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The knowledge graph meta path-based approach to compound bioactivity 
prediction shows promise given the discovery of discriminative paths that occur 
frequently with the active and inactive compound-assay relationships in the 
kinase-focused subset of Evotec’s KG used here. However, some paths are 
difficult to interpret and class separation is not always clear. Subsequent 
iterations of this data pipeline will incorporate a larger and more expressive 
subset of entities and relations from the KG as well as a greater diversity of 
protein targets, and will also provide benchmarking against models trained on 
QSAR chemical descriptor features.
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Model Comparison
The Random Forest classifiers 
consistently outperform the 
Logistic Regression classifiers in 
terms of AUROC under the same 
cross-validation procedure 
(Figure 7).

Considering the comparatively 
limited training data, the general 
high performance demands further 
validation on larger and richer 
samples.

Figure 7: Mean cross-validation AUROC comparison across 
classifiers and transformations

Important features (ranked by impurity reduction, permutation importance and logistic 
regression coefficients) shared across top-performing classifiers were identified.

Selected Feature Analysis

Figure 8 shows the probability 
densities for each target class for 
the log10-normalised meta path 
feature C_sim1_C_sim1_C_a_A 
which states “Target compound’s 
shape is similar (according to 
Evotec’s original thresholding) to 
a second compound’s shape, 
whose shape is similar to that of 
a third compound, which is active 
in the target assay”. 

The slight rightward shift in the actives’ probability density indicates higher values of 
the feature for the active class than for the inactive class. 

Figure 8: Per-feature target class probability densities
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Evotec’s KG brings 
together diverse 
information from public 
data sources e.g.
Ensembl (Gene and 
Protein nodes), ChEMBL
(Compound, Assay and 
Measurement nodes), the 
Experimental Factor 
Ontology (Disease 
nodes) and the Gene 
Ontology (Biological 
Process nodes), among 
others.

The KG is constantly 
being updated; the work 
presented here uses v1.0 
(schema in Figure 2).

The data set used in this 
workflow is a subset of 
Evotec’s KG and contains 
~14,000 kinase assay 
measurements (Compound, 
Measurement and Assay 
nodes) and associated 
Protein (kinase) nodes as 
shown in Figure 3. 

Evotec’s Knowledge Graph

Data subset used 

Figure 2: Schema of Evotec’s KG

Figure 3: Schema of KG extract used in this work

In a biomedical knowledge graph (KG), interesting properties of an 
entity e.g. a protein or a drug-like compound, are encoded as 
typed links to other entities. These subject-property-value data 
units (Figure 1) are also known as KG triples and may correlate 
with more complex patterns within the graph. The task of inferring 
new triples by exploiting such associations is known as KG 
completion; this work explores the prediction of compound activity 
in kinase assays as a KG completion problem. 

Introduction

Figure 1: A KG triple

The Prediction Task

Supervised Learning
Random Forest (200 trees) and Logistic Regression (L-2 regularised) classifiers were 
evaluated via 5-fold stratified cross-validation on the original feature matrix as well as on 
transformations including Z-score normalisation and log (base 10) normalisation (Figure 6).  

Problem definition: learn classifier 
models that can separate 
Compound-Active-Assay triples from 
Compound-Inactive-Assay triples
and generalise to correctly infer 
activity and inactivity in unseen 
compound-assay pairings.

Both the training and validation 
triples of the above types must first 
be created by transforming 
Measurement nodes in the sample 
graph according to an activity 
threshold (Figure 4).

.

Measurement nodes are 
transformed into Active or Inactive 
edges according to a 1000 nM
IC50 / EC50 threshold
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Figure 4: From Measurement nodes to “Active” and “Inactive” KG edges

Target Compound-Active-Assay triple being described

Meta Path Features
Each Compound-Active(Inactive)-Assay triple in the data set is characterised by a feature 
vector whose components are the counts of the distinct path types (“meta paths”) in the sample 
KG that connect the compound and the assay (example in Figure 5).
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This workflow considers meta paths of length (number of 
edges) 2, 3 and 4. This yields 74 meta path features 
given the edge types contained in the data subset used
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Figure 5: Characterising a Compound-Active-Assay triple 
via meta path instances  

Figure 6: Overview of the supervised learning pipeline  
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