

Project 8: results and prospects

The XXX International Conference on Neutrino Physics and Astrophysics

Virtual Seoul, Republic of Korea

June 4, 2022

Elise Novitski for the Project 8 Collaboration

Neutrino mass from tritium β^{-} spectroscopy

- Neutrino mass is linked to Beyond-the-Standard-Model physics
- Absolute mass scale and ordering are still unknown
- Tritium β⁻ spectroscopy is the leading technique for direct neutrino mass measurements

Recent result from KATRIN: $m_{\beta} \leq 0.8 \text{ eV/c}^2 (90\% \text{ CL})$ Aker et al. (KATRIN), Nat. Phys. 18, 160–166 (2022)

Challenges for future experiments

- Statistical sensitivity to m_β scales as ~1/N^{1/4}
 - Existing detector technology has reached limit of scalability
- Irreducible systematics associated with molecular final states at ~100 meV
- KATRIN is designed to reach an ultimate sensitivity of 200 meV/c²
- If the mass is smaller, is there a way to access it?

J. Formaggio, A. L. C. De Gouvêa, and R. G. H. Robertson, Physics Reports 914 (2021) 1–54

A new approach: Cyclotron Radiation Emission Spectroscopy (CRES)

First proposal of CRES: B. Monreal and J. Formaggio, Phys. Rev. D 80, 051301(R) (2009)

4 June 2022

A new approach: Cyclotron Radiation Emission Spectroscopy (CRES)

^{83m}Kr measurements reveal eV-scale resolution

Monoenergetic conversion electrons at 18, 30, 32 keV, bookending the 18.6 keV tritium endpoint Allow for magnetic field calibration, detector response characterization

The expanding use of Cyclotron Radiation Emission Spectroscopy (CRES)

Advantages of CRES for tritium beta spectroscopy

Frequency measurement \implies High precision

Source is transparent to microwave radiation No electron transport; volume scaling

Differential spectrometer \implies Increased statistical efficiency

Compatible with atomic tritium \implies Avoids T₂ final-state broadening

Low background \implies More info near endpoint

ЗНе

 \mathcal{V}_{ρ}

Project 8: a CRES-based direct neutrino mass experiment

Goals:

- Sensitivity to 40 meV/c² neutrino mass
- Measure neutrino mass or exclude inverted hierarchy
- Simultaneous sensitivity to active and sterile neutrinos

Phase II: first tritium endpoint measurement

- First tritium spectroscopy using CRES (and first CRES measurement of any continuous spectrum)
- First neutrino mass limit using CRES
- Demonstration of high resolution
- Demonstration of a zero background experiment
- Demonstration of **control of systematic effects**

Project 8 Phase II tritium apparatus

0.85 mT

^{83m}Kr measurements: magnetic field calibration

$$f_c = \frac{f_{c,0}}{\gamma} = \frac{1}{2\pi} \frac{eB}{m_e + E_{kin}/c^2}$$

- Known K-line energy allows for magnetic field calibration
- 1.7 ± 0.2 FWHM eV instrumental resolution on
 2.8 ± 0.1 FWHM eV natural linewidth main peak
- Satellite peak from shake-up/shake-off and scattering from residual gas

^{83m}Kr measurements: magnetic field calibration

$$f_c = \frac{f_{c,0}}{\gamma} = \frac{1}{2\pi} \frac{eB}{m_e + E_{kin}/c^2}$$

- Known K-line energy allows for magnetic field calibration
- 1.7 ± 0.2 FWHM eV instrumental resolution on
 2.8 ± 0.1 FWHM eV natural linewidth main peak
- Satellite peak from shake-up/shake-off and scattering from residual gas
- Detected line shape well-described by model

^{83m}Kr measurements: statistics

- Deeper trap with lower resolution used for tritium data acquisition
 - increase statistics
 - compensate for small 1 mm³ effective volume

^{83m}Kr measurements: statistics

- Deeper trap with lower resolution used for tritium data acquisition
 - increase statistics
 - compensate for small 1 mm³ effective volume
- Detector response model still works well

^{83m}Kr measurements: detector response

- Deeper trap with lower resolution used for tritium data acquisition
 - increase statistics
 - compensate for small 1 mm³ effective volume
- Detector response model still works well
 - Effects from magnetic field inhomogeneity, scattering, and missed tracks are understood

^{83m}Kr measurements: detector response

^{83m}Kr measurements: frequency dependence

- Magnetic field swept to study efficiency and scattering effects across frequency ROI
 - Using 17.8 keV Kr line

 $f_c = \frac{f_{c,0}}{\gamma} = \frac{1}{2\pi} \frac{eB}{m_e + E_{kin}/c^2}$

- Direct characterization of significant RF response variation of waveguide
- \star Notch in efficiency is understood
 - Caused by the interaction with TM01 mode of detection cavity
 - Quantitatively characterized and is accounted for in analysis

Phase II tritium spectroscopy results

- T₂ endpoint measurement in agreement with literature
- First neutrino mass measurement using CRES
- Extremely low background rate—no events above endpoint!

T₂ endpoint

 $\begin{array}{l} \mbox{Frequentist: } E_0 = (18550^{+22}_{-18}) \mbox{ eV} (1\sigma) \\ \mbox{Bayesian: } E_0 = (18553^{+17}_{-17}) \mbox{ eV} (1\sigma) \\ \mbox{Neutrino mass} \\ \mbox{Frequentist: } \leq 178 \mbox{ eV/c}^2 (90\% \mbox{ C.L.}) \\ \mbox{Bayesian: } \leq 169 \mbox{ eV/c}^2 (90\% \mbox{ C.L.}) \\ \mbox{Background rate} \\ \leq 3 \times 10^{-10} \mbox{ eV}^{-1} \mbox{s}^{-1} (90\% \mbox{ C.I.}) \end{array}$

Phase II tritium results: uncertainties

- Statistics-limited; demonstrates understanding and control of systematics
- We have paths to improving all these sources of uncertainty

The path to higher sensitivity

- Improve control of systematics, field homogeneity, scattering effects
- Increase volume
- Higher density
 - Shorter tracks -> need to improve SNR
- Develop atomic source
 - Overcome systematic of molecular final states

Project 8's sensitivity to sterile neutrinos

- Differential measurement
 - Simultaneous active mass measurement and sterile search
 - eV-scale sterile search planned
 - Could potentially be extended to search for keV-scale steriles (depending on the detection and readout technology)
- Low backgrounds and good resolution also benefit search for steriles
- Sterile sensitivity will be statistics-limited

The path to higher sensitivity

- Improve control of systematics, field homogeneity, scattering effects
- Increase volume
- Higher density
 - Shorter tracks -> need to improve SNR
- Develop atomic source
 - Overcome systematic of molecular final states

Increasing sensitivity in Phase III

Step 1:

~Two-pronged, 5-year R&D program in critical technology demonstrations

See A. Ashtari Esfahani et al. arXiv:2203.07349

Increasing sensitivity in Phase III

<u>Step 1</u>

~Two-pronged, 5-year R&D program in critical technology demonstrations

Step 2

Atomic tritium

OJECT B

Excess Electrons

Research areas

Molecule cracking

Cooling

r (mm) r (mm) r (mm) r (mm)

3 m

Electron trap design

Phased antenna array design

z (m)

gravitational po

Neutrino 2022 -- Elise Novitski

-1 0 1 Signal-Template Time Offset (AU)

17.9

Project 8: results and prospects

- CRES established as promising technique for next generation neutrino mass experiment
 - Also other physics applications
- Phase II demonstrated backgroundfree operation, control of systematics, first CRES m_{β} limit
- Work ongoing toward key technology demonstrations on the path to the 40 meV experiment

O.J.F.C.T

The Project 8 collaboration

Case Western Reserve University

- Razu Mohiuddin, Benjamin Monreal, Yu-Hao Sun
- Harvard-Smithsonian Center for Astrophysics
- Sheperd Doeleman, Jonathan Weintroub, André Young Indiana University
- Walter Pettus

Johannes Gutenberg-Universität Mainz

• Sebastian Böser, Martin Fertl, Alec Lindman, Christian Matthé, René Reimann, Florian Thomas, Larisa Thorne

Karlsruher Institut für Technologie

Thomas Thümmler

Lawrence Livermore National Laboratory

Kareem Kazkaz

Massachusetts Institute of Technology

• Nicholas Buzinsky, Joseph Formaggio, Mingyu Li, Junior Peña, Juliana Stachurska, Wouter Van de Pontseele

Pacific Northwest National Laboratory

• Maurio Grando, Xueying Huyan, Mark Jones, Benjamin LaRoque, Erin Morrison, Noah Oblath, Dan Rosa de Jesús, Malachi Schram, Jonathan Tedeschi, Brent VanDevender, Mathew Thomas

Pennsylvania State University

• Carmen Carmona-Benitez, Richard Mueller, Luiz de Viveiros, Timothy Wendler, Andrew Ziegler

Yale

Pacific Northwest

University of Washington

 Ali Ashtari Esfahani, Raphael Cervantes, Christine Claessens, Peter Doe, Sanshiro Enomoto, Eris Machado, Alexander Marsteller, Elise Novitski, Hamish Robertson, Leslie Rosenberg, Gray Rybka

Yale University

• Karsten Heeger, James Nikkel, Luis Saldaña, Penny Slocum, Pranava Teja Surukuchi, Arina Telles, Talia Weiss

4 lune 2

This work was supported by the US DOE Office of Nuclear Physics, the US NSF, the PRISMA+ Cluster of Excellence at the University of Mainz, and internal investments at all collaborating institutions.

Neutrino 2022 -- Elise Novitski

4 June 2022