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Abstract

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at
the negative even integers and complex numbers with real part % Under the assumption of the
Riemann Hypothesis, we prove that there is not any odd perfect number at all.
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1. Introduction

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at
the negative even integers and complex numbers with real part % As usual o(n) is the sum-of-
divisors function of n:

2,

dln

where d | n means the integer d divides n, d { n means the integer d does not divide 7 and d* || n

means d* | n and d**! { n. Define f(n) and G(n) to be @ and 1o£ ;zi,n respectively, such that log

is the natural logarithm. We know these properties from these functions:

Proposition 1.1. [1]. Let [1\_, 4" be the representation of n as a product of primes q; < -+ < g,
with natural numbers as exponents ay, ..., a,. Then,

f(n)=(ﬁqiq+l]xﬁ[l— 11]

i=1 ql

i=1
Proposition 1.2. For every prime power g%, we have that f(q*) = qf,’%lq__ll) [2]. If m,n > 2 are
natural numbers, then f(m x n) < f(m) X f(n) [2]. Moreover, if p is a prime number, and a, b
two positive integers, then [2]:

(P =DHxp'-1
pa+h—1 X (]7 _ 1)2 :

F@) = fY) x f(pP) = -
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Say Robins(n) holds provided
Gn) <e

where the constant y = 0.57721 is the Euler-Mascheroni constant. The importance of this prop-
erty is:
Proposition 1.3. Robins(n) holds for all natural numbers n > 5040 if and only if the Riemann
Hypothesis is true [3].
The Chebyshev function 6(x) is given by
0(x) = Z log p
P<x

with the sum extending over all prime numbers p that are less than or equal to x [4]. We state the
following properties about this function:

Proposition 1.4. [4]. For x > 89909:

0.068
O(x) > (1 - )X x
log(x)
Proposition 1.5. [5]. For every x > 1:
0(x) < (1 + '3 ) X X.
log” x

Proposition 1.6. [5]. Under the assumption of the Riemann Hypothesis, then there are infinitely
many prime numbers q, for which

1
0 < 6(q,) — qn X /G, X 1og? gy,.
< 0(qn) I < S5, Vgn X 1og”q

In mathematics, ¥ = n X [], (1 + é) is called the Dedekind ¥ function. Say Dedekinds(g,)
holds provided

& 1
< X H (1 + Z]) > e’ x log 6(q,)
4<qn
where g, is the nth prime number. The importance of this inequality is:

Proposition 1.7. Dedekinds(qg,) holds for all prime numbers q, > 3 if and only if the Riemann
Hpypothesis is true [6].

Let g, = 2,9, = 3,...,q denote the first k consecutive primes, then an integer of the form
I—[f=1 g witha; > ay > --- > @ > 0 is called an Hardy-Ramanujan integer [7]. A natural
number # is called superabundant precisely when, for all natural numbers m < n

fm) < f(n).

Proposition 1.8. If n is superabundant, then n is an Hardy-Ramanujan integer [8]. Let n be a
superabundant number, then p || n where p is the largest prime factor of n [8]. For large enough
superabundant number n, we have that g* < 2% for q > 11 where g% || n and 2% || n [8].
For large enough superabundant number n, we obtain that logn < (1 + 12;,;) X p where p is the
largest prime factor of n [4]. Let n be a superabundant number, then f(n) > (1 —&(p)) X [14n q%l

L5
log p

where g(p) = —— x (1 +

Toep ) and p is the largest prime factor of n [4].
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On the sum of the reciprocals of power prime numbers not exceeding x, we have these results:
Proposition 1.9. [5]. For x > 2278383:
1
Z — >loglogx+ B -

psx

where B ~ 0.261497212847642 is the Meissel-Mertens constant [9].
Proposition 1.10. [10]. Fory > 103:

Zi<1‘ L2 20
Sip? T yxlogy yxlog’y yxlog’y yxlog'y

1
5x log? x

In addition, we will use these properties:

Proposition 1.11. Iz is known that [11]:
[ 2 2

@=[]-2=%.

k=1 Tk

Proposition 1.12. [6], [7]. Forn > 2:

Proposition 1.13. [72]. For x > 1:

1 1
05 < log(l + x).
In number theory, a perfect number is a positive integer n such that f(n) = 2. Euclid proved
that every even perfect number is of the form 25! x (2* — 1) whenever 2° — 1 is prime. It is
unknown whether any odd perfect numbers exist, though various results have been obtained:

Proposition 1.14. Any odd perfect number N must satisfy the following conditions: N > 103
and the largest prime factor of N is greater than 108 [13], [14].

Under the assumption of the Riemann Hypothesis, we prove that there is not any odd perfect
number at all.

2. Numerical Calculations

Lemma 2.1.
1
Z ] <0.380503927189989469441
\gx (g+0.5)

Proof. Using the Proposition 1.10, we check by computer that,

g<103 g>108
1 2 2.07
—_ + —_
108 x1og 108 108 x log? 108~ 108 x log® 108 108 x log* 108
< 0.380503927189989469441.

< 0.380503926673572 +

O



3. Central Lemma

Lemma 3.1. For all prime numbers q, > 10, we have that

l_[ (1 + l) > QOTI2I32519795 o 100 o

44y 4

is satisfied.

Proof. We apply the logarithm to the both sides of the inequality,

Z log(1 + 1) > 0.0712132519795 + loglog g,.
= 1

We use the Proposition 1.13,

1
Zq+05

q<qn ’

> 0.0712132519795 + log log g,

This is the same as

1 1 1
E (_) - E (— - ) > 0.0712132519795 + loglog g,,.
q<q, q<qn

We know that

1 1
g g+05 2xgx(g+05)
Hence,
1) 1
=] - loglogg, > 0.0712132519795 + > (—)
= ( = 2xgx(qg+0.5)
We use that Proposition 1.9,
1
- ——— > 0.0712132519795 + —_—
5 xlog*(g,) (;%(Zqu(quO.S))
that is equivalent to
B > 0.0712132519795 + Z( ! )+ !
' Z\2xqx(g+05))  5xlog’(gn)

Using the numerical computation in the Lemma 2.1, we only need to prove that

0.380503927189989469441 1
B > 0.0712132519795 + + 3
2 5 x log’(108)
since m decreases as g, increases. In this way, we obtain that

B > 0.261497212847634

and thus, the proof is done.



4. Main Insight

Lemma 4.1. Under the assumption of the Riemann Hypothesis, we prove that

n? 1
R —_ Y
6.4X | |(1+q)>e x log 6(q,)

44y
is satisfied for infinitely many prime numbers q,,.

Proof. We know there are infinitely many prime numbers g,,:

0<6(gn) —gn <

1
X /g, x log? g,
P Vg, xlog™q

under the assumption of the Riemann Hypothesis because of the Proposition 1.6. That is the
same as

(g, — g, 1
8q,) (qn) — Gn

X X 1 2 -
If we apply the logarithm to the both side of the inequality

0(qn) = qn 1 2

log 6(g,) + log ———— X g, X1 n

og 8(gn) + log 0(qn) g S %7 q 0g™ g
which is

0 n
log 8(q,) < log(8 <= < Van x log? q,,) + log i)

G(Qn) —qn '
In addition, we known that

0.15
| 0(q,) - (It o) X dn
% 9 - RN _
qn) = Gn (Lt 5) X an = dn
0.15
o I+ 5a) X an
G X (14 052 = 1)
0.15
_ 1 (1 + 10g3f1n)
=108 715
log® g,

1
=log(1+ NG ]
log® g
og (1 + 108 4n
=1lo
£ 0.15

according to the Proposition 1.5. In this way, we obtain that

< e 2 10g3 qn
g:i; x log 6(g,) < g:Z X (log(mr X Vgqn X log qn) + log(l + 015




after of multiplying the both sides by 4-. Hence, it is enough to show there are infinitely many

prime numbers g, such that

[

q=qn

1 e’ 1 log® g,
1+ -]>— x|log|— . % log” g, | +log |1+ —=2"]].
( +q)_5><(og(8xﬂ><\/q_xog q)+ 0g(+ 0.15 ))

The previous inequality will be satisfied when

4 1 log® ¢,
0-0712132519795 x log gn > ez (log( % \/cﬁxlog qn)+10g(l 0g" ¢q ))
6_

8 x 0.15

due to the Lemma 3.1. That is equivalent to

2
gj % 60'0712132519795

1 log* g,
xlogqnzlog(gx X \/qnxlogzq,,)+log(1+ og q’)
T

eY 0.15
that is 3
1 1083 g\ Bred 215755
n = X g, X 1 a X (1 + '
q (8 X Van x1ogh gn X (1 + === ))
which is true for large enough prime numbers g,,. O

5. Main Theorem

Theorem 5.1. Under the assumption of the Riemann Hypothesis, we prove that there is not any
odd perfect number at all.

Proof. Suppose that N is the smallest odd perfect number, then we will show its existence implies
that the Riemann Hypothesis is false. There is always a large enough superabundant number n
such that 7 is a multiple of N. We would have

ﬂmeMOXﬂ%)

according to the Proposition 1.2. That is the same as

ﬂmszxﬂ%>

since f(N) = 2, because N is a perfect number. Hence,

fo) Q= )X )

2 2
_ n ( 2«2)
= f(Tz) 3
2a2+1 -1
= f(2a2 2a2+1

when 22 || n due to the Proposition 1.2. In this way, we have

fGas - 20+l
fG) ~2et -1
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However, we know that p < 2% because of p > 10® > 11 and the Propositions 1.8 and 1.14,
where p is the largest prime factor of n. Consequently,
ar+1
2% < 2Xp
20+l — 1 T 2xp-1

since XTXL decreases when x > 2 increases. In addition, we know that
W <f(p)

p+l

where we know that f(p) = from the Proposition 1.2. Certainly,

2xpP<(p+D)x2xp-1)
=2xp’+2xp-p—1
=2xp*+p-1
where this inequality is satisfied for every prime number p. So,

fG5)
&

where we know that p || n from the Proposition 1.8. Under the assumption of the Riemann
Hypothesis, we have that

< f(p)

e’ > G(n)
FEYX f(p)
~ Tloglogn
FEYx f()
* 7(2) xloglogn

since f(...) is multiplicative and as a consequence of the Proposition 1.3. This is equivalent to

1 ") e
f( ) f(gaz x loglogn.
Using the Lemma 4.1, we deduce that:
L X ]_[(1 + 1) > " x log 6(p)
6.4 q

qsp
which is the same as

_xﬂ@+)>wm%w@W>

{107+

From the Propositions 1.1 and 1.8, we know that

fﬁg{ﬂ

-1
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where g; = p and ¢; = 2. We know that

i 1 ;
L=(1+—)>< zq, )
qi—1 gi) q; -1

Using the previous inequality and the Lemma 4.1, we obtain that

m]‘[( ]xlog((e<p>>°8><—><]—[(1+ )Xﬁ( 1]

qsp i=2 q;
2

= f5)% 5 ]_[

[7

3
<f(ﬁ)><—><€”

according to the Proposition 1.12. Taking into account that p > 10® > 3 and n is superabundant:

Ixer EAN 1
1-——|.
e @S T2 1_2[ [ qw)

= 1

We use the previous inequality to show that

O | 3 xoh
1- log1 .
e H( q?"“] og(@™ < eloe”

i=2
For large enough superabundant number 7 and p > 108, then
% X e% % X eloi8
5. Xloglogn <
log((0(p))°*®) log (((1 _ 15));;0_16(?8) % 108)0.8)

because of the Propositions 1.4 and 1.8. We obtain that

%Xem%
xlog((l +

log (((1 - Ut 108)0%)

0.5
1 108
(( ’ glOS)X

108

) X 108) < 1.87811.

Thus,

ﬂ k
P
%)xl—[[ a+1)<1.87811.

For every prime p; that divides N such that p; | N and p @b || n for a;, b; two natural numbers,
we have that

a+b, aj; b; (pjj—l)X(p?j—l)
f; ) = ) x flp;) = g

ST X (py - 12
in the Proposition 1.2. This is equal to
aj bj aj bj
@ - Py =Dx@/ -1
bj j J b I
fw) e >><p“ X (pj =17
g



f( aj+bj) k ( J
[ ) ] 1_2[ g™

~ ] :]

o (p ~j - 1)><(p-’ k
fp) = X P
[ ﬂfwﬁ” x@—w £1 i“
k 1
>1999><]_[(1 a-+1]
=2 i
>1.999><(1— ! x (1 + L5 ))x 11
log p logp™) (1= 53:)
1 1.5
>1.999x (1 - x (1 + )
log p log p
1 1.5
1.999 x (1 — 1+ ——
” X( Tog 108 ¢ +10g108))
> 1.88
> 1.87811

using the Propositions 1.8 and 1.1 since we know that the expression
aj bj
(p/ =D x(p/ -1
' aj+b;—1
ﬂp)xp+ X (pj—1)?
tends to 0 as b; tends to infinity for every odd prime p; where

[ [f ®)) -

J

2
—_—
P
—~

<

~. 2
8

N—

(] =D x(p) - 1) ]
P x P X (py = 12

Certainly,

we note that

after taking into account the Proposition 1.8. However,

n k

1
b 1- —|<1.87811
S E[( q?"“
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is a contradiction. By contraposition, the number N does not exist under the assumption of
the Riemann Hypothesis. The smallest counterexample N must comply that N > 10°% and
therefore, we will always be capable of obtaining a large enough superabundant number r that is
multiple of N. Note that, this proof fails for even perfect numbers or for some other odd numbers
N such that f(N) > 2, precisely when we consider a large enough superabundant number n. [
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