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Abstract—Process executions are driven by actors and ma-
chines jointly performing work on incoming cases. Actors
typically divide and structure their work into tasks – multiple
consecutive actions performed together – before handing a case
to the next actor. Routines research investigates how and why
actors divide and structure work in a process, how it changes over
time, and its impact on process executions. So far, process event
log data has not been used to investigate these phenomena. We
conducted an exploratory case study to identify process mining
concepts and data structures that help answering the above
questions. We found that modeling case and actor traces together
in an event knowledge graph allows to identify instances of task
executions; clustering task instances reveals tasks. Extending the
event knowledge graph by aggregation wrt. tasks reveals, both,
local process models of intra-task behavior, and global process
models of inter-task behavior in a case and between actors.
We show on the BPIC’17 dataset that querying the extended
graph reveals new insights into (changes in) actor behavior, work
division, and significant impacts on performance and outcomes.

Index Terms—knowledge graph, actor, routines

I. INTRODUCTION

Processes are executed by human actors and automated
resources performing work on the cases of the process. For
example, multiple employees of a bank jointly check a credit
application, create (one or more) loan offers, contact the client
for additional information, to finally decline or prepare a
contract. The work on each case itself is structured into actions
ordered by the process’ control-flow [1].

In contrast, human actors typically structure their work
differently by performing multiple actions on the same case
before handing the case to the next actor, e.g., creating and
sending two loan offers to the same client; such a larger
unit of work is called task [2], [3] in routines research.
Actors exhibit behavior on their own within a case and across
cases, and by handing work to other actors. Routines research
investigates, among others, (Q1) how actors jointly structure
and divide work in a process into (recurring) tasks, i.e., larger
units of work [4], (Q2) which factors determine differences
in how actors performs task [2], (Q3) whether this changes
over time [4], and (Q4) whether differences in tasks or actor
behavior impacts process outcomes or performance [2].

Event data in principle holds all relevant information about
actor behavior, e.g., sequences of events performed by actors in
various process executions. However, process mining has not
been used to comprehensively investigate how actors structure
and organize their work and how this impacts process execu-
tions with the aim of answering (Q1)-(Q4). We conducted an
exploratory case study to test the hypothesis that event data,
as commonly used in process mining, does indeed hold the

required information to investigate (Q1)-(Q4) quantitatively
and qualitatively. We chose the BPIC’17 dataset [5] as it
records in each event the individual actor involved.

We argue that investigating actor-process interactions from
event data requires to analyze two behavioral dimensions
together: the classical traces of all process cases and the traces
of all actors working across all cases. The default data model
of sequential event logs used in process mining is unable to do
so [6]. In previous work, recalled in Sect. III, we showed how
to translate a log into an event knowledge graph [6] modeling
traces of cases and actors in the same data structure; any
sub-graph where an actor follows multiple events in a case
corresponds to an execution of some task [3]. 98% of the
BPIC’17 events are shown to be part of a larger task; however,
the actual contents of these tasks has not been studied.

To investigate our hypothesis, we explored the event knowl-
edge graph of BPIC’17 over traces of cases and actors and iter-
atively identified several aggregation operations on the graphs
to identify tasks and analyze actor behavior over tasks. Each
aggregation operation extends the graph with new information
that can be used by subsequent aggregation operations, shown
in Sect. IV: (1) Clustering the sub-graphs of task executions
by the contained action names identifies homogeneous tasks
with multiple, similar variants. (2) Aggregating all sub-graphs
of a cluster results in a Local Process Model (LPM) [7]
summarizing the behavior within each task. (3) Abstracting
a cluster into a task node allows to aggregate the underlying
traces (over cases and actors) into a global process model
over tasks. (4) Filtering allows to create more specific models
describing process and actor behavior wrt. tasks.

Applying our techniques on BPIC’17 we found 20 distinct
tasks, each comprising 2-43 variants: (Q1) We found several
tasks that overlap in their actions splitting up cases into very
different units of work. (Q2) Different tasks are performed by
different sets of actors; the choice between tasks with overlap-
ping actions depends for some on process characteristics and
for others on actor preferences. (Q3) We found actors change
preference in which task to perform for the same objective in
the process; this change in preference occurred at the same
moment in time but in a non-uniform way. (Q4) We observed
that choosing different tasks has an impact on the execution of
some parts of the process and on process performance. Details
are given in Sect. V and we conclude in Sect. VI.

II. RELATED WORK

We compare to related work that is also concerned with
analyzing actor behavior from event logs.
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Information on actors in processes has been previously
used in process mining, e.g., work assignment rules [8],
resource productivity [9], and resource availability [10]. None
of them consider work organized into larger tasks or col-
laboration between actors. Kumar and Lui [11] do consider
the collaboration between actors and detect actor hand-off
patterns; however, the contents of work between hand-offs
is disregarded. Recently, Yang et al. [12] discover more
comprehensive organizational models that include grouping of
resources and their relation to execution contexts. However,
an execution context consists of single activities disregarding
work may be aggregated to the task level. Hulzen et al. [13]
define the closely related concept of resource profiles and
cluster several activity instance to activity instance archetypes
related to actors, which can be seen as representing a task. Del-
coucq et al. [14] analyze control-flow and resource perspective
by clustering over an actor-activity matrix. Both works [13]
and [14] ignore the behavior within a task and between actors.
In an extension [15] LPMs of actor behavior are discovered.
Only frequent, gapped behavior of an actor over the entire
trace is considered instead of consecutive actions forming a
task. Resulting models are not related to the case making it
impossible to study their context and impact on case execution.

Methods on batch processing detection use the resource
perspective in event logs to identify executions of a certain
activity by a certain resource across cases [16], possibly
interrupted [17], that are likely performed in a batch. This
was extended to more complex behavior forming sub pro-
cesses in [16]. Batches may form a larger unit of work
performed by a single actor. Such batch work may coincide
with tasks detected by our method; however, the tasks we
aim to analyze are not necessarily batched. Pika et al. [17]
investigates BPIC’17 and detects some batching related to
the single activity O Accepted. Manual investigation described
in [17] revealed that some actors are processing this activity in
batches. These batches are interrupted by three other activities,
which according to [17] indicates a sub process. Indeed, we
also find the same activities to be involved in a task. Note
that our method directly identified this task without using the
timing of events. Thus, the analysis of actor behavior at task
level and batch processing are complementary concerns.

Event abstraction methods aim to identify and aggregate
high-level activities from lower-level events. The aggregation
performed is not necessarily related to actor behavior and,
indeed, only very few approaches use data on actors. A notable
exception are Senderovich et al. [18] who use information
on the (spatial) interaction between resources in a hospital
to derive activities from location sensor data. Leoni and
Dündar [19] use waiting time between events as heuristic to
group consecutive low-level events into “batch sessions” and
cluster them using the most frequently executed activity in
a cluster as label. In a single actor setting this may identify
tasks through temporally close activities. Compared to event
abstraction we aim to identify tasks in cases worked on
by multiple actors and use actors as features in subsequent
analysis without relying on time as heuristic. We preserve

the structure of the cluster as an LPM which allows us to
meaningfully compare clusters describing different ways of
dividing the same work over time.

Concept drift studies gradual or sudden changes in processes
that can be observed over time. We investigate concept drift
in actor behavior of the BPIC’17 event log. Few approaches
for concept drift identification and comparison consider the
resource dimension. None of them looks at the actor-case
interplay and at concept drift at the task level. The only
multi-perspective comparison method, including the resource
perspective, was proposed by Nguyen et al [20]. It allows
to identify significant differences between event log subsets
using a graph representations of a certain process perspectives.
In contrast to our method the aggregation of events and
comparison is done for each case separately and no analysis
of actor traces is provided. Adams et al. [21] propose a
detection method for concept drift that considers resources
by aggregating the information on them (e.g., workload) into
a numeric representation. A concept drift in BPIC’17 with
increased workload for resources is found. Whereas we do
not consider workload, none of the more complex changes in
actor behavior can be found by [21] due to the encoding into
a flat numeric representation.

Finally, task mining is also related. Task mining aims to
investigate actor routines by leveraging desktop interaction
logs. Several approaches [22], [23] aim to discover task
executions by segmenting an event log of desktop interactions
such that repetitive patterns or pre-identified routines are found
similar to our previous work [24]. However, tasks are limited
to a single actor ignoring collaboration and do not investigate
changes and process context.

III. PRELIMINARIES

We recall how to build a multi-dimensional representation
using event knowledge graphs, how to aggregate specific
multi-dimensional dynamics into task instances, and how to
aggregate events into event classes.

A. Event Data Representation in Event Graphs

A process-aware system can record an action execution as
an event in an event log. Each event records at least the action
that occurred, the time of occurrence, and at least one entity
identifier indicating on which entity the action occurred. An
event can also record entity identifiers for multiple types of
entities, e.g., case identifier and actor identifier (or resource).
An event can also record additional attributes describing the
event or case further. Tab. I shows an example event log
containing 10 events occurring on the same day.

Process mining [1] analyzes event data by grouping events
wrt. a chosen case identifier attribute. Ordering all events of a
case by time yields the trace as a sequence of events. Grouping
the events in Tab. I by Case yields the traces ⟨e1, e2, e3, e4, e5⟩
and ⟨e6, e7, e8, e9, e10⟩. We can also group the events in Tab.
I by Resource, yielding the traces ⟨e1, e2, e6, e7, e8⟩ (resource
a1), ⟨e3, e4, e9, e10⟩ (a5), and ⟨e5⟩ (a29). An event log can
only model traces wrt. one dimension (case or actor). We use



TABLE I: Example of an event table.

Event Action Time Case Resource Item Category

e1 A 12:02 c3 a1 Electronics
e2 B 12:04 c3 a1 Electronics
e3 E 14:38 c3 a5 Electronics
e4 F 14:41 c3 a5 Electronics
e5 C 16:21 c3 a29 Electronics
e6 A 12:08 c4 a1 Clothing
e7 B 12:09 c4 a1 Clothing
e8 D 12:15 c4 a1 Clothing
e9 E 14:54 c4 a5 Clothing
e10 F 14:59 c4 a5 Clothing

event knowledge graphs [6] to model traces in both dimensions
together (case and actor).

An event knowledge graph is a specific type of labeled
property graph (LPG) that is used in Graph Databases [25] for
modeling various entities as nodes and various relationships
as edges between them. In an LPG G, each node o and each
relationship R with edge

−→
R = (o, o′) from o to o′ has a label

ℓ, denoted o ∈ ℓ or R ∈ ℓ; x.a = v denotes that property a of
node/relationship x has value v. An event knowledge graph is
an LPG G that can be obtained from an event table, e.g., Fig.
1 shows the graph for events in Tab. I; each event and each
entity (i.e., each case id or resource id) is represented by a
node with label Event or Entity, respectively. Each e ∈ Event
defines e.action and e.time; each n ∈ Entity defines n.type
(e.g., case or resource). The graph has relationship labels:

• CORR (correlation): R ∈ CORR,
−→
R = (e, n) iff event

e ∈ Event is correlated to entity n ∈ Entity; we write
(e, n) ∈ CORR as short-hand.

• DF (directly-follows): R ∈ DF ,
−→
R = (e, e′) iff events

e, e′ are correlated to the same entity n (e, n), (e, n′) ∈
CORR, e.time < e′.time and there is no other event
(e′′, n) ∈ CORR with e.time < e′′.time < e′.time; we
write (e, e′)n.type ∈ DF as short-hand, i.e., (e, e′)c for
entity type case and (e, e′)r for actor.

See [6] for formal details and how to create G from events.
The example in Fig. 1 shows the event graph obtained

from Tab. I: each square (white) node is an Event node;
each circle is an Entity node of the corresponding type
(blue for Case, red for Resource). CORR relationships are
shown as dashed edges, e.g., e1, e2, e3, e4, e5 are corre-
lated to case c3 and e3, e4, e9, e10 are correlated to re-
source a5. DF-relationships are shown as solid edges.
The DF-relationships between the events correlated to the
same entity form a DF-path for that entity; the graph in
Fig. 1 defines 2 DF-paths for case entities, e.g., σc3 =
⟨(e1, e2)c, (e2, e3)c, (e3, e4)c, (e4, e5)c⟩ and 3 DF-paths for
resource entities, e.g., σa5 = ⟨(e3, e4)r, (e4, e9)r, (e9, e10)r⟩.

B. Detecting Task Instances

In [3] we have shown that a connected subgraph where a
case and a resource DF-path synchronize for several subse-
quent events forms a “unit of work” or task execution. While
a variety of such task subgraphs can be characterized [3], we
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Fig. 1: Event graph with the events and entities from Tab. I.

here focus on the most simple ones: a subgraph of events
{e1, ..., ek} and adjacent DF-edges that contains (1) exactly
one (part of a) case DF-path ⟨. . . (e1, e2)c, . . . , (ek−1, ek)

c . . .⟩
for a case c and (2) exactly one (part of an) actor DF-path
⟨. . . (e1, e2)r, . . . , (ek−1, ek)

r . . .⟩ for an actor r, i.e., both
paths synchronize over the same subsequent events; see [3] for
details. In Fig. 1, subgraphs of events that meet these criteria
are {e1, e2}, {e3, e4}, {e5}, {e6, e7, e8} and {e9, e10}. Each
such subgraph ti describes one task instance.

C. Aggregation of Events

An event knowledge graph G can be extended. We specifi-
cally use (1) aggregation of sets of events in G into a new kind
of node, and (2) lifting DF-edges from events to the aggregated
nodes. We use two types of aggregation.

1) Aggregation of Events into Task Instances: We aggregate
each task instance subgraph ti into a new “high-level” event
node hti ∈ TaskInstance and add relationship (e, hti) ∈
CONTAINS for each e ∈ ti and properties hti.timestart =
e1.time and hti.timeend = ek.time.

Fig. 2 shows the task instances derived from Fig. 1 repre-
sented as grey rectangles, and all corresponding relationships.
For example, ti1 over e1, e2 and ti4 over e6, e7, e8 derived
from Fig. 1 results in nodes h1 and h4 in Fig. 2, respectively.
The task variant v described by a task instance ti over
e1, ..., ek is its sequence of action names along the DF-path in
ti, set as property hti.variant = e1.action, ..., ek.action. For
example, hti.variant = A,B. DF-edges lift from Event nodes
to TaskInstance nodes. If (hti, e), (h

′
ti, e

′) ∈ CONTAINS and
(e, e′)n ∈ DF , then add (hti, h

′
ti) ∈ DF . Fig. 2 shows the

lifted DF-edges, e.g., (h1, h4)r.
Because subgraphs describing these task instances are

formed by the DF-path of the case and the DF-path of the
actor together, a task instance is inherently a piece of a case
and an actor. Actor DF-paths over task instances show how
actors perform work/execute tasks on different cases [3].

2) Aggregating Events into Event Classes: We also ag-
gregate all events sharing the same property called event
class, e.g., all events with e.Action = A. Picking a property
name X as event classifier class(e) = e.X defines the
event classes Cclass = {class(e) | e ∈ Event}, e.g., all
values for “Action” in the data. For each value v ∈ Cclass

create a new event class node cl with cl.type = X and
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Fig. 2: Event graph containing the hti nodes (top) and cl nodes
(bottom) and lifted DF relations built from Fig. 1 events.

cl.id = v, and for each e ∈ Event with class(e) = v add
relationship (e, cl) ∈ OBSERVED , e.g., in Fig. 2 events e1
and e6 are observations of action A. We lift DF as before:
if (e, e′)type ∈ DF and (e, cl), (e′, cl′) ∈ OBSERVED , then
add (cl, cl′)type ∈ DF . We set count properties to record how
many events/DF-edges were aggregated.

Fig. 2 shows the event classes of the events in Fig. 1
defined by the type Action represented as black (rectangular)
nodes, and all corresponding relationships. For example, cl1
aggregates events e1 and e6 and (cl1, cl2)r aggregates DF-
relationships (e1, e2)r and (e6, e7)r.

IV. METHOD

We assume data to be given in an event graph G including
the aggregation of events into task instances. The BPIC’17
graph had 171 200 task instances of 1 208 task variants. Here,
we describe methods we identified as effective to summarize
tasks and actor behavior in such a graph. We discuss how to
obtain task clusters (Sect. IV-A), how to discover an intra-
task description of a task as an LPM (Sect. IV-B), and how
to discover inter-task models of process and actor behavior by
abstraction (Sect. IV-D) for various subsets (Sect. IV-C).

A. Clustering Task Variants

Our first problem to solve was to summarize the task
instances to study the contents of the “units of work”. We
chose to cluster TaskInstance nodes by their hti.variant
feature (the sequence of actions performed). Our goal was to
find a way to obtain homogeneous clusters in the sense that a
human analyst could judge whether all instances in a cluster
are variants of the same general task (by their judgment). Next
we report on the feature engineering and an iterative clustering
method to obtain homogeneous clusters.

Let A = {a1, . . . , an} = {e.action | e ∈ Event} be all ac-
tions and V = {hti.variant | hti ∈ TaskInstance} all task
variants in G; note that V ⊆ A∗. We encode each v ∈ V as
feature vector in aggregate encoding: enc(v) = ⟨x1, . . . , xn⟩
with xi being how often ai occurs in v.

For example, from hti nodes in Fig. 2 we retrieve
v1 = ⟨A,B⟩, v2 = ⟨A,B,D⟩, v3 = ⟨E,F ⟩ and

v4 = ⟨C⟩. From v2 we retrieve feature vector enc(v2) =
⟨1(A), 1(B), 0(C), 1(D), 0(E), 0(F )⟩. Based on domain knowl-
edge insights, more weight can be assigned to certain actions.

We cluster the set of task variants into N clusters through
hierarchical agglomerative clustering [26]. We use ward as
linkage criteria, i.e., the distance between clusters is the sum
of squared distances within all clusters, and Eucledian distance
as distance metric [26]. We first determine the optimal number
of clusters using the silhouette coefficient sc [26], which is
calculated from the mean intra-cluster distance and the mean
nearest-cluster distance for each data point, between sc = −1
and sc = +1 . To find a homogeneous clustering, we first
compute clusterings for N = 2, . . . ,maxN to identify N
with maximal scN , where maxN depends on. An analyst can
visually inspect each cluster for homogeneity (e.g., using intra-
task DFGs, see IV-B) and explore clusterings for N − 1 or
N + 1 until a desired qualitative homogeneity is reached.

The result of the clustering step is a set of N task clus-
ters tci ⊆ V, i = 1, . . . , N identified by a cluster number
1 ≤ i ≤ N ; we assign each TaskInstance node its cluster
number, i.e., hti.cluster = i iff hti.variant ∈ tci. Clus-
tering the task instances in Fig. 2 could result in tc1 =
{⟨A,B⟩, ⟨A,B,D⟩}, tc2 = {⟨E,F ⟩} and tc3 = {⟨C⟩}. Each
task instance is a sequence of events; thus all task instances
in the same cluster i together form a “local log” of a task.

B. Deriving Intra-Task DFGs

Clustering groups similar task variants into a “local log”
of a task, but does not summarize the variants to understand
variations in task behavior (or to assess cluster homogeneity).
A LPM [7] of the local task log would achieve this. Aiming for
simple operations, we chose to build a basic directly-follows
graph as a model of behavior in a task cluster, as follows.

We adapt the event-to-class aggregation (see Sect. III-C2)
to be local to a cluster. As the same action may occur
in different clusters, we aggregate events per cluster with
the event classifier class(e) = (e.action, cluster(e)) with
cluster(e) = i iff (e, hti) ∈ CONTAINS , hti.cluster = i.
Further, we aggregate (e, e′)n ∈ DF to (cl, cl′)n ∈ DF only
if cl = (a, i), cl′ = (b, i) belong to the same cluster i.

Fig. 3 (bottom) shows how events e1, e2, e6, e7, e8 are ag-
gregated to the intra-task DFG of cluster 1, thereby describing
the local behavior of a task in one model. In Sect. IV-D we
discuss how to query the complete DFG including start/end
nodes from the aggregation result. Analysts can use task DFGs
to understand task contents (e.g., overlap with others) and
homogeneity of clusters.

C. Summarizing Behavior over Abstracted Tasks

The LPMs of tasks obtained in Sect. IV-B are not disjoint
as the same actions may occur in multiple tasks. Thus, the
collection of LPMs of tasks is not a classical hierarchical
abstraction of process control-flow. To understand whether a
task cluster is a valid abstraction also regarding the control-
flow, we had to study the context of all task instances in a
cluster. Our basic idea was to abstract each cluster (each LPM)
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into event classes for deriving intra-task DFGs (bottom).

of a task into a single “task node” and derive a model of case
and actor behavior over these task nodes.

We adopted event-to-class aggregation (Sect. III-C2) and
aggregate the TaskInstance nodes into task instance classes
using class(hti) = hti.cluster as classifier. Applying this
operation on our running example (see Fig. 3 top) creates
3 class nodes cl7, cl8, cl9 of type “cluster” with ID “1”,
“2”, and “3” respectively, adds OBSERVED-edges from each
hti node to their Class node and aggregates all DF-edges
from TaskInstance to Class nodes (recording frequency of
aggregated DF-edges as property). For instance, cl8 aggregates
task instance h2 ad h5. Note that this operation preserves for
which entity-type (case or resource) a DF-relationship holds:
e.g., (cl8, cl8)r aggregates (h2, h5)r and (cl7, cl8)c aggregates
(h1, h2)c, (h4, h5)c. We also assign each Class node cl a name
being the set of all actions occurring in all hti nodes of the
cluster, e.g., cl7.name = “A,B”. The analyst can modify this
name. This results in a “global DFG” on the level of tasks.

Note that this operation also aggregates the resource DF-
relationships with regard to tasks. We show in Sect. V that
this gives new insights into actor behavior.

D. Deriving Inter-Task DFGs

The aggregation of Sect. IV-C results in a complex graph
over two behavioral dimensions that is difficult to visualize and
possibly not specific to answer an analysis question. To obtain
more specific DFGs, we identified the following parameters:
(1) node aggregation by using more specific classifiers for
TaskInstance nodes, (2) filtering by using different criteria
to decide which TaskInstance nodes to keep and (3) edge
aggregation by selecting which DF-edges to aggregate. Each
parameter is defined by the properties of the entire event
knowledge graph, including the underlying events.

(1) We can refine the aggregation of TaskInstance nodes
to Class nodes using a classifier over multiple properties.
For example, the following classifier distinguishes tasks
per actor: classT×R(h) = (h.cluster, resource(h)) with
resource(h) = a iff (e, h) ∈ CONTAINS , e.resource = a.

The DF-relationships are then aggregated per actor, allowing
to compare different actors wrt. their behavior over tasks.

(2) To obtain a DFG for specific parts of the data, we define
a subset TI ′ ⊆ TaskInstance that satisfy some property wrt.
the underlying data and only aggregate the nodes hti ∈ TI ′ .
For instance: (1) only hti nodes correlated to an entity based
on a specific property, e.g., in Fig. 2, related to resource entities
where n.ID = a5, i.e., h2 and h5, or case entities where
n.item category = Electronics, i.e., h1, h2 and h3; or (2)
based on temporal properties, e.g., only hti nodes in cases
that end before 15:00, i.e., (hti, e) ∈ CONTAINS , (e, n) ∈
CORR, n.type = case and all events (e′, n) ∈ CORR have
e′.time < 15 : 00.

(3) We can limit the DF-relationships to aggregate to a
subset DF ′ ⊆ DF determined by structural or temporal
properties in the same way as in (2). Note that if DF ′ is
chosen independent of TI ′ there may be no aggregated DF-
edges between Class nodes.

After choosing parameters, we set the frequency property of
the aggregated Class and DF-edges based on TI ′ and DF ′. For
visualizing the DFG, we query the Class nodes (of a particular
type) and all DF-relationships between them. We identify how
often a Class node cl is a start node of the DFG (for entity type
n) by querying the number of hti ∈ TI ′ nodes with (hti, cl) ∈
OBSERVED and no incoming DF-edge (h′

ti, hti)
n ∈ DF ′.

For example, in Fig. 3, cl7 is start node once for r and twice
for c. Correspondingly for end nodes. We visualize this as
edges of the artificial start/end nodes.

We applied the above concepts to derive DFGs over task
variants occurring at least 10 times for case DF-edges only
(Fig. 4) and for various subsets (Fig. 8). Further, we con-
structed a composition of multiple actor DFGs inter-connected
by cases as follows: (1) classifier classT×R(h) defined above,
i.e., create cluster nodes per actor, (2) TI ′ contains only Task-
Instance nodes related to one of three specific resources, (3)
include a resource DF-edge (h, h′)r ∈ DF ′ only if h.timeend
and h′.timestart occur on the same day, and include any
case DF-edge in DF ′. Fig. 9 shows an example of such time
filtering; the resulting DFG summarizes for each actor the
behavior executed over a day (no DF-edges to a task on the
next day) and the aggregated case DF-edges show how often
an actor handed a case from one task to another actor with
another task. The complete results are described in Sect. V.

V. RESULTS

To test our hypothesis whether Q1-Q4 can be answered from
process event data, we applied the operations we identified in
Sect. IV on the event knowledge graph [6] of the BPIC’17
data [5] in our case study. All the steps in Sect. IV could
be implemented in Cypher queries invoked via parameterized
Python scripts1 on the graph database Neo4j. Naive queries
took 1.5h to build the graph and about 1m per DFG on an
Intel i7 CPU @ 2.2GHz machine with 32GB RAM.

1Available at: https://zenodo.org/record/6727896#.YrYcjXZBwuU

https://zenodo.org/record/6727896#.YrYcjXZBwuU


TABLE II: Clusters (tasks of Fig. 4) and actions
(name+lifecycle*) common to its task variants.

C0 A Accept, O Create, O Sent, W Compl appl+E,
W Call offers+S, A Complete (nr. of variants: 43)

C1 A Create, A Concept, W Compl appl+S (3)
C2 A Create, A Submit, W Handle Lds+S (3)
C3 infrequent (count < 30) (2)
C4 O Accept, A Pending, W Call inc+E/W Validate+E (27)

C5 A Create, A Concept, W Compl appl+S, A Accept,
O Create, W Call offers+S, A Complete (21)

C6 leftovers (12)

C7 A Denied, O Refused, W Call inc+E/W Validate+E/
W Call off+E (15)

C8 W Call inc+E/W Call offers+E, W Validate+S, A Validating,
W Validate+E, W Call inc+S, A Incomplete (25)

C9 O Create (18)

C10

A Create, W Compl appl+S, A Concept, A Accept,
O Create, O Sent, W Compl appl+S, W Call offers+S,
A Complete, W Call offers+E, W Validate+S, A Validating,
W Validate+E, W Call inc+S, A Incomplete (3)

C11 W Validate+E, W Call inc+S, A Incomplete (7)

C12 A Cancel, O Cancel, W Call off+E/W Call inc+E/
W Validate+E (25)

C13 W Handle Lds+E, W Compl appl+S, A Concept (7)

C14 W Call off+E/W Call inc+E, W Validate+S,
A Validating (10)

C15 W Call inc+E, W Validate+S, A Validating, O Accept,
A Pending, W Validate+E (3)

C16 A Create, W Compl appl+S, A Concept, A Accept (4)

C17
W Handle Lds+E, W Compl appl+S, A Concept, A Accept,
O Create, O Sent, W Compl appl+E, W Call offers+S,
A Complete (2)

C18 A Accept, O Create (4)

C19 (O Create,) O Sent, W Complete appl+E, W Call off+S,
A Complete (11)

* S (abbreviation for schedule, start) and E (withdraw, abort, complete).
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Fig. 4: Inter-task DFG with edge thickness denoting frequency.

The BPIC’17 dataset is a large, real-life event log describing
the process of clients applying for a loan at a bank (application
documents) and receiving back loan offers (offer documents).
We iteratively explored and summarized the data using our
implementation with different parameters to identify relevant
subsets for answering Q1-Q4.

To identify tasks by clustering (Sect. IV-A) we first removed
all TaskInstance nodes describing variants occurring < 10
times (1%) and of length = 1 (6%). For clustering, we ended
up giving A actions (application documents) a weight of 2
in feature encoding; we found N = 19 clusters to yield the
best sc = 0.66, but adjusted to N = 20 (sc = 0.63) after
visual inspection of intra-task DFGs of clusters (Sect. IV-B)
to further split variants describing creation of offer documents
and leftover variants. Tab. II shows the name and life-cycle
transition of actions occurring in each variant of a cluster.

To get an overview of the complete process, we first derived
an inter-task DFG (Sect. IV-D) of all task clusters except C3
(very infrequent) and C6 (leftovers) from the case perspective
(Sect. IV-C) as shown in Fig. 4. Note that frequencies reported
are all specific to the (filtered) subset used in the analysis. This
inter-task DFG, reveals that the process is quite structured from
a task perspective. The variants within a cluster are largely
performed at the same spot in the process (Q1), confirming
that the conceptualization of task variant clusters as higher-
level tasks is meaningful.

Table II shows how actors divide work along a process
execution (Q1). We observe tasks that are completely disjoint

C4, C7, and C12 corresponding to three distinct ways of
ending the process, but also tasks with overlapping sets of
actions, e.g., there are five ways of starting the process (C1,
C2, C5, C10 and C16) and a task (C8) that is the composite
of two other tasks (C11, C14). Task C14 is by far the most
frequently executed task (34 080 times as visible in Fig. 4).

To investigate the reason for 5 alternative tasks to start
a case (Q2), we analyzed which case and actor attributes
correlated with the choice C1, C2, C5, C10, C16. We only
found correlations for C2 (by automated resource) and for
C10 (correlated to specific case attributes), and show details in
App A [24]. This suggests that the choice for starting with C1,
C5 or C16 is actor-driven. The choice of the first task impacts
performance (Q4); we find that cases starting with C1, C2,
C5, C10 or C16 have (statistically significant) different case
durations, with average durations 22.4, 24.2, 19.7, 13.6 and
18.9 days, respectively (details in App A [24]).

To investigate how work is structured within a task (Q1) we
created the intra-task DFG (Sect. IV-B) in Fig. 5 showing the
local behavior of C14; variants V5 and V6 are analyzed further
later. We observe frequent and infrequent task variants, as
well as a variability in alternative actions, e.g., choice between
W Call. off.-A and W Call. inc.-A. In other clusters, we addi-
tionally observe a variability in the order of actions (same set
of actions but ordered differently), e.g., the switching around
of ⟨A Conc+Comp⟩ and ⟨W Compl app+Sched,W Compl
app+Start⟩ in C1, C5 and C16.

Next, we analyzed for changes in the organization of work.



Fig. 5: Intra-task DFG of C14 with variants V5 and V6.

Fig. 6: Frequency of variants in clusters show concept drift.

We focused on clusters C8, C11 and C14 as C8 combines
actions of C11 and C14. We first analyzed the frequency of
individual task variants in C8, C11, C14 over time, revealing
concept drift. In Fig. 6, we observe the introduction of new
task variants (C8, in July), a changeover (C11, in July), and
drops (variant V1 in Nov., V4 in July, V5 in Nov.). We observe
similar changes in other clusters as well as spikes related to
the drops in November (details in App B [24]). The shifts we
observe within clusters are globally connected, i.e., certain
ways of doing a task are dropped or replaced by variants
in other tasks (Q3). Such shifts on a global level suggest a
process-driven change (Q2).

We analyzed the frequency of performing V3 and V4 per
actor and find that different actors adopt to these changes
differently. Fig. 7 shows actors adapting to the concept drift
in variants V3 and V4 in a non-uniform way. In Fig. 7, we
observe actors adapting with concept drift (users U29 & U90),
not at all (U100) and against concept drift (U68). Despite
the global change over the entire process, actors have their
own preferences (Q2). We see similar adoption behavior for
variants in some other tasks (details in App B [24]).

We computed an inter-task DFG of all cases ending before
July and one for all cases starting after July (excluding July as
transition period); App B [24] shows both DFGs, Fig. 8 shows
their difference in case volume before and after concept drift
highlighted on the nodes and edges on the inter-task DFG. In

Fig. 7: Four actors adopting to concept drift in variants of C11.
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Fig. 8: Inter-task DFG showing (relative percentual) change in
case volume before and after concept drift.

most tasks in Fig. 8, we observe a workload increase that is
in line with the overall increase of cases (+1937) at the start,
except for C14 and C11: the absolute load of C14 is nearly
the same (decrease 15.3%), the load of C11 increases less
(decrease 4.5%) than overall. Interestingly, C8 (combines C11
and C14) increases load with an relative increase of 19.5%. We
observe a shift in flow over tasks: inflow in C8 increased by
7.3% (from C0) and 3.5% (from C5) while incoming edges in
C14 decreased by -17% (from C0) and -6% (from C5). More
cases are routes from C8 to C14 (16%). While rework (forth-
and-back between C11 and C14) reduced by -12% because
more cases go directly from C11 to C4 (+9%). This suggests
that the growth in cases at the start (+1937) is absorbed by the
combined task C8, while C11 and C14 stay nearly constant.
The increased workload is now routed through a different path.

We also investigated whether the process changes had an
effect on case duration and outcome (Q4). We found that
separate tasks C11 and C14 previously performed by different
actors are now combined into a single task C8 done by a single
actor. We compared two new task variants V1 and V2 in C8
that are combinations of already existing variants in C11 (V4)
and in C14 (V5, V6). We compared the case duration for the
new variants and found that the change led to 5% (V1) and
13% (V2) faster processing and overall 11% more declined
applications. More details are provided in App C [24].

We, finally, investigated whether the concept drift changes
the behavior of an actor (Q3). Fig. 9 shows the resource-
specific DFGs and handovers of work between them before
(top) and after concept drift (bottom), (Sect. IV-D). In Fig. 9,
the count in the start node represents the user’s working days
in the data. U113 now works more on C8 and less on C14
(in line with earlier results). Surprisingly, U29 executes C8
less, suggesting that this has become a main task of other
users (e.g., U113). Also, the work is more structured after
concept drift: the number of different handovers between U29



Fig. 9: Inter-task DFGs showing behavior of users 29 (green)
and 113 (orange) interconnected by handovers (grey) before
(top) and after concept drift (bottom).

and U113 decreases from 5 to 4. The handovers from (U29,
C11) to (U114, C14) decrease stronger than the load in (U29,
C11). Also, for U29 the amount of self-handovers increases
(from 34 to 51) but the type of handovers decreased (from 4
to 1), suggesting a more structured way of working.

VI. CONCLUSION

Through our exploratory case study we showed that graph-
based process mining can help answer fundamental questions
in routines research. We modeled actor and case behavior
jointly and showed how to extend the used event knowledge
graph through clustering, aggregation, and querying operations
to obtain local models of a task and the global behavior across
tasks to answer specific analysis questions – considering all
underlying case and actor properties and behavior.

By analyzing the BPIC’17 event data in this way, we were
able to answer questions Q1-Q4: we found how work is
structured and divided among actors (Q1) is different within
and across different parts of the process, (Q2) is affected
by process instance properties and participating actors, (Q3)
is subject to concept drift, and (Q4) impacts performance.
Doing so gives new insights on BPIC’17. We believe that such
analysis of event data can give new insights into actor behavior
in the context of routines [2], [4], organizational models [12],
batching [16], concept drift analysis [21] and more.

A necessary next step is to overcome the limitation of this
exploratory case study: validation of the techniques on further
cases including feedback from domain experts and to gain
requirements for automating steps, specifically clustering and
identifying task clusters and actors of interest for analysis.
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APPENDIX

A. Analysis of Alternative Tasks to Start a Case.

This subsection contains additional analysis results related
to the analysis of the choice of alternate tasks to start a case in
Sect. V. Figs. 10 to 12 compare case attribute values for three
case attributes across cases that start the process in a different
task. Fig. 13 compares actor distribution across the different
tasks that start the process.

In Figs. 10 and 12 we observe that C2 is correlated to
application type “New Credit”, requested amounts > 0 and
the system resource (resource = 1). C10 is correlated to
application type “New Credit”, loan goal “Unknown” and
requested amount = 0. C10 is also executed by a different
set of resources than the other case starts C1, C5, C16 are.
In Fig. III we observe that the choice for a specific case start
affects performance; case durations across the different case
starts are significantly differently distributed, except C5 vs C16
with p=0.052.

Fig. 10: Heatmap comparing the case attribute Application
Type across traces that all start the process in a different task
cluster C1, C2, C5, C10 or C16.

Fig. 11: Heatmap comparing the case attribute Loan Goal
across traces that all start the process in a different task cluster
C1, C2, C5, C10 or C16.

Fig. 12: Heatmap comparing the case attribute Requested
Amount across traces that all start the process in a different
task cluster C1, C2, C5, C10 or C16.

TABLE III: Average case duration for disjoint subsets of traces
in BPIC’17 that all start the process in a different task cluster
C1, C2, C5, C10 or C16.

Cluster Average case duration (days) P-value
C2 C5 C10 C16

C1 22.4 1.28e-18 8.75e-51 4.09e-11 4.09e-11
C2 24.2 6.19e-82 1.54e-14 2.16e-16
C5 19.7 4.03e-6 0.052
C10 13.6 3.48e-5
C16 18.9

Fig. 13: Heatmap comparing the distribution of (20 most
active) resources executing the different process starts C1, C2,
C5, C10 or C16.



B. Concept Drift Analysis.

This subsection contains additional analysis results related
to the concept drift analysis in Sect. V. Fig. 14 shows the
trends of 6 additional task variants showing similar changes
as observed in Fig. 6 (Sect. V): V7 and V8 show a similar
changeover as V3 and V4, V9 and V10 show a different
changeover in November, and V11 and V12 show peaks that
fall together with the drops of V1 and V5. In Fig. 15 we see
trends of four actors showing adaptation rates similar to their
adaptation rates shown in Fig. 7 (Sect. V).

Figs. 16 and 17 show the inter-task DFGS (of cases before
and after concept drift, respectively) from which the DFG in
Fig. 8 (Sect. V is computed.

Fig. 14: Trends of 6 additional task variants in clusters 7,
12, 8 and 14 in BPIC’17 showing concept drift in July and
November.

Fig. 15: Trends of four actors adopting to concept drift (July)
in task variants 7 and 8 (C7) in different ways in BPIC’17.

C. Performance analysis of new task adoption.

This subsection contains additional results related to the
performance analysis of a change in the way tasks are executed
after concept drift (see Sect. V). Tab. IV shows average case
durations and distributions of case outcome for subsets of
cases executed in the old way, and subsets of cases executed
according to the change.
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Fig. 16: Inter-task DFG of all cases ending before concept
drift in BPIC’17.
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Fig. 17: Inter-task DFG of all cases starting after concept drift
in BPIC’17.

TABLE IV: Average case duration and distribution of case
outcome for subsets of BPIC’17 traces describing a larger
piece of work that is split in different combinations of task
variants, and for all traces in BPIC’17.

Subset with work
division

Average case
duration (days) P-value Accepted Denied Cancelled

S1old: V5, V4, V6
and not V1 23.4 0.03 87.8 % 8.7 % 3.5 %

S1new: V1, V6 22.3 76.6 % 19.2 % 4.2 %
S2old: V6, V4, V6
and not V2 28.9 0.0004 92.7 % 5.8 % 1.6 %

S2new: V2, V6 25.2 82.2 % 16.1 % 1.7 %
All cases 21.9 - 55.1 % 11.6 % 33.3 %
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