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Abstract— Macroscopic traffic management schemes, such as
Perimeter Control and Route Guidance, have attracted a lot
of attention as primary traffic control strategies for congestion
alleviation. Macroscopic methods take advantage of the Macro-
scopic Fundamental Diagram to capture traffic dynamics within
an urban area. Such schemes often result in non-linear and non-
convex mathematical programs that are solved with standard
non-linear optimization solvers. Nonetheless, non-linear solvers
can yield low-quality solutions, are slow and unreliable, and
provide no information on the quality of the derived solution.
Building upon earlier macroscopic schemes, the contribution of
this work is the development of a novel solution methodology
for route guidance with perimeter control. The proposed
methodology constructs convex outer approximations of all
nonlinear constraint sets of the problem to derive: (i) a tight
lower bound formulation and (ii) an iterative convexification
procedure that provides feasible and upper-bound solutions.
The resulting lower and upper bound formulations are solved
using Linear Programming producing fast, high quality, and
reliable solutions while also providing guaranteed optimality
gaps. Macroscopic simulations demonstrate that the proposed
methodology executes 2 to 5 times faster than a state-of-the-art
non-linear solver and offers an optimality gap of less than 3.9%
in all considered cases.

I. INTRODUCTION

Recent advances in communication and vehicle technolo-
gies enable the development of a plethora of traffic manage-
ment schemes that aim to alleviate traffic congestion [1]. For
instance, connected vehicles are equipped with onboard units
that communicate their speeds and locations to the nearby
vehicles and/or network operators. Such technologies enable
the emergence of route guidance strategies which aim to
redistribute traffic away from congested areas by suggesting
drivers to follow alternative non-congested routes [2]. Initial
developments on route guidance schemes solved the problem
by adopting highly detailed and complex microscopic models
that require full-state information (such as, the average speed
and positions of all vehicles in the network [3]) making their
real-life implementation impractical [4].

Recent literature suggests more elegant and efficient way
to solve the route guidance problem by employing macro-
scopic traffic dynamics [5]. According to macroscopic mod-
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eling, a road network is partitioned into a set of regions
where traffic dynamics are expressed through the concept
of the Macroscopic Fundamental Diagram (MFD), [6]. The
most significant advantage of MFD modeling is that it allows
accurate estimation of the outflow of a region, i.e., the rate
at which vehicles end their journeys, [4] as validated by
[7] using real traffic data. In this context, macroscopic route
guidance aims to balance traffic loads across different regions
of the network by suggesting different regional paths to
drivers at the flow level[8].

Other macroscopic traffic management techniques include
perimeter and gating control [9], [10]. Perimeter and gating
control aim to regulate the transfer flows at the boundaries,
i.e., vehicle entries from neighbouring regions, of a protected
region to delay and avoid the emergence of congestion
within its premises [11]. This is achieved either by managing
the traffic signal phases or by applying street closures at
the boundaries. Perimeter control is considered as one of
the most attractive traffic management schemes. It provides
guaranteed closed-loop stability properties [12], [13] and
substantially reduced travel times within the protected region
[10].

Another advantage of macroscopic approaches is that they
can be easily realized within a Model Predictive Control
(MPC) framework [14], with the MFD dynamics serving as
the prediction model [15]. In this context, different control
objectives can be combined, such as the joint perimeter
control and route guidance problems [15]. Most macroscopic
approaches lead to non-linear and non-convex optimization
problems that may yield poor solutions [16]. To anticipate
this, works in [17], and [18] reformulate the non-linear MPC
problem into a Mixed Integer Linear Program (MILP) using
piecewise affine approximation functions. Although such
approaches avoid local optima, their real-life implementation
is impractical due to the high computational complexity of
MILPs. Another approach is to linearise the perimeter control
problem by providing traffic state estimates to the MPC
scheme [19]. A similar framework was also used in [20], [21]
to relax the non-linear route guidance problem. Nonetheless,
none of the proposed linearised methods provide any opti-
mality guarantees in terms of solution quality.

This work builds upon previous traffic management strate-
gies that solve the joint route guidance and demand man-
agement problem to develop a novel methodology that
provides fast, high quality, and reliable solutions, while
also providing guaranteed optimality gaps. The proposed
framework considers macroscopic dynamics that follow a
generalized MFD shape. First, we formulate a tight lower



bound linear mathematical program that is derived based
on the convex relaxation of all non-linear constraints. Due
to the relaxation of certain constraints, solving the lower
bound formulation may yield infeasible solutions; hence, we
develop an iterative method that leads to high-quality upper
bound feasible solutions through the solution of a small
number of linear programs. The proposed methodology is
compared with a state-of-the-art non-linear solver in terms of
optimality gap and computational efficiency. To summarize,
the main contributions of this work are:
• We propose a novel convex reformulation of the joint

route guidance and perimeter control problem that
provides tight lower bounds on the optimal solution
by relaxing the non-convex constraints of the original
problem. Rather than considering a specific MFD shape,
we consider generalized flow-density and speed-density
MFD shapes.

• For those instances that the resulting solution may
be infeasible, we propose a successive convexification
method that achieves close-to-optimal upper bound so-
lutions to the original problem.

The rest of the paper is organized as follows. Section II
presents the multi-regional system model for joint route
guidance and perimeter control problem, and Section III
formulates the mathematical program of the non-linear MPC
framework. Section IV relaxes the problem to a convex pro-
gram (Lower Bounded solution) and then utilizes the derived
control inputs to propose an iterative procedure to produce a
feasible solution. Furthermore, Section V includes simulation
results and a comparison study of the original non-linear
program with the proposed relaxation demonstrating that the
proposed approach can offer fast and near-optimal results.
Section VI concludes this work and discusses future research
directions.

II. MACROSCOPIC TRAFFIC MODEL

Let an urban area partitioned into |R| homogeneous re-
gions [22], [23], where R = {1, . . . , |R|} is the set of all
regions and sets O ⊆ R and D ⊆ R represent the origin and
destination regions, respectively. Also, let J−r ⊆ R denotes
the set of neighbouring regions directly adjacent to region
r ∈ R, and similarly let J +

r = J−r ∪ {r}, such that:

Jr =

{
J +
r , if r ∈ D
J−r , otherwise. (1)

The traffic dynamics within each region r ∈ R are
defined according to the MFD modeling framework. The
time horizon is discretized into time-steps of duration Ts. Let
variables ρr(k) (veh/km) denote the instantaneous density of
vehicles in region r ∈ R at time step k, while the parameters
ρJr and ρCr denote the jam and the critical density of region
r ∈ R, respectively [24].

Let also variable qr(ρr(k)) (veh/h) denote the intended
outflow of region r ∈ R at time-step k; this variable is
equal to the product of density ρr(k) (veh/km) and speed
vr(ρr(k)) (km/h), yielding the relationship

qr(ρr(k)) = ρr(k)vr(ρr(k)). (2)

The term “intended outflow”, qr(kρr(k), indicates the total
outflow1 of region r ∈ R when there are no inter-boundary
capacity limitations between neighbouring regions. We con-
sider that qr(ρr(k)) follows a non-linear generalized MFD
shape given by

qr(ρr(k)) = fr(ρr(k)), (3)

where fr(ρr(k)) is a general non-linear function of density
(e.g., third order polynomial) [7]. Combining Eqs. (2) and
(3) yields

vr(ρr(k)) =
fr(ρr(k))

ρr(k)
. (4)

Moreover, we introduce parameters Lr and vMAX
r which

denote the mean distance traveled by each vehicle and the
maximum speed of vehicles in region r ∈ R, respectively.

To differentiate the portion of traffic destined to different
regions, let variable ρrd(k) indicate the density in region
r ∈ R towards d ∈ D, i.e.,

ρr(k) =
∑
d∈D

ρrd(k). (5)

In the same manner, variables qrd(k) and qrjd(k) denote
the intended transfer flow from r ∈ R towardsd ∈ D and
from r ∈ R towardsd ∈ D, through neighbouring region
j ∈ Jr at time-step k. Then, it holds true that

qrjd(k) = γrjd(k)qrd(k), (6)
qrd(k) = vr(k)ρrd(k), (7)

qrd(k) =
∑
j∈Jr

qrjd(k), (8)

qr(ρr(k)) =
∑
d∈D

qrd(k), (9)

qr(ρr(k)) =
∑
d∈D

∑
j∈Jr

qrjd(k), (10)

where variables γrjd(k) ∈ [0, 1], determine the ratio of vehi-
cles that move from r to d through the adjacent neighbouring
region j, such that

∑
j∈Jr

γrjd = 1, r ∈ R, d ∈ D. It is
worth mentioning that the flow of vehicles that reach their
destination d ∈ D, meaning that they have completed their
journeys at time step k, are indicated by variables qddd(k),
i.e. qrjd(k) for r = j = d.

Moreover, variable Crj(ρj(k)) defines the inter-boundary
capacity from region r to neighbouring region j ∈ J−r .
The inter-boundary capacity specifies the maximum flow that
can be exchanged between the two neighbouring regions
expressed as

Crj(ρj(k)) =


CMAX
rj , if ρj(k) ≤ βrjρJj ,
CMAX
rj

1− βrj
(1− ρj(k)

ρJj
), otherwise, (11)

where CMAX
rj is the maximum inter-boundary capacity and

βrjρ
J
j is the point where the inter-boundary capacity starts to

1The total outflow includes the flows that currently are in region r ∈ R
and are ready to transfer to their neighbours and/or complete their journeys.



decrease with 0 < βrj < 1. Hence, the intended transfer flow
is limited by storage capacity of their other neighbouring
regions j ∈ {Jr − r}. Thereby, the actual transfer flow
from r ∈ R to j ∈ Jr (i.e., q̃rjd(k)), is defined as

q̃rjd(k) = min

(
qrjd(k), Crj(ρj(k))

qrjd(k)∑
y∈D qrjy(k)

)
.

(12)
Taking the above into account, and letting variable dod(k)

(veh) denote the number of vehicles that enter in the network
from o ∈ O towards d ∈ D at time-step k (i.e., external
demand), then the density traffic dynamics from region r ∈
R towards region d ∈ D are given by

ρrd(k + 1) = ρrd(k) +
1

Lr
drd(k)

+
Ts
Lr

∑
j ∈Jr

(
ujr(k)q̃jrd(k)− urj q̃rjd(k)

)
, (13)

where, variables urj(k) ∈ [0, 1] determine the perimeter
control actions that regulate the transfer flows between
neighbouring regions r ∈ R and j ∈ {Jr − r}.

III. PROBLEM FORMULATION

A. Objective function

Let variables Sa(k) and Sb(k) denote the cumulative
number of vehicles that enter the network and successfully
arrive at their destination, respectively, defined as

Sa(k + 1) = Sa(k) +
∑
o∈O

∑
d∈D

dod(k), k = 1, 2, . . . ,

(14)

Sb(k + 1) = Sb(k) + Ts
∑
d∈D

qddd(k), k = 1, 2, . . . , (15)

where Sa(1) = 0 and Sb(1) = 0.
To define our objective function, we sum over all time-

steps the difference between Sa(k) and Sb(k), yielding the
Average Time Spent (ATS) of all vehicles in the network,
denoted by JATS (veh·h) and defined as

JATS = Ts
∑
k

(Sa(k)− Sb(k)). (16)

B. Model Predictive Control Framework

One MPC problem is solved every M = NC/Ts time-
steps where the parameter NC denotes the control horizon.
At a specific time-step t = M(p− 1), the measured current
states of ρ̄r(t), ρ̄rd(t) and external demands drd(t) are used
to solve the p-th MPC optimization problem, for the time
horizon Kp = {M(p− 1) + 1, . . . ,M(p− 1) +NP }, where
NP denote the prediction horizon, such that NP ≥ NC . The
control decisions derived from the proposed MPC framework
are the intended transfer flows, qrjd(k) (route guidance), and
the perimeter control actions, urj(k) ∈ [0, 1], r ∈ R and
j ∈ {Jr − r} (perimeter control) to minimize the ATS
metric by solving the problem:

(P1) min JMPC
TTS (p) = Ts

∑
k∈Kp

(Sa(k)− Sb(k)) (17a)

s.t. Traffic dynamics: (2)− (15),

0 ≤ ρr(k) ≤ ρJr , k ∈ Kp, r ∈ R, (17b)
Initialization: ρr(t) = ρ̄r(t), ρrd(t) = ρ̄rd(t),

t = M(p− 1), (17c)
Variables: ρr(k), ρrd(k), urj(k), qr(k), qrd(k),

qrjd(k), q̃rjd(k), vr(k), Sa(k), Sb(k).

In Problem P1, constraints (2) - (15) model the traffic
dynamics according to a generalized MFD shape of Eq. (3).
Constraint (17b) ensures that the density of each region is
within physical limits, and (17b) defines the initial traffic
states. Problem (P1) is a non-convex Non-Linear Program
(NLP) due to the presence of the non-linear unimodal in-
tended outflow function fr(ρr) in Eq. (3), the speed function
vr(ρr) in Eq. (4), the bilinear terms in Eqs. (7) and (13),
as well as the nonlinear functions in Eq. (11) and Eq. (12).

IV. CONVEX SOLUTION

In this section we present how Problem (P1) can be
relaxed into a Linear Program (LP) by convexifing all non-
convex constraints with convex outer approximation con-
straints.

A. Lower Bound Solution to Problem P1

Next, we derive a convex bounding sets for the six non-
convex constraints of Problem (P1), the constraints (3), (4),
(7), (11), (12) and (13).

First, to convexify Eq. (3), we form a convex envelop of
the generalized MFD diagram under density box constraints
using piecewise linear segments. Note that box constraints
are define within a specified range of density, i.e., ρlr(k) ≤
ρr(k) ≤ ρur (k), where parameters ρlr(k) and ρur (k)denote
the lower and upper bounds of density, respectively. In that
regard, we define a set of affine functions of the form,
anρr(k) + bn, r ∈ R, n ∈ Qr(k) such that

qr(ρr(k)) ≤ anρr(k) + bn,∀n ∈ Qr(k), (18)

where Qr(k) = {1, ..., Nr} is the set of piecewise linear
segments that approximate Eq. (3) in region r at time-slot
k. Because we are interested in obtaining a lower bound
solution, all affine functions are constructed in a way that
creates a convex outer approximation set that contains the
nonlinear function fr(ρr(k)).

Similarly we convexify Eq. (4) by forming a convex
envelop of the speed function under density box constraints
using piecewise linear segments. Along the same direction
we define a set of affine functions of the form, anρr(k)+bn,
r ∈ R, n ∈ Vr(k) such that

vr(ρr(k)) ≤ anρr(k) + bn,∀n ∈ Vr(k), (19)

where Vr(k) = {1, ..., Nr} is the set of piecewise linear
segments defined for the approximation of Eq. (4) in region
r at time-slot k.



Fig. 1. Example of the bounding set constraints comprised of piecewise
linear segments used to derive an outer approximation to the flow MFD
relationship given by Eq. (3).

Let us now consider constraint (7) which involves the
product of two variables ρrd(k) and vr(ρr(k)). As this con-
straint has a bilinear term, we use the McCormick method,
[25], to derive convex envelopes using the lower and upper
bounds of the two variables; in our case it is true that ρlr(k) ≤
ρrd(k) ≤ ρur (k) and vr(ρ

u
r (k)) ≤ vr(ρr(k)) ≤ vr(ρ

l
r(k)).

The McCormick method approximates (7) with the following
four half-spaces:

qrd(k) ≥ ρrd(k)vr(ρ
u
r (k)), (20)

qrd(k) ≥ vr(ρr(k))ρur (k) + ρrd(k)vr(ρ
l
r(k))

− vr(ρlr(k))ρur (k), (21)
qrd(k) ≤ vr(ρr(k))ρur (k),+ρrd(k)vr(ρ

u
r (k))

− vr(ρur (k))ρur (k), (22)

qrd(k) ≤ ρrd(k)vr(ρ
l
r(k)). (23)

Eqs. (20) and (21) are referred to as underestimators, while
Eqs. (22) and (23) as overestimators of Eq. (7). Eqs. (20)
- (23) form a convex envelop to the original equality
qrd(k) = ρrd(k)vr(ρr(k)), called McCormick envelope, that
is a superset of the nonconvex feasibility domain of (7).

Eq. (13) is approximated by

ρrd(k + 1) = ρrd(k) +
1

Lr
drd(k)

+
Ts
Lr

∑
j ∈Jr

(
(k)q̃jrd(k)− q̃rjd(k)

)
. (24)

Notice that (24) is similar to (13) but with variables urj(k)
removed. This is achieved by letting q̃rjd(k) take values
between 0 and the maximum value as shown later.

Furthermore, constraints (11) and (12) are linearized to-
gether according to the procedure proposed in our previous
work [26] yielding

q̃rjd(k) ≤ qrjd(k), (25)∑
d∈D

q̃rjd(k) ≤ CMAX
rj , (26)

∑
d∈D

q̃rjd(k) ≤
CMAX
rj

1− βrj
(1− ρj(k)

ρJj
), (27)

for all k ∈ Kl, r ∈ R, j ∈ Jr.
Combining all outer approximations of non-convex con-

straints of Problem P1 yields

(P2) min JMPC
TTS (l) = Ts

∑
k∈Kl

(Sa(k)− Sb(k)) (28)

s.t. Constraints: (1), (5), (8)− (10), (14)− (15),
(17b)− (17c), (18)− (25), (26)− (27),
Variables: ρr(k), ρrd(k), urj(k), qr(k), qrd(k),

qrjd(k), q̃rjd(k), vr(k), Sa(k), Sb(k).

Formulation (28) is a Linear Program (LP) that provides
a lower bound to the optimal solution. Therefore, it can be
used to assess the optimality gap of any solution approach for
Problem P1. Formulation (28) may lead to infeasibility, when
the solution obtained in the relaxed convex sets violates some
of the constraints of Problem P1. Nonetheless, the split ratios,
γrjd(k), and the perimeter control actions, urj , are implicitly
obtained from the solution of Problem P2. To achieve this,
let q∗rjd(k), q∗rd(k) and q∗r (ρ∗r(k)) denote the obtained flows
from the solution of Problem P2. Then, we define the split
ratio, γrjd(k) ∈ [0, 1] as

γ∗rjd(k) =

{
q∗rjd(k)/q∗rd(k), for q∗rd(k) 6= 0,

1/|Jr|, for q∗rd(k) = 0,
(29)

Similarly, the perimeter control actions, urj ∈ [0, 1], are
defined as

u∗rj(k) =

{
q∗r (ρ

∗
r(k))

fr(ρ∗r(k))
, for q∗r (ρ∗r(k)) 6= 0,

0, for q∗r (ρ∗r(k)) = 0.
(30)

The next section proposes the successive ConVexification
Route Guidance and Perimeter Control (CV-RGPC) algo-
rithm that uses the lower bound solution to produce a high
quality feasible (upper bound) solution.

B. Successive Convexification Route Guidance and Perime-
ter Control

In this section we develop a Successive Convexification
algorithm for the joint route guidance and perimeter control
problem, for obtaining high-quality feasible, upper bound so-
lutions. The CV-RGPC algorithm outlined in Algorithm (1),
is a four-step iterative procedure that obtains the decisions of
the first M time-steps (split ratios, γrjd(k), and the perimeter
control actions, urj). The key idea of the algorithm is to
iteratively tightening the lower and upper bounds of density
in each iteration, to achieve convergence to a high quality
solution approach.

Initially, the algorithm takes as input, the optimization
related parameters, the current state, the traffic parameters,
the external demands and initializes the density bounds to
their physical limits (Lines: 1-5). Then, a four-step iterative
procedure (Lines: 6-12) is executed to obtain feasible solu-
tions of the p-th MPC problem.

Step 1 uses the current density bounds to construct the
sets of piecewise linear segments Qr(k) and Vr(k), r ∈ R,
k ∈ Kp, based on a bisection procedure [27] (Line: 7).



Algorithm 1 Successive Convexification - Route Guidance
and Demand Management (CV-RGPC)

1: Input: Optimization-related parameters: C, N I NP , M ,
p, t = M(p− 1) + 1.

2: Current state: ρ̄r(t), r ∈ R, ρ̄rd(t), r ∈ R, d ∈ D,
dod(t), o ∈ O and d ∈ D.

3: Traffic network parameters: fr(ρ), gr(ρ), r ∈ R,
CMAX
rj , βrj , j ∈ Jr, r ∈ R.

4: , External demands: dod(k), o ∈ O, d ∈ D, k ∈ Kp =
{t, t+ 1, · · · , t+NP }.

5: Initialization: ρlr(k) = 0, ρur (k) = ρJr , r ∈ R, k ∈ Kp.
6: for λ = 1 to N I do
7: Step 1: Derive Qr(k) and Vr(k), r ∈ R, k ∈ Kp.
8: Step 2: Solve (28) and derive split ratios γrjd(k) and

perimeter control actions urj , r ∈ R, j ∈ Jr, d ∈ D,
k ∈ Kp using (29).

9: Step 3: Use the non-linear traffic dynamics (1) -
(15), of Section II and derived future state estimates of
densities ρ̂r(k), r ∈ R, k ∈ Kp.

10: Step 4: Update bounds on variables ρr(k) using Eqs.
(31)-(32).

11: end for
12: Output: Split ratios γ∗rjd(k) and the perimeter control

actions u∗rj , r ∈ R, j ∈ {Jj − r} and k ∈ Kp.

Step 2 uses the current bounds on density and solves
Problem P2; then its solution is utilized to compute the split
ratios, γ∗rjd(k) and the perimeter control actions, u∗rj(k)using
Eqs. (29) and (30), respectively.

Step 3 takes the derived split ratios and perimeter control
actions as input and produces state estimates for the densities
of each region, i.e., ρ̂r(k), r ∈ R, k ∈ Kp by performing
simulations (using the non-linear MFD dynamics of Eqs. (1)
- (15)) for the whole prediction horizon.

Step 4 uses the state estimates to derive new lower and
upper bounds on variables ρr(k), ∀r ∈ R; these bounds
are used in Steps 1 and 2 of the next iteration. The upper
and lower bounds on variables ρr(k) during iteration λ are
defined as

ρlr(k) = (1− Cλ)ρ̂r(k), r ∈ R, k ∈ Kp (31)
ρur (k) = (1 + Cλ)ρ̂r(k), r ∈ R, k ∈ Kp, (32)

respectively, where Cλ is an iteration-dependent constant
given by

Cλ = C
N I − (λ− 1)

N I
, (33)

where C ∈ (0, 1) is a constant and N I is the total number
of iterations. Note that on each iteration the density bounds
become tighter, and eventually converging in a feasible
solution at the end of Step 3 of Algorithm (1).

V. SIMULATION RESULTS

The proposed methodology is evaluated through macro-
scopic simulations, where its performance is investigated
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Fig. 2. A simulated urban area consisting of 16 regions.

in terms of computational efficiency and optimality gap
compared with the solution of the non-linear program of
Problem (P1) and the case where all vehicles follow their
shortest travel time path. In doing so, we consider the 16-
regions network as depicted in Fig. 2 in which flows are
generated randomly originated from regions 1, 4, 11, and
16 towards regions 2, 8, 9, and 14. Traffic dynamics within
each region are based n a third-order polynomial shaped
MFD, i.e., qr(k) = ar1ρr(k

3) + ar2ρr(k)2 + ar3ρr(k),
with the following parameters: ar1 = 8/1225, ar2 =
−1192/735, ar3 = 14768/147, ρCr = 43 veh/km, ρJr = 118
veh/km, Lr = 1 km and qCr = 1850 veh/h, ∀r ∈ R,
CMAX
rj = 2000 veh/h, βrj = 0.25, ∀r ∈ R, ∀j ∈ Jr. The

simulation time-step, prediction and control horizons are set
to Ts = 30 s , NC = 1 and NP = 10, respectively.

All schemes are evaluated across different scenarios con-
sidering the demand rates of 2300, 3000, 3500, 4000, 4300,
and 5000 veh/h. The demand loading procedure holds for an
hour and varies across the different O-D pairs. Furthermore,
in performed simulations, we assumed that all drivers adhere
to the route guidance control inputs, and the boundaries
of all considered regions are equipped with traffic lights
able to synchronize with the perimeter control actions. For
comparison, the performance of the following schemes is
examined:

• SP: In this scheme, all vehicles follow the shortest travel
time path from their origin to their destination.

• NL: The solution obtained by solving Problem (P1)
that is solved using the non-linear solver IPOPT [28]. It
is worth mentioning that for computational advantages,
the inter-boundary capacity constraints, i.e., Eqs. (11)
and (12) are omitted from the formulation of Problem
(P1). This reflects the fact that by considering these
two constraints, the non-linear solver can not manage to
converge within the time limit of 1 hour; similar findings
are also discussed in [15].

• CV-RGPC: The successive ConVexification Route
Guidance and Perimeter Control approach as presented
in Section IV-B with the number of iteration set equal
with N I = 5 for all simulations that follow. The
proposed relaxed problem of Problem (P2) is solved
using the Gurobi mathematical programming solver
[29].



Demand Level (veh/h)

2300 3000 3500 4000 4300 5000

A
T

S
(m

in
) SP 2.7 2.9 3.1 3.4 4.0 4.5

IPOPT 2.6 2.7 2.8 3.0 3.2 3.3

CV-RGPC 2.6 2.7 2.8 3.0 3.2 3.3

TABLE I
PERFORMANCE EVALUATION OF DIFFERENT SOLUTION APPROACHES

FOR VARYING DEMAND LEVELS.
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Fig. 3. The instantaneous density of each region observed at each
simulation time-step considering (a) 2300 veh/h and (b) 5000 veh/h demand
scenarios.

A. Performance evaluation

Table V-A presents the performance results of the three
approaches (SP, NL, and CV-RGPC) compared in terms of
the Average Time Spent (ATS). As expected, the combi-
nation of perimeter and route guidance schemes can lead
to significant travel time reductions, especially in high-
demand scenarios. More specifically, both CV-RGPC and
NL solutions can achieve identical travel times, indicating
their excellent performance for all loading scenarios. On the
contrary, the SP approach leads to higher travel times where
its performance is getting worsen with higher demand rates.

Figs. 3 illustrates the density space-time diagrams for the

(a)

(b)
Fig. 4. The cumulative summation of the vehicles number that: i) request
to enter the network (Generated Vehs) and ii) exit the network for the SP,
NL and CV-RGPC approaches, considering (a) 2300 veh/h and (b) 5000
veh/h demand scenarios.

three approaches considering the demand scenarios of (a)
2300 veh/h and (b) 5000 veh/h. The space-time diagram
displays the instantaneous density of each region for the
whole simulation duration. In the first scenario, where a
relatively lower demand request to be served within the
network, all approaches perform equally well. Unlike, in the
highest demand scenario, both NL and CV-RGPC manage
to serve vehicles in higher flows, and hence improved travel
times are observed compared to the SP approach.

Fig. 4 (a) and (b) illustrates the cumulative number of
vehicles that request to enter the network (generated) and
the number of vehicles that have completed their trips (i.e.,
exited the network) for the demand scenarios of 2300 veh/h
and 5000 veh/h, respectively. Looking at the cumulative
number of vehicles that exit the network, the CV-RGPC
and NL approaches manage to serve all vehicles faster
with enhanced network performance even under the highest
demand scenario. From both scenarios, we can observe that
when demand is low, all considered approaches perform
similarly. In contrast, on higher demands, the joint route
guidance and perimeter control approaches can significantly
delay and reduce the duration of congested conditions.



Scenario Average Optimality Gap

Number Demand NL CV-RGPC
Gap Ex. Time Gap Ex. Time

1 2300 veh/h 0.6% 12.1s 0.6% 5.2 s
2 3000 veh/h 1.0% 14.2 s 1.0% 5.2 s
3 3500 veh/h 1.7% 17.7 s 1.7% 5.7 s
4 4000 veh/h 3.0% 14.2 s 3.0% 4.7 s
5 4300 veh/h 4.1% 15.3 s 3.8% 4.4s
6 5000 veh/h 3.8% 22.0 s 3.9% 3.2s

TABLE II
THE OPTIMALITY GAP OF NON-LINEAR PROBLEM AS PRESENTED IN

PROBLEM P1 AND CV-RGPC COMPARED TO THE LOWER BOUND

SOLUTION.

B. Optimality Gap and Execution Time

A Lower Bound (LB) solution of the joint route guidance
and perimeter control problem can be obtained using for-
mulation (28) with the problem solved once for the entire
time horizon, i.e., K = {1, . . . , T + NP } with Ts = 30
s, and NC = NP = 180 . The obtained solution is a LB
since there is a discrepancy between the original non-linear
problem of the Problem P1 and the relaxed Problem P2. On
the other hand, the solution obtained from CV-RGPC is an
upper bound feasible solution.

To investigate the optimality gap between the two ap-
proaches of NL and CV-RGPC with the Lower Bound (LB)
solution, we have to compare the optimal objective value
obtain from both approaches with the objective function of
LB. The optimality criterion of choice is the optimality gap
defined as follows:

Optimality Gap =
JAlg

TTS − JLB
TTS

JLB
TTS

× 100%,

where JLB
TTS and JAlg

TTS, Alg = {IPOPT ,CV-RGPC}, denote
the ATS values, according to Eq. (16), obtained from the
LB solution and the two solution approaches of IPOPT and
CV-RGPC, respectively.

Table II illustrates the optimality gap of the IPOPT and
CV-RGPC schemes for all the considered demand scenarios.
Both approaches simulated forT = 120 min and use the same
prediction horizon, time-step and control step duration (i.e.,
Np = 300 s Ts = 30 s and Tc = 30s). From the table, we can
observe that both CV-RGPC and NL approaches can offer
reliable and near to optimality solutions in all cases. More
specifically, we can observed that for the case of CV-RGPC
at all considered cases the optimality gap is less 4% and
almost identical to NL meaning that the proposed solution
can offer bounded optimality guarantees. Furthermore, CV-
RGPC is 3 to 5 times faster than IPOPT, highlighting that
CV-RGPC can offer near optimality solutions significantly
faster, even though the constraints of (11) and (12) are
omitted from the NL solution.

VI. CONCLUSIONS

This work proposes a novel methodology to solve the
joint route guidance and perimeter control problem in which

traffic dynamics are defined according to generalized MFDs
shapes. The proposed methodology results in a relaxed
convex optimization procedure that offers close to optimality
results and leads to substantial improvements in network
efficiency.

Future research will include a detailed evaluation of the
proposed methodology within a microscopic environment
and compare it with other state-of-the-art non-MPC schemes
(e.g., adaptive control or data-driven approaches). We will
also investigate the stability properties of the proposed con-
vex relaxation and develop a robust formulation to deal with
uncertainty in modeling, state measurements, and demands.
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