Gaseous detectors for neutrinoless double beta decay searches: **NEXT and PandaX-III**

Michel Sorel, on behalf of the NEXT Collaboration

With many thanks to: Ke Han (PandaX Collaboration)

High-pressure xenon gas time projection chambers for $0\nu\beta\beta$ in ^{136}Xe

Precise energy resolution of <1% FWHM

Topological event identification distinguishes 2e from 1e events

Scalability to large masses of isotopicallyenriched ¹³⁶Xe

Possibility to detect ¹³⁶Ba++ daughter ion in coincidence with decay electrons

Experimental programs: Gotthard,
NEXT, PandaX-III, AXEL

PandaX-III

- **140 kg** high pressure TPC at 10 bar at CJPL-II •
 - Active volume: 1.6 m diameter, 1.2 m drift •
 - Xenon mixed with TMA quencher gas to reduce diffusion
- One charge-only readout plane with mm-level spatial resolution •
 - 20×20 cm² Micromegas modules, 52 in total •
- Good energy resolution and tracking capability •
- Half-life sensitivity with 3 years of data: 9×10²⁵ yr (90% CL) •
 - Detailed tracking features can further improve this sensitivity

From prototypes to full vessel and field cage

5

• Aim to complete installation on surface: late 2022. Moving underground to CJPL-II: TBD.

Energy resolution and tracking capabilities

- Thermal bonding Micromegas tested in 1/8/10 bar Ar mixture gases.
- Best energy resolution at 6 keV (⁵⁵Fe) is **15%** FWHM in 1 bar argon/CO₂.

- Kalman filter based track reconstruction on simulated data.
- •

The NEXT program

NEXT-White

- Operated at the LSC, 2016-2021.
- enrXe and depXe gas. Calibration and low-background data.

10

NEXT-White calibration data results

- efficiency at 1.6 MeV JHEP 07 (2021) 146

NEXT-White low-background data results

- Low-bgr data samples: 271.6 d ¹³⁶Xe-enriched (90.9%), 208.9 d ¹³⁶Xe-depleted (2.6%).
- Select 2e-like events in **3.5 kg** Xe fiducial mass.
- Direct background subtraction technique, ~independent of background model assumptions.

NEXT-100

- Demonstrate ~bgr-free conditions at 100 kg scale, $0v\beta\beta$ search, tonne-scale demonstrator. •
- Target background rate of 5×10⁻⁴ counts/(keV·kg·yr) or **1 count/(ROI·yr)** •
- Status: in advanced construction stage, to be installed at the LSC in late 2022.

Lead castle 20 cm thick

Inner copper shielding 12 cm of ultra-pure copper

See poster #140, K. Mistry

JHEP 05 (2016) 159

NEXT-100: external shield and gas system infrastructures

• **External shield**: refurbishing of lead castle completed. Now with more radiopure steel!

• **Gas system**: upgrades with respect to NEXT-White completed.

NEXT-100: pressure vessel and inner copper shield

- **Pressure vessel:** stainless steel, **13.5 bar** operational pressure. Status: completed. •
- Inner shield: radiopure copper, 12 cm thick. Status: forged & machined, cleaning ongoing. •

NEXT-100: time projection chamber

- Field cage: copper rings on HDPE staves, PTFE panels for increased light collection. Status: design and prototyping completed, production orders ongoing.
- EL (anode, gate) and cathode: stainless steel rings with wire meshes. Status: design and prototyping completed, production orders ongoing.

NEXT-100: readout planes and associated electronics

- **Energy plane**: **60** PMTs behind sapphire windows. Status: PMTs procured, PMT bases built, electronics completed, windows' coating ongoing.
- **Tracking plane**: 56 boards with 64 SiPMs each, for a total of **3584** SiPMs. Status: boards built and TPB-coated, electronics completed and tested.

17

NEXT at the tonne scale: NEXT-HD

- Multi-module system with first module at Laboratorio Subterráneo de Canfranc (Spain)
- Baseline concept: •
 - Symmetric TPC with central cathode
 - Two dense SiPM tracking plane readouts
 - Barrel fibre detector for energy measurement
 - Gas additives (eg, ⁴He) to reduce diffusion
 - Estimated background 0.09-0.27 counts/(ton·yr·ROI)
- Other advanced readout options explored, and • cosmogenic background mitigation using ³He

See poster #452, J. Martín-Albo, H. Almazan, L. Arazi

Barium tagging R&D and NEXT-BOLD

- **Idea**: single molecule fluorescent imaging to detect Ba²⁺ produced in double beta decay.
- **Status:** NEXT has developed custom barium chemosensing molecules with demonstrated single ion response in dry environments.
- Two approaches: See poster #323, K. Navarro Turn-on See poster #51, P. Herrero Bicolor •

19

NEXT $0\nu\beta\beta$ sensitivity prospects at the tonne scale

- NEXT-HD first module can reach 10²⁷ yr sensitivity with 4 ton · yr exposure.
- To explore **10²⁸ yr** sensitivity, further background reduction and higher signal efficiency are essential.
- Both may be achieved with NEXT-BOLD, implementing Barium Tagging.

Summary

• The three aces and the joker up our sleeves for $0v\beta\beta$ searches in ¹³⁶Xe gas detectors:

- **Recent past:** detector performance, backgrounds and 2vßß with NEXT-White (~4 kg)
- **Short-term future**: 0vßß searches at the 100 kg scale with PandaX-III and NEXT-100
- **Medium term**: $0\nu\beta\beta$ searches at the tonne scale with NEXT-HD
- **Longer term:** NEXT-BOLD, a tonne-scale detector implementing barium tagging

energy resolution,

21

Related NEUTRINO 2022 posters to check out!

Poster #	Title	Presenter	Collaboration
51	Demonstration of Barium ion trapping by organic submonolayer in ultra-high vacuum: toward a barium tagging sensor for NEXT, an ultra- low background 0vββ decay detector	P. Herrero	NEXT
70	NEXT-CRAB: A High Pressure Xenon Gas Time Projection Chamber with Camera Readout for Neutrinoless Double Beta Decay Searches	L. Rogers	NEXT
140	The NEXT-100 time projection chamber and electroluminescent region	K. Mistry	NEXT
143	Simulation of NEXT-100 detector	G. Diaz	NEXT
197	AXEL Xenon gas TPC for neutrinoless double beta search: prototype performance and status of 1,000L detector construction	B. Sugashima	AXEL
219	Xe-136 double beta decay searches with the NEXT-White detector	A. Usón	NEXT
323	Progress towards single barium ion capture and imaging in high pressure xenon gas: a prototype barium tagging sensor for NEXT neutrinoless double beta decay searches	K. Navarro	NEXT
452	NEXT-HD, a tonne-scale detector for neutrinoless double beta decay searches	J. Martín-Albo, H. Almazan, L. Arazi	NEXT
602	Advances in topological studies in NEXT-White and beyond	A. Redwine, L. Arazi, Y. Ifergan, A. Simon, H. Almazan	NEXT

Backups

PandaX-III electronics

- Frontend electronics based on AGET ASIC chips
 - Kapton-based low background FEC
 - Mass production in progress

- Backend: The Trigger and Data Concentrator ٠ Module – TDCM
 - Designed by Saclay for PandaX-III and T2K-II
 - A custom-made 6U form factor carrier board with two physical layer mezzanine cards for 32 FECs

PandaX-III DAQ chain

- DAQ software based on MIDAS reaches

PandaX-III infrastructures

Gas circulation and purification system

Detector installation fixture

Clean room at CJPL-II

NEXT detection concept

$0\nu\beta\beta$ search in NEXT-White

- In 100 keV wide energy ROI near $Q_{\beta\beta}$: **0** events in ^{enr}Xe run, **4** events in ^{dep}Xe run
- Background expectation: 1.8±0.3 yr⁻¹ radiogenic, 1.5±0.9 yr⁻¹ cosmogenic

NEXT-100 projected sensitivity

- Target background budget: 5×10-4 counts/(keV·kg·yr), or 1 count/(ROI·yr)
 - Estimated main contributors (preliminary): copper shield, tracking readout connectors, PMT bases
- Global $0\nu\beta\beta$ efficiency: 28%
- For a 3-yr exposure and at 90% CL:
 - $T_{1/2} > 6 \times 10^{25} \text{ yr}$
 - $m_{\beta\beta} < 80-160 \text{ meV}$

JHEP 05 (2016) 159

Barium tagging R&D and NEXT-BOLD

- Idea: single molecule fluorescent imaging to detect • Ba²⁺ produced in double beta decay.
- NEXT has developed custom barium chemosensing molecules with demonstrated single ion response in dry environments.
- Two approaches: See poster #323, K. Navarro Turn-on Bicolor See poster #51, P. Herrero

NEXT barium tagging demonstrator phases

- Single ion sensor concepts fairly advanced •
- Important R&D remains for ion concentration and collection •

Sensor-to-ion (BTD concept)

Ion-to-sensor (CRAB concept)

32