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« o i « Many public CNNs show a large presence of degenerated filters

* More complex(e.g. adversarial-trained*) tasks appear to form higher-
quality filters on the same architectures
* The structure of convolutional filters differs across models, but models
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Degenerated Filters

Plants of the same family show very similar distributions
Randomness: Lack of structure (randomly initialized models) Textures Without degeneration tr.1e distributions are mostly independent of the
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*For more details on robustness refer to Gavrikov, P. and Keuper, J., “Adversarial Robustness through the Lens of

Spﬂl‘SltY: Filter Weights are close to zero Convolutional Filters”, IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2022.

Coefficient distributions for selected filter groups on the first 6 basis vectors.



