑞
𝑛. Therefore, the 

generalized Hamming code is a perfect code. 

2.3  Decoding algorithms based on algebraic features of cyclic codes. 

 We considered decoding methods based mainly on the property of linear cyclic codes that these codes are subspaces of 

a linear 𝑛 −dimensional space over a field 𝐺𝐹(𝑞). The cyclicity of the code is only a circumstance that allows the most simple 

implementation of these algorithms. In this section, we consider another class of decoding algorithms based on the finer algebraic 

structure of cyclic codes. This class is based on a simple algebraic technique for finding the erroneous components of the received 

sequence, which was first used by Peterson to decode binary codes and by Zierler and Hornstein to decode non-binary Bose-

Chowdhury-Hokvinhem codes. For ease of reference, we will call the method of Peterson and Gornstein-Zierler the direct decoding 

method. 

Empty Кis the finite extension of the field 𝐺𝐹(𝑞)containing all the roots of the polynomial 𝑔(𝑥), with coefficient 

𝐺𝐹(𝑞)and 𝑚 −degree Кover 𝐺𝐹(𝑞). Let be𝑔(𝑥) belongs to the exponent 𝑛, then n divides 𝑞𝑚 − 1. It is known that in 𝐾 =

𝐺𝐹(𝑞𝑚)there is an element 𝜇of order 𝑛, in the form of powers of which it is possible to represent all elements of the cyclic 

subgroup of the order of the 𝑛multiplicative group of the field К, including all the roots of the polynomial𝑔(𝑥) . Let's pretend 

that𝑔(𝑥) generates a cyclic code А. Denote the set of roots of the polynomial𝑔(𝑥) across 

{𝜃1 = 𝜇 𝑙1 , 𝜃2 = 𝜇 𝑙2 , … , 𝜃𝑟 = 𝜇 𝑙𝑟  }. 

Since each code word 𝑎(𝑥)from the cyclic code A is divided without remainder by the generating polynomial 𝑔(𝑥), then 

the roots listed above must also be the roots of any polynomial 𝑎(𝑥) ∈ 𝐴. 

Let us assume that the errors in the communication channel have been translated 

𝑎(𝑥) в 𝑏(𝑥) = 𝑎(𝑥) + 𝑒(𝑥) . 
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If errors can in principle be corrected, then the syndrome          𝑆(𝑥) = 𝑏(𝑥) 𝑚𝑜𝑑 𝑔(𝑥)carries all the information 

about the errors that have occurred. Knowing this information is enough for correction, for example, using a filter and a selector. 

On the other hand, all information about errors is contained in the set of the following 𝑟elements of the field К: 𝑠11 = 𝑏(𝜃1), 𝑠12 =

𝑏(𝜃2), … , 𝑠𝑙𝑟 = 𝑏(𝜃𝑟), which can also be calculated using multi-cycle linear filters. Indeed, by supplying quantities instead of in 

comparison. 

𝑆(𝑥) = 𝑐0 + 𝑐1𝑥 + ⋯ + 𝑐𝑟−1𝑥
𝑟−1 ≡ 𝑏(𝑥) 𝑚𝑜𝑑 𝑔(𝑥) 

We get a system of equations 

𝑐0 + 𝑐1𝜃𝑗 + ⋯ + 𝑐𝑟−1𝜃𝑗
𝑟−1 = 𝑠𝑟𝑗

, 𝑗 = 1,2… , 𝑟 

Relatively 𝑐0, 𝑐1 … , 𝑐𝑟−1. The coefficient matrix of this system 

[
 
 
 
1 𝜃1 𝜃1

2 … 𝜃1
𝑟−1

1 𝜃2 𝜃2
2 … 𝜃2

𝑟−1

… … … … …
1 𝜃𝑟 𝜃𝑟

2 … 𝜃𝑟
𝑟−1]

 
 
 
 

 Has a non-zero determinant since the latter is a Vandermonde determinant and 𝜃𝑗, different roots of the polynomial 

𝑔(𝑥). 

Therefore, the system of linear equations given above has exactly one solution and the elements 𝑆𝑙𝑗 = 𝑏(𝜃𝑗), где о =

1,2, … 𝑟, completely define the syndrome. 

From 𝑆𝑙𝑗 = 𝑏(𝜃𝑗)it follows that 𝑆𝑙𝑗 = 𝑒(𝜃𝑗), since 𝑎(𝜃𝑗) = 0. Since 𝑒(𝑥) = ∑ 𝜀𝑖
𝑛−1
𝑖=0 𝑥𝑖, then the equalities 

𝑠𝑙𝑗 = ∑  𝜀𝑖
𝑛−1
𝑖=0 (𝑥𝑙𝑗)𝑙 , 𝑗 = 1,2, … 𝑟   (3.0) 

It can be considered as a system 𝑟of equations with respect to 𝑛variables, 𝜀0, 𝜀1 … , 𝜀𝑛−1and any way to solve this system 

as a method that can be the basis of some decoding algorithm. 

Each error vector is completely specified by listing the values of non-zero components and indicating the places where 

these non-zero components are located. Since 𝑒(𝜇) = ∑ 𝜀𝑖𝜇
𝑖𝑛−1

𝑖=1 , the position of non-zero components can be specified using 

𝑡elements 𝜇𝑖1, 𝜇𝑖2, … , 𝜇𝑖𝑡and the value of these components using elements 𝜀𝑖1, 𝜀𝑖2, … , 𝜀𝑖𝑡. 

Such a representation of the error vector in terms 𝑡of pairs of values is convenient for decoding purposes, since it is 

possible to reduce 𝜇𝑖𝑢, 𝜀𝑖𝑢the problem of error correction to first determining the position of the erroneous components, and 

then calculating the values of these components. 

2.3 Direct method for decoding cyclic codes 

Let us introduce the notation 𝜇𝑖1 = 𝜇1, 𝜇
𝑖2 = 𝜇2, … , 𝜇𝑖𝑡 = 𝜇𝑡  and construct a polynomial 𝐼(𝑥) = 𝑥𝑡 + 𝜎1𝑥

𝑡−1 + ⋯+

𝜎𝑡whose roots are the quantities 𝜇𝑢, 𝑢 = 1,2, … , 𝑡. 

We will assume that the degree of this polynomial is 𝑡, even if the true number of errors is 𝑣 < 𝑡, i.e. let 's put 𝜀𝑖𝑢 = 𝜇𝑢 =

0at 𝑣 < 𝑢 ≤ 𝑡. The coefficients of 𝜎1, 𝜎2, … 𝜎𝑡the polynomial 𝑙(𝑥)are determined by the relation. 

𝑥𝑡 + 𝜎1𝑥
𝑡−1 + ⋯ + 𝜎1 = ∏ 𝑥 − 𝜇𝑢

𝑡

𝑢−1

 

Substituting into this relation 𝜇𝑢instead of 𝑥, multiplying the left and right sides of the resulting expressions by 𝜀𝑖𝑢and summing 

over 𝑢, we obtain 

∑ 𝜀𝑖𝑢

𝑡

𝑢=1

𝜇𝑢
(1+𝑝)

+ 𝜎1 ∑ 𝜀𝑖𝑢

𝑡

𝑢−1

𝜇𝑢
(1+𝑝−1)

+ ⋯+ 𝜎1 ∑ 𝜀𝑖𝑢

𝑡

𝑢=1

𝜇𝑖𝑢
𝑝

 

Introducing the notation 

∑ 𝜀𝑖𝑢
𝑡
𝑢=1 𝜇𝑢

𝑗
= 𝑆𝑗                            (3.1) 

We get a system of equations 

𝑆𝑡+𝑝 = 𝜎1𝑆1+𝑝−1 + ⋯+ 𝜎1𝑆𝑝, 𝑝 = 0,1,2…,             (3.2) 

which must be fulfilled for all values of 𝑝. If now it 𝑗is equal to one of the numbers {𝑙1, 𝑙2, … 𝑙𝑟}, then from expressions (3.0) and 

(3.1) we get 

𝑆𝑗 = 𝑠𝑙   𝑗 ∈ {𝑙1, 𝑙2, … 𝑙𝑟}. 

 This circumstance can be used to determine those coefficients of system (3.2) for which 𝑗 ∈ {𝑙1, 𝑙2, … 𝑙𝑟}. 

Let us assume that in this way it was possible to determine all the coefficients of 𝑣linearly independent equations from 

the system (3.2). Then, by solving the system of these equations, we can find the quantities 𝜎1, 𝜎2, … 𝜎𝑣. Now the position of 
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erroneous characters (ie numbers 𝑖1, 𝑖2, … 𝑖𝑣) will be determined by substituting all the elements 𝜇2, 𝑖 = 0,1, … , 𝑛 − 1one by one 

into the polynomial 𝐼(𝑥). 

If, when setting the element , the 𝜇𝑢 = 𝜇𝑖𝑢equality is fulfilled  𝐼(𝜇𝑢) = 0, then the corresponding component of the 

𝜀𝑖𝑢error vector is different from zero. This follows from the fact that, by construction, the polynomial 𝑙(𝑥)vanishes for all 𝜇𝑢 ∈

𝛿{𝜇1, 𝜇2, … 𝜇𝑣}and is nonzero for all the others 𝜇𝑢. Therefore, in this way, the position numbers of the vector that contain non-

zero components can be found . 𝑒To find the components themselves, 𝜀𝑖1, 𝜀𝑖2, … 𝜀𝑖𝑢it suffices to solve the system of linear 

equations (3.0), in which 𝜀𝑖, 𝑖 = 𝑖1, 𝑖2, … 𝑖𝑣 , are set equal to zero. 

 In the case of decoding binary codes, there is no need to determine the values of the erroneous components, since all 

non-zero components of the error vector are equal to one. The problem of finding the error vector with the help of elements 𝑆𝑗 =

𝑏(𝜃𝑗), 𝑗 = 1,2, … 𝑟,, will be completely solved if we establish the possibility of a unique solution to systems (3.0) and (3.2). 

 Consider the decoding of Bose-Chowdhury-Hokvinhem codes. Recall that cyclic BCH codes that correct independent 

errors whose multiplicity does not exceed t are specified using 2t nonzero elements 

𝜇𝑚0 , 𝜇𝑚0+1, … , 𝜇𝑚0+2𝑡−1 

Which by definition are the roots of all code words. As before, 𝜇 ∈ 𝑘and has order 𝑛. The code generator is a polynomial. 

𝑔(𝑥) = 𝐻𝑂𝐾[𝑓0(𝑥), 𝑓1(𝑥), … , 𝑓2𝑡−1(𝑥)]. 

Where 𝑓𝑖(𝑥), 𝑖 = 1,2, … 2𝑡 − 1, are irreducible over 𝐺𝐹(𝑞)polynomials whose roots are 𝜇𝑚0+𝑖. In this case (3.0) becomes 

𝑠𝑗 = ∑ 𝜀𝑖(𝜇
𝑗)𝑖𝑛−1

𝑖=0 , 𝑚0 ≤ 𝑗 ≤ 𝑚0 + 2𝑡 − 1.(3.0') 

And 𝑆𝑗can be calculated using appropriate linear filters. Thus, equations (3.0') determine 2𝑡the coefficients in 𝑡the 

equations of system (3.2) for 𝑝 = 𝑚0, 𝑚0 + 1,… ,𝑚0 + 𝑡 − 1. System (3.2) is a linear inhomogeneous system with a matrix of 

coefficients. 

𝑀𝑡 =

[
 
 
 
𝑆𝑚0+𝑡−1 𝑆𝑚0+𝑡−2 … 𝑆𝑚0

𝑆𝑚0+𝑡 𝑆𝑚0+𝑡−1 … 𝑆𝑚0+1

… … … …
𝑆𝑚0+2𝑡 𝑆𝑚0+2𝑡−1 … 𝑆𝑚0+𝑡−1]

 
 
 
 

Where 𝑆𝑗 = 𝑠𝑗 = 𝑏(𝜇 𝑗), 𝑗 =  𝑚0, 𝑚0 + 1,… 𝑚0 + 𝑡 − 1. The conditions under which this system is solvable with respect 

𝜎1, 𝜎2, … 𝜎𝑡to are given by the following theorem. 

 Theorem 1 . The matrix determinant is М𝑡non-zero if the values are 𝑆𝑗[см. формулу (3.1)]formed from exactly 

𝑡different non-zero pairs 𝜀𝑖𝑢, 𝜇𝑢and u is equal to zero if 𝑆𝑗, are formed less than from 𝑡non-zero pairs (𝜀𝑖𝑢, 𝜇𝑢). 

Since the actual number of errors by assumption is equal to 𝑣, then the largest order of the matrix (3.3), for which its 

determinant is still nonzero, is equal to 𝑣. This means that in system (3.2) there are only 𝑣linearly independent equations obtained 

for 𝑝 =  𝑚0, 𝑚0 + 1,… 𝑚0 + 𝑣 − 1, which can be solved with respect to 𝜎1, 𝜎2, … 𝜎𝑣. This, in turn, implies that all non-zero roots 

of the polynomial can be found 𝑙(𝑥), i.e. the positions of all components of the error vector are determined. The values of the 

non-zero error vector can be found from the first 𝑣equations of the system (3.0'). The existence of a unique solution simply follows 

from the fact that the limiter of the coefficient matrix is the Vandermonde determinant. This determinant is different from zero, 

since 𝜇𝑖𝑢 , 𝑢 = 1,2, … 𝑣, are different values. 

So, the direct decoding algorithm can be formulated as follows: 

1. Calculate the values of the quantities 𝑆𝑗 = 𝑏(𝜇 𝑗), 𝑗 =  𝑚0, 𝑚0 + 1,… 𝑚0 + 2𝑡 − 1 . This operation can be carried out 

using linear multicycle filters. 

2. Determine the largest number v of linearly independent equations in the system (3.2), looking for the largest v for which 

the determinant |𝑀𝑣|is still different from zero. This number is equal to the number of errors that occurred. 

3. Solve system (3.2) relatively 𝜎1, 𝜎2, … 𝜎𝑣assuming that   𝜎𝑣+1 = ⋯ = 𝜎𝑡 = 0. 

4. Alternately substitute the values 𝜇𝑖, 𝑖 = 0,1, … 𝑛 − 1, into the equation 𝑥𝑣 + 𝜎1𝑥
𝑣+1 + ⋯+ 𝜎𝑣 = 0, looking for those 

that turn it into an identity. If 𝜇𝑢there is one of these values, then in the received sequence of characters at the position 

𝑢is erroneous. 

5. The found values 𝜇𝑢, 𝑢 = 1,2, … 𝑣, put into the equation (3.0') and solve them with respect to 𝜀𝑖𝑢. This operation is not 

needed in case of decoding binary codes. 

6. Make corrections of errors by scaling     𝑏(𝑥)𝑢 − 𝑐(𝑥) = − ∑ 𝜀𝑖𝑢
𝑥𝑖𝑢𝑖

𝑢=1  

 Some control can be obtained by restricting to decoding only binary codes and 𝑚0 = 1. In this case, all are equal to one 

and 
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𝑆𝑗 = ∑(𝜇𝑖)𝑖𝑢 , 𝑗 = 1,2, … ,2𝑡, 𝑣 ≤ 𝑡.

𝑣

𝑢=1

 

 Therefore, 𝑆𝑗are the power-law noises of the quantities 𝑣𝑖𝑢. 

 In a polynomial 𝑙(𝑥)whose roots are the 𝜇𝑖𝑢 , 𝑢 = 1,2, … , 𝑣coefficients 𝜎𝑢associated with c 𝑆𝑗Newton's formulas. 

Considering the coefficients in Newton's formulas as 𝑎𝑢variables, we can compose a system of equations 

𝑁 = [

𝜎1

𝜎2

⋮
𝜎𝑣

] = [

𝑆1

𝑆2

⋮
𝑆2𝑣−1

](3.4) 

Where    𝑁 =

[
 
 
 
 

1 0 0 … 0
𝑆2 𝑆1 1 … 0
𝑆4 𝑆3 𝑆2 … 0
… … … … …

𝑆2𝑣−2 𝑆2𝑣−3 𝑆2𝑣−4 … 𝑆𝑣−1]
 
 
 
 

(3.5) 

The conditions under which the system of equations (3.4) is solvable are given by the following theorem. 

Theorem 2 . The determinant of a matrix 𝑁𝑣is non-zero if the quantities 𝑆𝑗 , 𝑗 = 1,2, … , 2𝑡, are formed by power sums 𝑣or 

𝑣 − 1different elements 𝑛𝑢u is equal to zero if the quantities are 𝑆𝑗formed by power sums of fewer than 𝑣 − 1elements. 

The direct algorithm for decoding binary BCH codes almost does not differ from the general algorithm given above, 

although the practical implementation of the decoding method is simplified due to the simpler calculation of the determinant of 

the matrix (3.5) compared to the determinant of the matrix (3.3). In addition, when finding the largest number 𝑣for which the 

determinant 𝑁𝑣is still different from zero, one can use the solvability of the system of equation (3.4), even if the desired number 

v is equal to or one more than the actual number of errors that have occurred. This allows us to construct a calculation scheme as 

follows. First, it is assumed that 𝑣 = 2, then 𝑣 = 4, etc., are increased by two units. For each value , the determinant is calculated 

𝑁𝑣and choose for 𝑣the largest value at which |𝑁𝑣| ≠ 0. Thereafter, decoding is continued in the manner described. If it turns out 

that the found value of v exceeds the number of errors by one, then one of the solutions (3.4) is zero. 

The complexity of the described direct decoding method depends to a large extent on how easy it is to calculate the 

determinant of the matrix 𝑁𝑣and solve the system of equations (3.4). One of the possible methods for calculating the determinant 

and solving the system of equations is such a linear transformation of the system, in which the matrix 𝑁𝑣takes a triangular shape. 

However, a more efficient transformation can be proposed, which is based on the special structure of the matrix 𝑁𝑣and on the 

properties of the elements of finite fields. Such a transformation was described by E. Berlekamp. 

Let us write the system of equations (3.4) again: 

Recall that S , are the power sums of the roots of the polynomial 

𝑙(𝑥) = ∏(𝑥 − 𝜇 𝑖𝑢), где  𝑖1, 𝑖2 … 𝑖𝑡

𝑡

𝑢=1

 

- numbers of erroneous characters. 

 Let us transform this system by introducing new variables 𝑅𝑢, which are related to the quantities by 𝑆𝑗the relation 

𝑅𝑢 = ∑ 𝐴𝑗𝑆𝑢−2𝑗 .

𝑖

 

Where 𝐴0 = 𝑆0 = 1, 𝐴−1 = 𝑆−1 = 0for everyone 𝑖 > 0 и 𝐴𝑗 ∈ 𝐾, 𝑖 > 0. Let us now add to each 𝑖th equation of the system (3.4) 

(𝑖 − 1)- e equation multiplied by А1, (𝑖 − 1)- e equation multiplied by 𝐴2, etc. As a result, we obtain a new system of equations 

[
 
 
 
 

1 0 0 … 0
𝑅2 𝑅1 0 … 0
𝑅4 𝑅3 𝑅2 … 0
… … … … …

𝑅2𝑣−2 𝑅2𝑣−3 𝑅2𝑣−4 … 𝑅𝑣−1]
 
 
 
 

=

[
 
 
 
 
𝜎1

𝜎2

𝜎3

⋮
𝜎𝑣]

 
 
 
 

=

[
 
 
 
 

𝑅1

𝑅3

𝑅5

⋮
𝑅2𝑣−1]

 
 
 
 

 (3.6) 

Let us choose the coefficients 𝐴𝑗in such a way that 𝑅2𝑖 = 0, 𝑖 ≠ 0i.e. 

0 = ∑ 𝐴𝑗𝑆2(𝑖−𝑗)

𝑖

𝑗=0

 

http://www.ijmra.in/


“Catching Errors in Cyclic Codes" 

"Detection of Errors in Cyclic Codes" 

« Error - Trapping in Cyclic Codes » 

IJMRA, Volume 5 Issue 06 June 2022                             www.ijmra.in                                                                       Page 1450 

From here 𝐴 = ∑ 𝐴𝑗𝑆2(𝑖−𝑗)
𝑖−1
𝑗=0 and under the initial condition А0 = 1, all other A can be determined. It can be proved that 

А2𝑖 = 0. 

Using the fact that 𝑅2𝑖 = 0, we rewrite system (3.6) in the form of two systems of linear equations (for convenience, we 

assume that 𝑣 = 5). 

The first system consists of [𝑣/2]( [𝑥]is the integer part of 𝑥; for 𝑣 = 5we have [
5

2
] = 2the last equations in system (3.6): 

[
𝑅5 𝑅3

𝑅7 𝑅9
] [

𝜎2

𝜎4
] = [

𝑅7

𝑅9
]  ( 3.7a ) 

 The second system consists of the remaining 𝑣 − [𝑣/2]equations, which can be transformed as follows: 

[

𝜎2

𝜎3

𝜎5

] = [

𝑅1 0 0
𝑅3 𝑅1 0
𝑅5 𝑅3 𝑅1

] [
1
𝜎2

𝜎4

] (3.7b) 

Therefore, instead of solving the system of 𝑣equations (3.4), it 𝜎1, 𝜎2, … 𝜎𝑣suffices to solve the system [𝑣/2]of equations 

(3.7 a ) and find the rest 𝜎𝑖using equality (3.7 b ). The advantages of such a transformation can be explained by the following rough 

argument. 

The number of operations required to perform the transformation and solve equation (3.7 b ) is proportional to 𝑣2. At 

the same time, the number of operations required to solve the system of equations (3.4) or (3.7 a ) is proportional to the cube of 

the number of equations. By halving the number of equations, we have reduced the number of operations by about 8 times, which 

is quite large 𝑣. The external memory required to perform the transformation and solve equations (3.4) and (3.7 a ) depends on 

the square of the number of equations. 

Therefore, the introduction of a transformation reduces the external memory by about 4 times. 

2.4 Incremental decading of cyclic codes 

 Let us consider a simple modification of the direct decoding method, which leads to a significant reduction in the decoding 

algorithm. Note that attempts to simplify decoding in some particular cases were found in the works of R. Banerji, E.L. , not yet 

fully disclosed by the possibilities of the approach described above. It is as the implementation of one of these possibilities that 

one should consider phased decadence, which was described in a general form by R.T. Jiang. 

 The considered decoding method directly follows from the property of the matrix 𝑀𝑣 и 𝑁𝑣. It is most convenient to start 

with a matrix 𝑀𝑣. Its properties are formulated in Theorem 1. It allows detecting a change in the number of errors in the received 

sequence and, consequently, performing step-by-step decoding at 𝑡 ≤ (𝑑0 − 1)/2. Indeed, if 𝑣there is the largest number for 

which |𝑀𝑣| ≠ 0, then by successively changing the symbols of the received sequence 𝑏 = (𝛽1, 𝛽1, … 𝛽𝑛−1)and calculating the 

matrix determinant. 

𝑀′𝑣 =

[
 
 
 
𝑆′𝑚0+𝑣−1 𝑆′𝑚0+𝑣−2 … 𝑆′𝑚0

𝑆′𝑚0+𝑣 𝑆′𝑚0+𝑣−1 . . . 𝑆′𝑚0+1

… … … …
𝑆′𝑚0+2𝑣−2 𝑆′𝑚0+𝑣−3 … 𝑆′𝑚0+𝑣−1]

 
 
 

 

Where 

𝑆′𝑗 = 𝑏′(𝜇 𝑗). 𝐽 = 𝑚0, 𝑚0 + 1,… ,𝑚0 + 2𝑡 − 1, 𝑣 ≤ 𝑡, 𝑏′(𝑥) = 𝑏(𝑥) − 𝜀𝑖𝑥
𝑖, 

you can set the moment when changing some character of the sequence 𝑏leads to the correction of the error. Since the values 

𝑆′𝑗when correcting the error turn out to be formed from 𝑣 − 1non-zero pairs (𝜀𝑖𝑢, 𝜇𝑖𝑢), the determinant of the matrix 

𝑀′𝑣vanishes. A value of zero |𝑀′𝑣|indicates that the error has been fixed. 

Let us assume that cyclic shifts of the received sequence are performed and after each 𝑖-th shift the values 𝑆𝑗
𝑖 =

𝑏(𝑖)(𝜇 𝑗), 𝑗 = 𝑚0, 𝑚0 + 1,… ,𝑚0 + 2𝑡 − 1,where are calculated 𝑏(𝑖)(𝑥) ≡ 𝑥−𝑖𝑏(𝑥)𝑚𝑜𝑑 𝑥𝑛 − 1, 𝑖 = 0,1, … , 𝑛 − 1. The symbol at 

the zero position of the vector 𝑏(𝑖) = (𝛽𝑖 , 𝛽𝑖+1, … , 𝛽0, … , 𝛽𝑖−1)is erroneous and the error value is 𝜀, if the determinant of the 

matrix. 

𝑀𝑣
𝑖 =

[
 
 
 
 𝑆𝑚0+𝑣−1

(𝑖)
− 𝜀 𝑆𝑚0+𝑣−2

(𝑖)
− 𝜀 … 𝑆𝑚0

(𝑖)
− 𝜀

𝑆𝑚0+𝑣
(𝑖)

− 𝜀 𝑆𝑚0+𝑣−1
(𝑖)

− 𝜀 . . . 𝑆𝑚0+1
(𝑖)

− 𝜀
… … … …

𝑆𝑚0+2𝑣−2
(𝑖)

− 𝜀 𝑆𝑚0+2𝑣−3
(𝑖)

− 𝜀 … 𝑆𝑚0+𝑣−1
(𝑖)

− 𝜀]
 
 
 
 

 

 

Equal to zero. Ratio 
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|M𝑣
(𝑖)

= 0|  (3.8) 

can be considered as a control condition, the fulfillment of which indicates the need for correction of the corresponding 

character. 

 When decoding binary codes, the control condition can be simplified by passing to a matrix 𝑁𝑣whose 

determinant is easier to calculate. The property of the matrix 𝑁𝑣, formulated in Theorem 2, also admits stepwise decoding. Let 

𝑣there be the largest number for which the determinant of the matrix 𝑁𝑣is still different from zero. Then the number of errors is 

exactly 𝑣 − 1. Indeed, according to Theorem 2 for , the |𝑁𝑣| ≠ 0number of errors is 𝑣or 𝑣 − 1. But the number of errors cannot 

be equal 𝑣, because in this case |𝑁𝑣+1| ≠ 0, which would contradict the assumption of maximality 𝑣. Therefore, it is clear that the 

matrix determinant 𝑁𝑣becomes equal to zero if a change in some symbol in the received sequence leads to an error correction. 

This fact can serve as a starting point for obtaining a control condition similar to (3.8) in the case of binary codes. 

Let, as before, cyclic shifts of the received sequence are performed and 𝑏after 𝑖each 𝑖-th shift the values are calculated 

𝑆𝑗
𝑖 = 𝑏(𝑖)(𝜇 𝑗), 𝑗 = 1,2, … ,2𝑡, where𝑏(𝑖)(𝑥) ≡ 𝑥−𝑖𝑏(𝑥)𝑚𝑜𝑑 𝑥𝑛 − 1𝑡 = 0,1, … , 𝑛 − 1 

𝑁𝑣
𝑖 =

[
 
 
 
 
 

1 0 0 … 0

𝑆2
(𝑖)

+ 1 𝑆1
(𝑖)

+ 1 1 … 0

𝑆4
(𝑖)

+ 1 𝑆3
(𝑖)

+ 1 𝑆2
(𝑖)

+ 1 … 0
… … … … …

𝑆2𝑣−2
(𝑖)

+ 1 𝑆2𝑣−3
(𝑖)

+ 1 … … 𝑆𝑣−𝑡
(𝑖)

+ 1]
 
 
 
 
 

 

 

Will be equal to zero. Ratio 

|𝑁𝑣
(𝑖)

| = 0    (3.9) 

It can again be considered as a control condition, the fulfillment of which indicates the need to invert the i- 𝑖th symbol in 

the received sequence. 

Let us now formulate an algorithm for step-by-step decoding, limiting ourselves only to binary codes and test relations 

in the form (3.9). The general case will differ in minor details, which the reader can recover for himself. For decoding, you must 

perform the following operations: 

1. Calculate the value of the quantities 𝑆𝑗
0 = 𝑏0(𝜇 𝑗)𝑗 = 1,2, … 2𝑡. Index (0) indicates that the sequence 𝑏has not yet 

undergone cyclic shifts. 

2. Find the largest value 𝑣for which the determinant of the matrix 𝑁𝑣
0is still different from zero. Then the actual number of 

errors in the sequence is  𝑏 = 𝑣 − 1. 

3. Perform cyclic shifts, each time calculating the values 𝑆𝑗
𝑖. If the first K symbols of code words are informational, then 𝑖 =

0,1, … , 𝑘 − 1. Otherwise 𝑖 = 0,1, … , 𝑛 − 1. For each 𝑖, which varies within the limits indicated above, calculate the 

determinant |𝑁𝑣
(𝑖)

|. Form a noise sequence еby writing at the position with the number 𝑖of the noise sequence one if 

|𝑁𝑣
(𝑖)

| = 0and zero if |𝑁𝑣
(𝑖)

| ≠ 0. 

4. Restore the given sequence by adding 𝑏 и еcharacter by character. 

Thus, when switching to step-by-step decoding, we managed to get rid of such time-consuming operations as solving a 

system of equations over a finite field and finding the roots of the polynomial 𝑙(𝑥). Now the complexity of decoding is determined 

only by the complexity of calculating the determinant of the size matrix 𝑣 ∗ 𝑣, whose elements are the values of the final field K. 

Example. 

Let us illustrate the above algorithm with an example of decoding with a binary BCH code with binary independent error 

correction. Note that step-by-step decoding provides the simplest implementation of decoding for k cycles of binary error-

correcting codes compared to all other algorithms already described. This simplification is possible due to the simplicity of the 

single control condition. 

Consider two situations 

1. Two errors occurred during transmission. In this case, the largest v for which the determinant of the matrix n is still non-zero is 

v =3. Therefore, omitting the index, but bearing in mind that the values change at each cycle, we get 

𝑁3
𝑖 = [

1 0 0
𝑆2 + 1 𝑆2 + 1 1
𝑆4 + 1 𝑆3 + 1 𝑆2 + 1

] 
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Calculating the determinant 𝑁3
𝑖and equating it to zero, we obtain the control condition,    𝑆1 + 𝑆1

2 + 𝑆1
3 + 𝑆3 =

0  (3.10) 

which must be executed whenever one of the two errors occupies the zero position during the shifts of the received message. 

2. A single error occurred during transmission. Then the largest 𝑣 = 2. 

Revealing the Determinant of a Matrix 𝑁2
(𝑖)

and equating it to zero, we obtain the second control condition 

𝑆1 = 1  (3.11) 

which must be executed when the erroneous symbol occupies the zero position during shifts. Since in the case of single errors 

𝑆𝑖 = 𝑆1
𝑗
, it can be easily seen that the fulfillment of condition (3.11) also entails the fulfillment of (3.10). Therefore, to make a 

decision about correcting a certain symbol, it suffices to check the fulfillment of only one condition (3.10) for both single and 

double errors. 

The absence of transmission errors must be checked in a special way. Such a check can be based on the fact that with error-free 

transmission 𝑆𝑗 = 0for all 𝑗 = 1,2, … 2𝑡. 

 Such decoding itself is simpler than direct decoding. However, it allows even greater simplifications of the decoding 

device by eliminating the operation of multiplying field elements 𝑘and calculating the sum 𝑆1 + 𝑆1
2on a single shift register with 

feedback. 

 Let us consider the ways of obtaining each of the terms of the control condition (3.10), remembering that the 𝑚0 =

1code is also given by the elements 𝜇, 𝜇2, 𝜇3, 𝜇4, which, by definition, must be the roots of all code words. 

 1 . Calculation 𝑆1 + 𝑆1
2. Equations (3.0) and (3.1) imply that 𝑆1 = 𝑏(𝜇), where b ( x ) is a polynomial corresponding to the 

accepted sequence 𝑏 = (𝛽0, 𝛽1, … , 𝛽𝑛−1). Let 𝑔(𝑥)there be that irreducible over 𝐺𝐹(2)factor of the generator polynomial 

𝑔(𝑥)whose root is 𝜇. It was noted that the 𝜇-element of the field 𝐾, which has the order 𝑛. We assume everywhere that 𝜇does 

not belong to any smaller subfield in K and, therefore, the degree of the polynomial 𝑔1(𝑥)is equal to m [ m is the degree of the 

field 𝑘over 𝐺𝐹(2)] 

Each field element 𝐾can be represented as a linear combination of basic elements. As such basic elements can be chosen 

1, 𝜇, 𝜇2, … , 𝜇𝑚−1. Then, introducing the notation for representing the element 𝑟 ∈ 𝐾in the basis 1, 𝜇, 𝜇2, … , 𝜇𝑚−1, we can write 

𝑟(𝜇) = 𝑟0 + 𝑟1𝜇 + ⋯+ 𝑟𝑚−1𝜇
𝑚−1 

Where 𝑟𝑖 ∈ 𝐺𝐹(2), 𝑖 = 0,1, . . 𝑚 − 1. 

On the other hand, 𝑟(𝜇)is the element of the field 𝑘that is obtained by substituting into the polynomial 𝑟(𝑥)instead 𝑥of 

the element 𝜇. Hence the conclusion follows: in order to find the element of the field, which is obtained by setting instead in an 

arbitrary polynomial 𝑓(𝑥)over the field 𝐺𝐹(2), it is necessary to find the remainder 𝑟(𝑥)after dividing 𝑓(𝑥)by 𝑔1(𝑥)and write 

𝑓(𝜇)it as a vector, the components of which are the coefficients of the polynomial 𝑟(𝑥). This also applies to the case when the 

main field contains elements. 

 Thus, to find 𝑆1it is necessary to determine the remainder of the division 𝑏(𝑥)by 𝑔1(𝑥). The remainder can be computed 

using the multi-cycle linear filters described in Section 3. In offline mode, a linear filter with an initial state corresponding to the 

polynomial 𝑟(𝑥)𝑚𝑜𝑑 𝑔1(𝑥) will produce remainders from dividing the polynomials 𝑏𝑖(𝑥) 𝑚𝑜𝑑 𝑥𝑛 − 1, 𝑖 = 0,1, … , 𝑛 − 1, by the 

polynomial 𝑔1(𝑥), i.e. Will comb out 𝑆1
𝑖 . To find it 𝑆1

𝑖 is enough to calculate the remainder of the division   [𝑟(𝑥)]2 =

𝑟(𝑥2) на 𝑔1(𝑥). 

This operation could also be done with a linear filter. However, it is possible to construct a code filter that directly 

computes 𝑟(𝑥) + 𝑟(𝑥2) 𝑚𝑜𝑑 𝑔1(𝑥)   , and hence also 𝑆1 + 𝑆1
2. In offline mode, the sequence of states of such a filter will 

correspond to 𝑆1
(𝑖)

+ (𝑆1
(𝑖)

)2, 𝑖 = 0,1, … , 𝑛 − 1. 

 2. Calculation 𝑆3. By definition 𝑆1
3 = 𝑏(𝜇), therefore, it follows from the above that to find it 𝑆3is enough to find the 

remainder after dividing the polynomial 𝑏(𝑥)3by the polynomial 𝑔1(𝑥). For this, in turn, it is sufficient to have a code filter, the 

transition matrix of which is given by the generating element 𝑐(𝑥) ≡ 𝑥−3 𝑚𝑜𝑑 𝑔1(𝑥). It is easy to verify that such a filter will 

produce 𝑆3
𝑖  𝑖 = 0,1, …𝑛 − 1.. 

 3. Calculation 𝑆1
3. Since 𝑆3

𝑖 = [𝑟(𝜇)]3, where 𝑟(𝑥) ≡ 𝑏(𝑥) 𝑚𝑜𝑑 𝑔1(𝑥) , then 𝑆1
3it could be found using a special 

combinatorial scheme, calculating the representation coefficients [𝑟(𝜇)]3in the basis {1, 𝜇, … , 𝜇𝑚−1}through the corresponding 

coefficients 𝑟(𝜇). 

The combinatorial circuit is essentially an arithmetic device that performs addition and multiplication of elements of the 

Galois field in one cycle. In our case, the arithmetic device designed to calculate 𝑆1
3, can be greatly simplified if we use the 

recurrence relation introduced below. 
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 It was said above that 𝑆1 can be found using the remainder calculator 𝑏(𝑥) 𝑚𝑜𝑑 𝑔1(𝑥), where 𝑏(𝑥)- corresponds to the 

input filter sequence. Then the subsequent state of 𝐵𝑖+𝑙(𝑥)such a filter can be determined in terms of the previous state 

𝐵𝑖(𝑥)using the comparison 

𝐵𝑖+1(𝑥) ≡ [𝐵𝑖(𝑥) + 𝐵𝑖+1(𝑥)]−1𝑚𝑜𝑑 𝑔1(𝑥)   (3.13) 

 Where 𝛽𝑖+1is the value of the output signal at the moment 𝑖 + 1. From this it follows that 

𝐵𝑖+1
3 (𝑥) ≡ [𝐵𝑖

3(𝑥) + 𝐵𝑖+1[𝐵𝑖
2(𝑥) + 𝐵𝑖(𝑥) + 1]]𝑥−3𝑚𝑜𝑑 𝑔1(𝑥) ] (3.14) 

 Comparison (3.144) is a recursive relation that allows one to calculate 𝐵𝑖+1
3 (𝑥) 𝑚𝑜𝑑 𝑔1(𝑥) through 𝐵𝑖

3(𝑥), 𝐵𝑖
2(𝑥) +

𝐵𝑖(𝑥)𝑚𝑜𝑑 𝑔1(𝑥) and the current value of the input symbol 𝛽𝑖+1. Now noticing that 

𝐵𝑛−1(𝑥) ≡ 𝑏(𝑥)𝑚𝑜𝑑 𝑔1(𝑥) 

𝐵𝑛−1+𝑖(𝑥) ≡ 𝑏(𝑥)𝑥𝑖−1 ≡ 𝑏(𝑥)𝑥𝑖−1𝑚𝑜𝑑 𝑔1(𝑥). 

 Moreover, the latter takes place, since 𝛽𝑛−1+𝑖 = 0for all 𝑖 > 0, we obtain 𝐵𝑛−1+𝑖(𝜇) = 𝑆1
(𝑖), and therefore 

𝐵𝑛−1+𝑖(𝜇) + [𝐵𝑛−1+𝑖(𝑥)]2 = 𝑆1
(𝑖)

+ (𝑆1
(𝑖))2.  (3.15) 

i.e. 𝐵𝑛−1+𝑖
3 (𝜇) = [𝑆1

(𝑖)
]3_ 

 From (3.14) and (3.15) follows the recursive relation for [𝑆1
(𝑖+1)

]3: 

[𝑆1
(𝑖+)

]3 = [𝑆1
(𝑖)

]3𝜇−3 

The operation of multiplication by 𝜇−3is performed by the code filter. Thus, for decoding, it is necessary to have two code filters 

that calculate 𝑆1
(𝑖)

 и 𝑆1
(𝑖)

+ [𝑆1
(𝑖)

]2. The calculation [𝑆1
(𝑖)

]3is carried out in two stages. The first stage, as a result of which the value 

is found [𝐵𝑛−1(𝜇)]3 = 𝑆1
3, ends after receiving the message 𝑏 = (𝛽1, 𝛽2, … , 𝛽𝑛−1)in full. At this stage, the recursive relation (3.14) 

is used. At the second stage [𝑆1
(𝑖)

]3, is calculated using relation (3.16). To perform the operation of multiplication by 

𝑥−3 𝑚𝑜𝑑 𝑔1(𝑥), or, what is the same, by 𝜇−3, a special code filter is used. 

 After receiving the message 𝑏, the states of these three filters will correspond to the values 𝑆1 + 𝑆1
2, 𝑆3 и 𝑆1

3 . Starting 

from this moment, the decoding device switches to autonomous mode and, using the control condition (3.10), generates a noise 

sequence. 

 On fig. 9 shows a decoder for a binary BCH code (15, 7) that corrects double independent errors. In this example, the 

polynomial , which belongs to the exponent 15, is 𝐺𝐹(2)selected as a generator polynomial , with non-reducible over 𝑔(𝑥) =

 𝑔1(𝑥), 𝑔2(𝑥)factors and 𝑔1(𝑥) = 𝑥4 + 𝑥 + 1. One can check that the first of these polynomials is primitive, and the root of the 

second is the cube of the root of the first polynomial. 

 The filter that calculates 𝑆1 + 𝑆1
2can be constructed in accordance with the results of paragraph 3. The transition matrix 

𝑀and and 𝐹the linear transformation matrix of the outputs are, respectively. 

𝑀 = [

0 1 0 0
0 0 1 0
1 0 0 1
1 0 0 0

] и 𝐹 = [

0 0 1 1
0 1 0 1
0 1 1 1
0 0 1 0

]. 

The transition matrix of filters that calculate 𝑆3and 𝑆1
3is 

The complexity of the decoding device, designed to correct single and double errors, with increasing code length increases in 

proportion to the binary logarithm 𝑛. This is explained by the fact that the block diagram of the decoding device does not change 

with increasing code length (the control condition is preserved), but the number of memory elements in the code filters changes. 

 If the number of errors that can be corrected by a given code exceeds two, then the structure of the decoder becomes 

more complicated due to the need to use several control conditions. Consider a BCH code that corrects triple errors. In the 

presence of three errors, this condition, in accordance with (3.8) and (3.9), will be 

|𝑁4
(𝑖)| = [

0 1 0 0
𝑆2 + 1 𝑆2 + 1 1 0
𝑆4 + 1 𝑆3 + 1 𝑆2 + 1 𝑆1 + 1
𝑆3 + 1 𝑆5 + 1 𝑆4 + 1 𝑆3 + 1

] 

= 𝑆1
3(1+ 𝑆1 + 𝑆1

3 + 𝑆3(1 + 𝑆1 + 𝑆1
2 + 𝑆1

3 + 𝑆3) + 𝑆5(1 + 𝑆1) = 0)  (3.17) 

 For two or one errors, the control condition coincides with condition (3.10). However, a simplification is possible here, 

which follows from the fact that the determinant (3.17) remains non-zero even if the actual number of errors is equal to two. But 

not one of the errors did not take the zero position as a result of the shifts. Therefore, condition (3.17) can serve as a control for 

correcting double and triple errors. Only when the number of errors in the codeword is equal to one should the second condition 

be checked. 
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𝑆1 = 1  (3.18) 

The transition from one condition to another should be carried out on the basis of knowledge of the actual number of 

errors that have occurred. To do this, you can use the following approach. It is easy to verify that, as 𝑆1 = 1, equality (3.17) holds. 

Therefore, with single errors, condition (3.17) will be satisfied at each cycle and the appearance of more than three corrective 

signals will be sufficient reason to go to condition (3.18). 

 The stepwise decoding algorithm was derived from the assumption that only BCH codes are considered. However, a 

similar decoding procedure can be found for other codes from the cyclic class. Such codes are, for example, Melas and Megpit 

codes. These codes correct double independent errors and are given by the elements𝜇, 𝜇−1поля 𝐺𝐹(2𝑚).  

𝑀 = [

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 0

] 

 Before receiving a message, the position of the key corresponds to 𝐷 = 0. This opens up free access to information in 

the buffer register and in all code filters. 

 Of the features of the filters, only the originality of the change of states in the filter should be noted 𝑆1
3. Each state is set 

in two half cycles. From the first half cycle, the contents of all memory cells are rewritten to the adders 𝐶, while the filter memory 

cells are 𝑆1
3brought to the zero state at the same time. During the second half cycle, the summation result is rewritten into this 

filter and a shift is made. Shifting multiplies by 𝜇−3. 

 After receiving the message completely, the keys are set to the position 𝐷 = 1. The checksum value (3.10) appears at the 

outputs of the adders at each cycle. 𝐶If the checksum is zero, then the character currently leaving the buffer register must be 

corrected. To disable the correction circuits in the case when the transmission is carried out without errors [in this case, condition 

(3.10) is also satisfied], the signal is used 𝐸 = 1. The specified signal is formed after receiving the message in full and corresponds 

to 𝑆1 = 0. It is clear that if only single or double errors are allowed, 𝑆1 = 0it can only be possible with error-free transmission. 

2.5 Catching Errors in Cyclic Codes 

 In this section, we consider a method for detecting and correcting errors in cyclic codes using shift registers. 

Consider a cyclic (𝑛, 𝑘)code with a generating polynomial 𝑔(𝑥). Suppose that the code polynomial 𝑐(𝑥)acquired an error 

during transmission over the communication channel 𝑒(𝑥), so that we will receive a message in the form of a polynomial 𝑣(𝑥). 

We know that the syndromic polynomial 𝑠(𝑥)is the remainder of division 𝑣(𝑥)by 𝑔(𝑥). It is clear that if the acquisition of the error 

is in the first m positions (here , the 𝑚degree 𝑔(𝑥)of ), then this sum is equal to the error polynomial 𝑒(𝑥). But in general this is 

not the case. Actually 𝑒(𝑥)  =  𝑎(𝑥) (𝑔(𝑥)  +  𝑠(𝑥)). 

 Let us assume that the errors are concentrated in the last m positions, where 𝑚is the degree of 𝑔(𝑥), i.e. 𝑒(𝑥)  =

 𝑒𝑘  𝑥 𝑘  +  𝑒𝑘+1 𝑥 𝑘+1 + … +  𝑒𝑛=1 𝑥 𝑛−1. If 𝑣(𝑥)cyclically shifted by m steps, then the errors will go to the first m positions of 

𝑥0, 𝑥1, … , 𝑥𝑚−1the polynomial 𝑣(𝑚)(𝑥)( 𝑣(𝑚)(𝑥)means a cyclic shift by 𝑚positions of the vector of coefficients of the polynomial 

𝑣(𝑥). The corresponding error vector for 𝑣 (𝑚)has the form 

𝑣 (𝑚) = (𝑒𝑘, 𝑒𝑘+1, … , 𝑒𝑛−1, 0, … , 0) 

now the syndromic polynomial 𝑠(𝑚)(𝑥)for 𝑣(𝑚)(𝑥)is equal to the remainder of division 𝑣(𝑚)(𝑥)by 𝑔(𝑥), i.e. equals𝑠(𝑚)(𝑥)  =

 𝑒𝑘  +  𝑒𝑘+1 𝑥 + . . . +  𝑒𝑛−1 𝑥
𝑚−1 

Multiplying 𝑠(𝑚)(𝑥)by 𝑥𝑘, we will have 

𝑥𝑘𝑠(𝑚)(𝑥)  =  𝑒(𝑥)  =  𝑒𝑘𝑥
𝑘  +  … + 𝑒𝑛−1 𝑥

𝑛−1 

 Therefore, it is said that if the errors are concentrated on the last 𝑚positions, then the error vector coincides with 

𝑥𝑘𝑠(𝑚)(𝑥) (𝑚𝑜𝑑(𝑥𝑛 − 1)), here 𝑠(𝑚)(𝑥)there is a syndromic polynomial for 𝑣(𝑚)(𝑥). In this case, we calculate 𝑠(𝑚)(𝑥)and then 

𝑒(𝑥)  =  𝑣(𝑥)  +  𝑥𝑘𝑠(𝑚)(𝑥) (𝑚𝑜𝑑 (𝑥𝑛 − 1)). 

 Suppose that the errors are contained in the section of length 𝑚, then not necessarily in the last places, for example, 

starting from 𝑥𝑖the place to 𝑥𝑚+𝑖−1. If we 𝑣(𝑥)shift to the right by 𝑛 − 𝑖positions, then the errors will be concentrated in the 

conditions of the previous case, and therefore the error polynomial can be identified with c 𝑥𝑖𝑠(𝑛−𝑖)(𝑥). But 𝑖we don't know the 

meaning. Therefore, we do a right shift operation until we catch (i.e. until we find the value 𝑖and the corresponding error vector). 

This procedure is called error trapping. 

Let's assume that the code corrects 𝑡errors and less. To determine the event that errors are caught in the syndrome register, we 

can simply test the syndrome weight after each syndromic register shift. As soon as the weight in the syndromic register becomes 
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less than 𝑡or equal 𝑡to , we consider that the errors are caught in the syndromic mode. So, if the number of errors in 𝑣(𝑥)does 

not exceed 𝑡and if they are concentrated in 𝑚consecutive positions, then they are caught in the syndromic register. 

 If during successive testing of shifts we get the weight of the syndrome ≤ 𝑡, then we find the places of errors in the 

shifted message, which means that by giving the reverse shift, we correct the errors in the message. 

If, for all successive shifts, we never get weights in the syndrome message register ≤ 𝑡, then this means that either there are more 

than 𝑡errors, or they do not form a packet with length ≤ 𝑡. 

 

3. CONCLUSION AND SOLUTIONS 

In today's Internet environment, there are many potential dangers and risks. Therefore, data encryption is necessary to protect 

user information well. Almost all applications support the full range of encryption methods. However, many users still use the 

normal (non-encrypted) protocol, which is easy to leak information. Hopefully through this article you will understand more about 

encryption and encryption methods. For businesses, data encryption should only be a backup solution when data is stolen. The 

more important thing to do is to manage network security in the enterprise. This prevents hackers from getting data, especially 

sensitive data, from businesses. If the hacker cannot access the data, they have no chance to decrypt it. Then businesses only need 

to encrypt the sent information or important information. The linear decoding methods described above are based on knowledge 

of error syndromes with numbers not exceeding the capacity of the selected linear code. These methods are completely possible 

with modern computers. 
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