
1

Agent-Based
Reinforcement
Learning Model
of Burglary
(ARLMB) –
V.1.0.0

Author: Sedar Olmez

Date: 24/06/2022

Correspondence: solmez@turing.ac.uk

mailto:solmez@turing.ac.uk

2

Abstract

This agent-based model was developed using the Unity game engine to incorporate multi-

agent reinforcement learning algorithms from the ml-agents OpenAI package. The model

simulates offender agents over a 2D landscape containing interventions, targets, and routine

activity nodes. Offenders train using a multi-agent reinforcement learning algorithm

Proximal-Policy Optimisation (PPO) to learn behaviours that demonstrate realistic patterns of

burglary in agreement with the Rational Choice Perspective, Crime Pattern Theory and

Routine Activity Theory. The novelty presented by this model is based on the ability for

offender agents to learn behaviours naturally from the environment without any hard-coded

pre-determined behavioural rules. Users can test Situational Crime Prevention Intervention

(SCPI) policies where interventions can be placed in a specific location run-time, thus,

increasing risk in the area and the reactions of offenders can be analysed. Overall, the

experiment results show that offenders learn to offend at targets where rewards outweigh

risks and effort, demonstrating a degree of intelligence, such as offending closer to home,

frequently victimising high-rewarding targets, and learning to avoid areas of high risk.

The work conducted in this research is part of a wider PhD research project funded by the

Economic and Social Research Council UK, Grant Number: ES/P000401/1.

3

Installation

Pre-requisites

- Unity version 2020.3.11f

- (Optional) ml-agents 0.25.0, TensorFlow 2.1.0, PyTorch 1.7.1 (for training your own

RL agents) Note: this will be provided as an anaconda environment.

1) Download the UnityHub at the following link: https://unity.com/download

2) Scroll down the page and click “Download for *” where * is your operating system.

3) Once the UnityHub software has finished downloading, locate it (usually in your

Downloads file) and start the installation process by double clicking the program.

4) The above window should appear, follow the instructions until the program has

finished installing.

https://unity.com/download

4

5) Once installed, open the UnityHub program and you should see the following

window:

6) Click on the Installs button on the left then click the Add button.

7) Once the following window appears, you should select the latest 2020 version of

Unity to install:

8) Click Next then Done and this should install the latest Unity 2020 version (which was

the version the model was developed with).

5

9) You should have a window that looks something like this:

But with one install.

10) Congratulations, Unity has successfully installed. Now we can open and run the

model.

If you wish to run the model with the pre-trained RL neural networks, continue to the

Tutorial section. If you wish to create a conda-environment with the required packages to

train your own scenarios, then follow the next steps.

Setup Conda Environment with ML-agents (Optional)

1) Download Anaconda at the following link:

https://www.anaconda.com/products/distribution

https://www.anaconda.com/products/distribution

6

2) Locate the downloaded file and start the installation procedure like so:

3) Once Anaconda has installed, you can open your “terminal” if using OSX or

“Command Prompt” if using Windows.

4) We want to now create a conda environment with the following python version

3.6.13, and the packages ml-agents version 0.25.0, TensorFlow version 2.1.0.

5) Once our command prompt (or terminal) is open, we type the following command

and hit enter: conda create -n MLEnv python=3.6.13

6) Anaconda should start creating the environment. You should receive the following

prompt:

7) Saying Proceed y/n, at this point type y and hit enter, this tells conda to install the

required packages to create a conda environment successfully with our requested

python version.

8) Now we can activate our newly created environment, type: conda activate MLEnv2

and hit enter.

7

9) You should see (MLEnv2) appear in your command prompt window. This means our

environment has successfully installed and activated. We can now install the

necessary packages to train our offender agents.

10) Once the MLEnv2 environment has been activated, type the following to install our

packages type the following to install TensorFlow and hit enter:

pip install tensorflow==2.1.0

11) Once TensorFlow has installed, we should now install ml-agents by typing: pip install

mlagents==0.25.0 and then install pytorch by typing pip install torch==1.7.1

12) Once the packages have installed, if we type: conda list and hit enter, we should be

able to see our installed packages on the newly created MLEnv2 conda environment.

13) We should see the two main packages we need with the correct versions.

14) Now that we have installed our conda environment, we can train the model with our

own environment configuration to test a hypothesis. Complete the next Tutorial

section first to become familiar with the model then try out the RL Training Tutorial

next.

15) You can close your conda environment by typing conda deactivate and hit enter.

Whenever you want to re-use it, re-open your command prompt(terminal) and type

conda activate MLEnv2 then hit enter.

8

Tutorial

Now that we have installed UnityHub, and downloaded the model locally, we can open the

model and run a simple scenario.

1) Open UnityHub and click Add:

2) Then locate the Project folder within the downloaded model document, the file path

should look something like this: ..\model_code\model_code\ml-agents\Project

3) Open this Project file and wait till Unity opens the model. You should see a similar

window to the one below:

4) If the window is not the same, click on Scenes in the project window (bottom left)

and select CrimeABM then double click on the CrimeWorld scene to open the

starting configuration.

9

5) Now that the model environment is open, let us take a look at our agents and set

them up, click on AreaRenderTexture object in the Hierarchy window (top left)

6) Our 25 offender objects can be observed, we can now click on them and set their

neural networks up for the scenario we wish to run, let us select all the 25 agent

objects select one then click shift then click the last one to select all:

7) On the right, we can see the Inspector window which has all the settings for each

agent game object. We can now add the “Brain” for scenario 1 to these agents by

10

selecting the “Brains” folder under “CrimeABM” in the bottom left:

8) We can then select MC1_Brain and drag-drop it into the Model field on the right.

This sets our Offender agents with the trained neural network from experiment 1. In

this experiment we trained offenders in an environment that contained targets with

uniformly distributed rewards of 1. This means offenders found more rewarding

targets and subsequently offended more often, however, once interventions were

applied, offenders focussed their attentions to locations that did not have

interventions. These three neural networks will be described in the published article

in detail with results.

9) Behaviour type just under model should be set to Inference this means the agents

use their trained neural nets to make decisions, when training the model, you must

remove the MC1_Brain by clicking the little circle on the right of it and setting

BehaviourType to Default.

10) If we scroll down in the Inspector window, we can see all the other parameters we

can change for our offender agents, where we can set the number of routine activity

nodes, the wallet size also known as the TargetCumulativeReward which we hope

the agent to achieve as a way of expressing satisfaction and lastly, Amount of wealth

decremented each tick(timestep) this is the amount of losses the agent has

11

conceptualising expenses such as money:

11) Now that we have set out agents up, to run the trained neural network from

experiment 1, we can set up our environment parameters. If we click on

AreaRenderTexture on the left in the Hierarchy window:

12) We should now see the agents disappear and the Inspector window show the

GridArea component. Here we set the number of Targets known as

RewardingBuildings in each of the four spatial areas (vulnerable buildings). For

Zones A to D: where Green and Orange are A and B and Pink and Blue are C and D. I

will set 500 Targets in each of the four Zones and 100 Interventions in Zone D

(Blue). Lastly, we will set 500 navigational nodes.

13) We should have parameter values like the below:

12

14) Now our pre-interventions setting (initial setting) of the model is ready. We can set

up the experiment. Click on CrimeSettings in the Hierarchy window (top left):

15) Our parameters for this component (Inspector window, right) are split into three

sections. The first section sets the total number of timesteps(ticks) each simulation

should run for, in our case we set it to 1000, the complete file path of the location

we want our output data to be saved to including the file name and type i.e., .txt

for example:

D:\model_code\model_code\Data\crime_ABM_data_analysis\Experiment_Data\MC

2_Data\MC1_Run_1.txt the second path outputs data about each Target i.e.,

location, amount of reward and so on to use for spatial analysis. Make sure this file

path is also like the above but with a different file name i.e.,

MC1_Run_1_TargetData.txt if we tick Export_Data then we want output data, lastly

the Target_episode is the number of iterations we want to run our simulation, we

set this as 50 + 1 which Unity requires. So however, many times you wish to run your

simulation, make sure to add 1. Total_Offences and Episode_counter is for viewing

purposes only; we see the total number of offences made and the current episode

the model is running.

16) The second section allows you to set the reward distributions for each target pre-

intervention. Here we set the minimum and maximum reward for each Zone. For our

tutorial, we set the distribution to be random between [0, 1] inclusive at every Zone.

We can set this to [1, 1] or [0, 0] which means a reward of 1 at every target or no

reward at any target.

17) The intervention parameters allow us to set some interventions during the

simulation run at a specific Episode. If Set_interventions_ is ticked, then we must fill

out the below parameter values else leave them. The Episode_for_intervention

parameter defines the episode in which the interventions are applied, for our

example we set this to be 25. We can set the number of interventions introduced in

a particular Zone, I set there to be 100 spatial interventions in Zone A (Green).

Ignore ZoneABufferIntervention this was purely a testing parameter. Lastly, we can

13

change the reward distribution for a specific zone as well. For this experiment we

leave them the way we set out rewards in the pre-intervention parameters.

18) Now we are ready to run our model experiments. We click on the Play button at the

top:

19) We should start to see the model running, in the Total_offences field we see 8

offences have taken place at episode 1:

20) Once our experiment is up, the model should automatically stop, if you look in the

directory you saved your output data to, you should see two .txt files. If you open

14

the file, it should look something like this:

21) Congratulations, you successfully ran an experiment using the agent-based

reinforcement learning model.

RL Training Tutorial

To train our agents using a specific environmental configuration we must first familiarise

ourselves with the above tutorial and model. Open your command prompt(terminal) and

activate the conda environment we created earlier MLEnv2.

1) Once the environment is activated, navigate to the ..model_code\model_code\ml-

agents directory:

2) Make sure the Model parameter is empty and Behaviour type is set to Default for

the offender agents:

15

3) If you have set the model up through tweaking the parameters in the Tutorial

section for the training, we can now run our training command: mlagents-learn

config/ppo/CrimeABM_config.yaml --run-id=MC1_Base

4) In the above training command, we are telling the ml-agents package to start

learning, by using the hyperparameters we defined in the ../config/ppo/ directory

and we call our “Brain” the MC1_Base

5) Once we see the above window, ml-agents is now waiting for us to press Play and

start the learning process. Once the training ends, we should find a MC1_Base folder

appear in the ../results/ directory:

6) The OffenderAgent.onnx file is the trained neural network. We can now place this

into the model field during testing. To recap this process, look at the Tutorial

section. Also remember to change the Behaviour Type to Inference.

END OF DOCUMENT

16

