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Data-Driven Iterative Learning Control for
Nonlinear Discrete-Time MIMO Systems

Xian Yu , Zhongsheng Hou , Fellow, IEEE, Marios M. Polycarpou , Fellow, IEEE, and Li Duan

Abstract— This article considers the tracking control of
unknown nonlinear nonaffine repetitive discrete-time multi-input
multi-output systems. Two data-driven iterative learning control
(ILC) schemes are designed based on two equivalent dynamic
linearization data models of an unknown ideal learning controller,
which exists theoretically in the iteration domain. The two control
schemes provide ways of selecting learning controllers based
on the complexity of the controlled nonlinear systems. The
learning control gain matrixes of the two learning controllers
are optimized through the steepest descent method using only
the measured input–output data of the nonlinear systems. The
proposed ILC approaches are pure data-driven since no model
information of the controlled systems is involved. The stability
and convergence of the proposed ILC approaches are rigorously
analyzed under reasonable conditions. Numerical simulation and
an experiment based on a Gantry-type linear motor drive system
are conducted to verify the effectiveness of the proposed data-
driven ILC approaches.

Index Terms— Data-driven iterative learning control (ILC),
dynamic linearization (DL), multi-input multi-output (MIMO)
system, repetitive nonlinear discrete-time system.

I. INTRODUCTION

MANY systems and processes, such as robots [1],
[2], batch processes [3], semiconductor manufacturing

processes [4], servo systems [5], digital networks [6], freeway
traffic [7] and train operation systems [8]–[11], feature the
execution of a given task in the repetitive operating pattern
over a finite-time interval. For instance, a robotic manipulator
in a manufacturing assembly line carries out a series of welds
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at predefined locations repeatedly over a finite-time interval;
a high-speed train runs strictly from one station to another
station repetitively according to the operation timetable every
day for a transportation task.

For repetitive systems, iterative learning control (ILC) pro-
vides a powerful control method of improving tracking from
iteration to iteration over a finite-time interval. Numerous
ILC methodologies have been developed over the past three
decades, such as contraction mapping based ILC [12], [13],
composite energy function-based ILC [14], [15], norm-optimal
ILC [11], [16], point-to-point ILC [17], and terminal ILC [18].
Many of the aforementioned control methods are based on
the condition of an available affine dynamic model for the
controlled plant. From this viewpoint, they are considered
as model-based ILC methods. Data-driven ILC is directly
designed by using the input–output (I/O) data obtained from
the controlled plants or by utilizing the knowledge from data
processing [19], [20]. It can handle the control problems
of unknown nonlinear systems and has attracted significant
attention in recent years. Since all the dynamic information of
controlled plants is included in the measured I/O data, con-
cepts, such as system modeling and unmodeled dynamics of
the traditional model-based framework, are not needed under
the data-driven control framework; therefore, data-driven ILC
eliminates some of the key challenging issues of model-based
ILC.

One challenging issue for data-driven ILC is to determine
the learning controller structure for a class of unknown non-
linear systems. In the case of traditional ILC, the learning
controller structure is usually designed a priori by experi-
ence or some knowledge of the controlled plant, such as the
P-type ILC [21]. Another challenge is to design the learning
control gain updating algorithm using only the measured I/O
data of the controlled plants. The learning control gain in
traditional ILC is usually calibrated heuristically from iteration
to iteration if the model information of controlled plants is
unavailable. The third challenge is to eliminate the problem
of poor transient performance for the convergence of the
traditional ILC schemes, such as the contraction mapping-
based ILC, which is analyzed in the sense of the λ-norm [21].

To address these challenging issues, the dynamic lineariza-
tion (DL) technique provides a valuable tool. The DL-based
data-driven control methods were first proposed by Hou [22]
and refined by Hou and Xiong [23]. They have been suc-
cessfully applied to many practical systems, such as rotor
aerodynamic systems [24], water tank systems [25],
multi-degree-of-freedom robotic exoskeletons [26], servo
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motor systems [27], and power systems [28]. A more detailed
introduction to the DL-based data-driven control methods can
be found in [29].

So far, there are no works on DL-based data-driven ILC
methods dealing with the aforementioned challenges for
unknown nonlinear multi-input multi-output (MIMO) systems
in a repetitive operating pattern over a finite-time interval.
Compared with single-input single-output (SISO) nonlinear
systems, the control problem of MIMO nonlinear systems
is more complex due to the couplings among various con-
trol inputs and system outputs. As a result, in practice,
the dynamics of MIMO systems are generally more diffi-
cult to deal with than that of SISO systems. Furthermore,
as stated in [30], sometimes it is even difficult to reach the
mathematical expression of MIMO nonlinear systems in a
meaningful manner. Due to these difficulties, in comparison
with considerable results for SISO nonlinear systems, fewer
results in the literature are available for MIMO nonlinear
systems. Although some preliminary works [31], [32] of
DL-based data-driven ILC methods have been developed for
SISO systems, the corresponding results cannot be directly
applied to MIMO systems. The reason is that the matrix
operation in MIMO systems is significantly different from
the scalar operation of SISO systems. This article proposes
two novel data-driven ILC approaches for nonlinear nonaffine
MIMO systems. Specifically, the compact form DL (CFDL)
and partial form DL (PFDL) methods in the iteration domain
are first used for an unknown ideal learning controller and
then two ILC schemes are formulated using only the I/O
data of the nonlinear systems. The two ILC schemes provide
ways of alternating learning controllers based on the nonlinear
complexity of the controlled plants.

Comparing with the existing ILC methods for MIMO sys-
tems, the main contributions of this article are as follows.

1) The proposed ILC approaches open a new way of
constructing the learning controller structure for a class
of unknown nonlinear nonaffine repetitive discrete-time
MIMO systems.

2) The proposed ILC approaches are pure data-driven
control methods. That is, the learning controllers are
independent of the controlled nonlinear systems, and the
learning control gain matrixes are automatically tuned
using only the measured I/O data of the controlled
systems.

3) The steepest descent method is used for designing
the learning gain updating algorithm, which avoids the
problem of matrix inversion that would be encountered
if using the methods in [31] and [32].

4) The stability and convergence of the proposed ILC
approaches are guaranteed in the sense of the generic
norm under a generalized Lipschitz condition, and their
effectiveness is further validated by an experiment on a
Gantry-type linear motor drive system.

This article is different from the results presented in [33]
and [34]. The works of [33] [34] are used to implement the
feedback tracking tasks as time reaches infinity for unknown
nonlinear SISO systems in the time domain, while this article

designs the iterative learning feedforward control in the itera-
tion domain for unknown nonlinear MIMO systems operating
in the repetitive pattern.

The rest of this article is organized as follows. The learning
controllers are constructed in Section II. Section III presents
the tuning of learning control gain matrixes of the constructed
learning controllers, and the stability and convergence analyses
of the proposed data-driven ILC approaches. The new results
are further verified through simulation and an experiment
in Section IV, followed by some conclusions in Section V.
In this article, ‖·‖ denotes any generic vector norm, and the
corresponding matrix norm is the induced matrix norm.

II. DYNAMIC LINEARIZATION ON IDEAL LEARNING

CONTROLLER IN ITERATION DOMAIN

This article considers the repeatable nonlinear discrete-time
MIMO system described by

yyy(t + 1, j) = fff (yyy(t, j), . . . , yyy(t − ny, j),

uuu(t, j), . . . ,uuu(t − nu, j)) (1)

where t = {1, 2, . . . , T } is the time instant, and positive integer
T indicates the terminal time of the finite-time duration,
j = 1, 2, . . . is the iteration number, yyy(t, j) ∈ R

m and
uuu(t, j) ∈ R

m are the system output vector and control input
vector, respectively, and m is a known positive integer, the two
positive integers ny ∈ Z+ and nu ∈ Z+ are the unknown
orders of the system outputs and control inputs of (1); fff (·) :
R

m(ny+nu+2) �→ R
m is an unknown nonlinear vector-valued

function.
We denote the tracking error vetor as eee(t, j) = ydydyd(t, j) −

yyy(t, j), where ydydyd(t, j) ∈ R
m is the desired output vector of

the nonlinear system (1). The control objective is to design
a learning controller that can drive eee(t, j) to approach zero
when the iteration number j tends to infinity.

We assume that an ideal learning controller theoretically
exists for the nonlinear system (1), which means that the
system (1) controlled by the ideal learning controller will
guarantee the system outputs equal to the desired outputs in
one step-ahead. The ideal learning controller can be written in
the following mathematical expression:

uuu(t, j) = CCC(eee(t + 1, j), . . . ,eee(t + 1, j − ne),

uuu(t, j − 1), . . . ,uuu(t, j − nc)) (2)

where CCC(·) : R
m(ne+nc+1) �→ R

m is an unknown nonlinear
vector-valued function, and ne ∈ Z+ and nc ∈ Z+ are the
unknown orders of the ideal learning controller (2) on the
tracking errors and control inputs, respectively.

It is noted that the ideal learning controller (2) cannot be
implemented in practice. Although it is assumed to exist, it is
hard to find out the detailed form, or it might be too complex
for practical plants. Thus, the main task of this article is
to transform the ideal learning controller (2) into a practical
learning controller, and in the meantime, to keep it equivalent
to (2) in the I/O data sense. In the following, we will discuss
this in detail.
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A. CFDL on Ideal Learning Controller

The CFDL on the ideal learning controller (2) is based on
the following two assumptions.

Assumption 1: The partial derivatives of CCC(·) with respect
to the tracking error vector eee(t + 1, j) are continuous.

Assumption 2: CCC(·) satisfies the generalized Lipschitz con-
dition in the iteration domain, that is, if ‖�eee(t + 1, j)‖ �= 0,
then there exists a constant κ1 > 0 such that

‖�uuu(t, j)‖ ≤ κ1‖�eee(t + 1, j)‖ (3)

where �uuu(t, j) = uuu(t, j) − uuu(t, j − 1), �eee(t + 1, j) = eee(t +
1, j) − eee(t + 1, j − 1).

Remark 1: Assumption 1 is a common condition for the
controller design [29]. Assumption 2 imposes an upper bound
limitation on changes of the control inputs affected by changes
of the tracking errors. In other words, the ideal learning
controller (2) requires to be a physical energy-consuming
unit and is stable [29]. Obviously, some linear-type ILC and
nonlinear ILC, such as the P-type ILC and Newton-type ILC
[35], satisfy these assumptions, where the learning controllers
are assumed to have continuously bounded partial derivatives
over the corresponding independent variables. Such learning
controllers have been successfully applied in several practical
applications, such as six-DOF (degree of freedom) industrial
robots [2], high-speed trains [8], and switched reluctance
motors [35].

The following result provides a parametrization for the ideal
learning controller.

Theorem 1: For the ideal learning controller (2), satisfying
Assumptions 1 and 2, there must exist ���(t, j), called pseudo
Jacobian matrix (PJM), such that (2) can be transformed into
the following equivalent DL learning controller by using the
CFDL method:

�uuu(t, j) = ���(t, j)�eee(t + 1, j) (4)

where

���(t, j) =

⎡
⎢⎢⎢⎣

θ11(t, j) θ12(t, j) · · · θ1m(t, j)
θ21(t, j) θ22(t, j) · · · θ2m(t, j)

...
...

...
...

θm1(t, j) θm2(t, j) · · · θmm(t, j)

⎤
⎥⎥⎥⎦ ∈ R

m×m

‖���(t, j)‖ ≤ b1, and b1 > 0 is a constant.
Proof: According to the ideal learning controller (2),

�uuu(t, j) can be written as

�uuu(t, j) = CCC(eee(t + 1, j), . . . ,eee(t + 1, j − ne)

uuu(t, j − 1), . . . ,uuu(t, j − nc))

−CCC(eee(t + 1, j − 1),eee(t + 1, j − 1), . . . ,

eee(t + 1, j − ne),uuu(t, j − 1), . . . ,

uuu(t, j − nc)) + ϒϒϒ1(t + 1, j − 1) (5)

where

ϒϒϒ1(t + 1, j − 1)

= CCC(eee(t + 1, j − 1),eee(t + 1, j − 1), . . .eee(t + 1, j − ne),

uuu(t, j − 1), . . . ,uuu(t, j − nc))

−CCC(eee(t + 1, j − 1), . . . ,eee(t + 1, j − ne − 1)

uuu(t, j − 2), . . . ,uuu(t, j − nc − 1)).

By virtue of Assumption 1 and the differential mean value
theorem, (5) gives

�uuu(t, j) = ∂CCC∗

∂eee(t + 1, j)
�eee(t + 1, j) + ϒϒϒ1(t + 1, j − 1)

(6)

where

∂CCC∗

∂eee(t + 1, j)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂C∗
1

∂e1(t + 1, j)

∂C∗
1

∂e2(t + 1, j)
· · · ∂C∗

1

∂em(t + 1, j)
∂C∗

2

∂e1(t + 1, j)

∂C∗
2

∂e2(t + 1, j)
· · · ∂C∗

2

∂em(t + 1, j)
...

...
...

...
∂C∗

m

∂e1(t + 1, j)

∂C∗
m

∂e2(t + 1, j)
· · · ∂C∗

m

∂em(t + 1, j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

∂C∗
p/∂eq(t + 1, j) indicates the partial derivative of function

Cp with respect to eq(·) at a certain point in the interval
[eq(t + 1, j), eq(t + 1, j − 1)], where p = 1, 2, . . . , m and
q = 1, 2, . . . , m.

Consider the following equation with matrix 			(t, j) ∈
R

m×m :

ϒϒϒ1(t + 1, j − 1) = 			(t, j)�eee(t + 1, j). (7)

Since ‖�eee(t + 1, j)‖ �= 0 holds, (7) must have at least one
solution 			∗(t, j). In fact, it has infinite number of solutions.
We let

���(t, j) = ∂CCC∗

∂eee(t + 1, j)
+ 			∗(t, j). (8)

Based on (6)–(8), (4) is obtained. Then, we can get
‖���(t, j)‖ ≤ b1 based on Assumption 2.

For convenient description and distinction compared with
the DL learning controller in Section II-B, we label the
learning controller (4) as the CFDL controller (CFDLc).

B. PFDL on Ideal Learning Controller

The CFDLc (4) indicates that all the nonlinearity of the ideal
learning controller (2) is fused into the PJM ���(t, j). Since
the dynamic model of the nonlinear system (1) is unknown,
the unknown PJM ���(t, j) must be estimated in real time using
some parameter estimation algorithms based on the measured
I/O data of (1). However, it would be difficult for an estimation
algorithm to track the dynamics of ���(t, j), which is caused
by the high nonlinearities and complexities due to the time-
varying parameter, order, and structure in the system (1).
An effective strategy of handling this issue is to develop
another type of DL data model [36]. That is, the PFDL data
modeling method is required, and another two assumptions,
similar to Assumptions 1 and 2, are introduced.

Assumption 3: The partial derivatives of CCC(·) with respect
to the tracking errors eee(t + 1, j), . . . ,eee(t, j − l + 1) are
continuous. l ∈ Z+ is called the linearization length constant
(LLC).
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Assumption 4: CCC(·) satisfies the generalized Lipschitz con-
dition in the iteration domain, that is, if ‖�EEE(t + 1, j)‖ �= 0,
then there exists a constant κ2 > 0 such that

‖�uuu(t, j)‖ ≤ κ2‖�EEE(t + 1, j)‖ (9)

where �EEE(t + 1, j) = [�eeeT (t + 1, j), . . . ,�eeeT (t + 1,
j − l + 1)]T ∈ R

ml , �eee(t + 1, j − i + 1) = eee(t + 1,
j − i + 1) − eee(t + 1, j − i), and i = 1, 2, . . . , l.

The following result provides a different parametrization
based on the PFDL method.

Theorem 2: For the ideal learning controller (2), satisfy-
ing Assumptions 3 and 4, there must exist �̄��(t, j), called
pseudopartitioned Jacobian matrix (PPJM), such that (2) can
be transformed into the following equivalent DL learning
controller by using the PFDL method:

�uuu(t, j) = �̄��(t, j)�EEE(t + 1, j) (10)

where �̄��(t, j) = [���1(t, j), . . . ,���l(t, j)] ∈ R
m×ml

���i(t, j) =

⎡
⎢⎢⎢⎣

θ11i(t, j) θ12i (t, j) · · · θ1mi(t, j)
θ21i(t, j) θ22i (t, j) · · · θ2mi (t, j)

...
...

...
...

θm1i (t, j) θm2i (t, j) · · · θmmi (t, j)

⎤
⎥⎥⎥⎦ ∈ R

m×m

‖�̄��(t, j)‖ ≤ b2, and b2 > 0 is a constant.
Proof: From (6), we have

�uuu(t, j) = ∂CCC∗

∂eee(t + 1, j)
�eee(t + 1, j)

+ϒϒϒ1(eee(t + 1, j − 1), . . . ,eee(t + 1, j − ne − 1),

uuu(t, j − 1), . . . ,uuu(t, j − nc − 1)) (11)

and (11) is further rewritten as

�uuu(t, j) = ∂CCC∗

∂eee(t + 1, j)
�eee(t + 1, j)

+ϒϒϒ1(eee(t + 1, j − 1), . . . ,eee(t + 1, j − ne − 1),

uuu(t, j − 1), . . . ,uuu(t, j − nc − 1))

−ϒϒϒ1(eee(t + 1, j − 2),eee(t + 1, j − 2), . . . ,

eee(t + 1, j − ne − 1),uuu(t, j − 1), . . . ,

uuu(t, j − nc − 1))

+ϒϒϒ1(eee(t + 1, j − 2),eee(t + 1, j − 2), . . . ,

eee(t + 1, j − ne − 1),uuu(t, j − 1), . . . ,

uuu(t, j − nc − 1)). (12)

By virtue of Assumption 3 and the differential mean value
theorem, (12) yields

�uuu(t, j) = ∂CCC∗

∂eee(t + 1, j)
�eee(t + 1, j)

+ ∂ϒϒϒ∗
1

∂eee(t + 1, j − 1)
�eee(t + 1, j − 1)

+ϒϒϒ2(eee(t + 1, j − 2), . . . ,eee(t + 1, j − ne − 1),

uuu(t, j − 1), . . . ,uuu(t, j − nc − 1)) (13)

where
∂ϒϒϒ∗

1

∂eee(t + 1, j − 1)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ϒ∗
11

∂e1(t+1, j −1)

∂ϒ∗
11

∂e2(t+1, j −1)
· · · ∂ϒ∗

11

∂em(t+1, j −1)
∂ϒ∗

12

∂e1(t+1, j −1)

∂ϒ∗
12

∂e2(t+1, j −1)
· · · ∂ϒ∗

12

∂em(t+1, j −1)
...

...
...

...
∂ϒ∗

1m

∂e1(t+1, j −1)

∂ϒ∗
1m

∂e2(t+1, j −1)
· · · ∂ϒ∗

1m

∂em(t+1, j −1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

∂ϒ∗
1p/∂eq(t + 1, j − 1) indicates the partial derivative value

of function ϒ1p with respect to eq(·) at a certain point
in the interval [eq(t + 1, j − 1), eq(t + 1, j − 2)], and
ϒϒϒ2(eee(t + 1, j − 2), . . . ,eee(t + 1, j − ne − 1),
uuu(t, j − 1), . . . ,uuu(t, j − nc − 1)) = ϒϒϒ1(eee(t + 1, j − 2),
eee(t + 1, j − 2), . . . ,eee(t + 1, j − ne − 1),uuu(t, j − 1), . . . ,
uuu(t, j − nc − 1)).

Similar to the process from (11)–(13), we obtain

�uuu(t, j) =
[

∂CCC∗

∂eee(t + 1, j)
,

∂ϒϒϒ∗
1

∂eee(t + 1, j − 1)
, . . . ,

∂ϒϒϒ∗
l−1

∂eee(t + 1, j − l + 1)

]
× �EEE(t + 1, j)

+ϒϒϒ l(eee(t + 1, j − l), . . . ,eee(t + 1, j − ne − 1),

uuu(t, j − 1), . . . ,uuu(t, j − nc − 1)). (14)

Consider the following equation with matrix 	̄		(t, j) ∈
R

m×ml :

ϒϒϒ l(eee(t + 1, j − l), . . . ,eee(t + 1, j − ne − 1),uuu(t, j − 1), . . . ,

uuu(t, j − nc − 1)) = 	̄		(t, j)�EEE(t + 1, j). (15)

Then, there exists at least one solution 	̄		
∗
(t, j) for (15) when

‖EEE(t + 1, j)‖ �= 0. We let

�̄��(t, j) =
[

∂CCC∗

∂eee(t + 1, j)
,

∂ϒϒϒ∗
1

∂eee(t + 1, j − 1)
, . . . ,

∂ϒϒϒ∗
l−1

∂eee(t + 1, j − l + 1)

]
+ 	̄		

∗
(t, j). (16)

With (14)–(16), (10) is obtained. Then, it has ‖�̄��(t, j)‖ ≤ b2

according to Assumption 4.
Similar to (4), we label the learning controller (10) as the

PFDL controller (PFDLc).
Remark 2: Since the PFDLc (10) is an equivalent expres-

sion of the ideal learning controller (2) with iteration-varying
linearization structure, it can be considered theoretically as
the optimal learning controller for the unknown nonlinear
repetitive MIMO system (1), while a traditional learning
controller is usually determined a priori by experience or some
knowledge of the MIMO systems. In other words, the selection
problem of the learning controller is addressed through the two
systematic approaches as shown in Theorems 1 and 2.

C. Practical Learning Controller

Both of the CFDLc (4) and PFDLc (10) cannot be imple-
mented in practice since the noncausal tracking error vector
eee(t + 1, j) exists in (4) and (10). Similar to [31] and [32],
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the practical learning controllers corresponding to (4) and (10)
are considered in this article

CFDLc: �uuu(t, j) = −���(t, j)eee(t + 1, j − 1) (17)

PFDLc: �uuu(t, j) = �̄��(t, j)�ĒEE(t + 1, j − 1) (18)

where �ĒEE(t + 1, j − 1) = [−eeeT (t + 1, j − 1),�eeeT (t + 1,
j − 1), . . . ,�eeeT (t + 1, j − l + 1)]T ∈ R

ml .
The CFDLc (17) and PFDLc (18) provide two ways of

alternating learning controllers based on the nonlinear com-
plexity of the controlled system (1). That is, (18) can be
used by choosing the considerable LLC l if (17) is difficult
to track the high nonlinearity of (1), and the large l value
does not increase the structural complexity of the PFDLc (18).
Besides, in the special case of l = 1, (18) is the same
as (17). Furthermore, for high-dimensional MIMO systems,
it is suggested to select the PFDLc (18) rather than the
CFDLc (17) since the high dimension usually implies strong
coupling interactions of the controlled plant. Theoretically
speaking, the more complex the controlled plant is, the more
complicated the controller structure would be. Although the
two learning controllers (17) and (18) are mathematically
equivalent, in practice, they have different capabilities in
capturing the complex dynamics of the controlled plant. In this
case, the LLC l should be appropriately selected according to
the complexity of the controlled plant.

Following the method in [31] and [32], it can be easily
obtained that the P-type ILC �uuu(t, j) = KKK peee(t+1, j −1) [37]
and the high-order ILC uuu(t, j) = ∑s

p=1 MMMuuu(t, j − p) +∑s
p=1 QQQeee(t +1, j − p) [12] can be considered as special cases

of the practical CFDLc (17) and PFDLc (18), respectively,
through proper choices for ���(t, j) and �̄��(t, j), where KKK p, MMM ,
and QQQ are the learning control gain matrixes with appropriate
dimensions, and s is a positive integer. In other words,
the learning control gain matrixes of the P-type ILC and high-
order ILC can be designed and analyzed in the proposed data-
driven ILC schemes.

III. CONTROLLER DESIGN AND STABILITY ANALYSIS

With the practical CFDLc (17) and PFDLc (18), the problem
of determining the learning controller structure is addressed
for unknown nonlinear MIMO systems by virtue of extending
the CFDL and PFDL methods to the multidimensional space
in the iteration domain on the ideal learning controller (2).
The remaining main task is to design the learning control gain
matrix, updating algorithms for ���(t, j) and �̄��(t, j) using only
the measured I/O data of the nonlinear system (1).

A. CFDLc-ILC Design and Convergence Analysis

We consider the following control criterion function:

J = 1

2
‖eee(t + 1, j)‖2 + 1

2
λt‖�uuu(t, j)‖2 (19)

where λt > 0 is a weight factor. The first term on the right-
hand side of (19) reflects the tracking performance, while
the second term provides a control action energy minimization.

Substituting the CFDLc (17) into the control criterion
function (19), the derivative of (19) over ���(t, j) yields

∂ J

∂���(t, j)
= ∂yyy(t + 1, j)

∂uuu(t, j)
eee(t + 1, j)eeeT (t + 1, j − 1)

+ λt���(t, j)eee(t + 1, j − 1)eeeT (t + 1, j − 1). (20)

With (20), an updating algorithm of ���(t, j) is achieved by
adopting the following steepest descent method:

�̂��(t, j + 1)

= �̂��(t, j) − ηt
∂ J

∂�̂��(t, j)

= �̂��(t, j)(I − ηtλteee(t + 1, j − 1)eeeT (t + 1, j − 1))

− ηt
∂yyy(t + 1, j)

∂uuu(t, j)
eee(t + 1, j)eeeT (t + 1, j − 1) (21)

where ηt ∈ (0, 1] is a step size of ���(t, j), I ∈ R
m×m is an

identity matrix, and �̂��(t, j) is the estimation of ���(t, j).
The updating algorithm (21) cannot be applied to the

nonlinear system (1) because the term eee(t +1, j) is noncausal
and the derivative term ∂yyy(t + 1, j)/∂uuu(t, j) cannot be com-
puted directly since the dynamic model of (1) is completely
unknown. The I/O data relationship between yyy(t + 1, j) and
uuu(t, j) is a key for the ILC design.

In order to obtain the relationship, the equivalent DL data
model for the nonlinear system (1) is utilized by the CFDL
method in the iteration domain [36], which is described by

�yyy(t + 1, j) = ���(t, j)�uuu(t, j) (22)

where �yyy(t +1, j) = yyy(t +1, j)−yyy(t +1, j −1), the unknown
matrix

���(t, j) =

⎡
⎢⎢⎢⎣

φ11(t, j) φ12(t, j) · · · φ1m(t, j)
φ21(t, j) φ22(t, j) · · · φ2m(t, j)

...
...

...
...

φm1(t, j) φm2(t, j) · · · φmm(t, j)

⎤
⎥⎥⎥⎦ ∈ R

m×m

is called the PJM of the nonlinear system (1) satisfying
‖���(t, j)‖ ≤ b3. b3 > 0 is a constant. The issue of matrix
inversion cannot be addressed if we use the same updating
algorithms in [31] and [32] for ���(t, j) by virtue of the data
model (22), while it is avoided in this article through combin-
ing the data model (22) and the updating algorithm (21).

Remark 3: The I/O data relationship of the nonlinear
system (1) also can be obtained by using any predictive algo-
rithms, such as the subspace identification [38] and multiple-
step-ahead prediction [39], when the dynamic model of the
nonlinear system (1) is unavailable. Actually, when the plant
model is known, it can be directly used to compute the two
terms eee(t + 1, j) and ∂yyy(t + 1, j)/∂uuu(t, j). In other words,
the tuning problem of the learning controller parameters also
can be solved by virtue of the updating algorithm (21) when
the plant model is known.

Remark 4: In considering with noisy sensing/control,
yyy(t, j) should be modified as yyyw(t, j) = yyy(t, j) + www(t, j),
where yyyw(t, j) is the noisy system output vector and www(t, j)
is the sensing noise vector. In this case, the DL data model
(22) needs to be rewritten as �yyyw(t +1, j) = ���(t, j)�uuu(t, j),
where �yyyw(t +1, j) = yyyw(t +1, j)−yyyw(t +1, j −1). Readers

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on March 03,2021 at 01:09:18 UTC from IEEE Xplore.  Restrictions apply. 



YU et al.: DATA-DRIVEN ILC FOR NONLINEAR DISCRETE-TIME MIMO SYSTEMS 1141

are referred to the results in [40] for further development
regarding the corresponding learning controller designs and
robust stability analyses. For the case of partial observation,
it usually indicates the state space model of a controlled plant
with partial state measurements, while this article only focuses
on the input–output model as demonstrated by (1) and (22)
where only the system outputs require to be measured.

The DL data model (22) demonstrates that the functional
relationship between yyy(t + 1, j) and uuu(t, j) is determined
by a simple and dynamic structure. Equation (22) is equiv-
alent to the nonlinear system (1) at any arbitrary operation
condition [36], while the I/O data relationship built by other
predictive algorithms is only an approximation to the nonlinear
system (1). Besides, these predictive algorithms generally
require offline training with large amounts of I/O data of
the nonlinear system (1), which increases the computational
complexity.

The following projection algorithm is used to automatically
tune the unknown ���(t, j) [36]:

�̂��(t, j) = �̂��(t, j − 1) + ρteee���(t + 1, j − 1)�uuuT (t, j − 1)

μt + ‖�uuu(t, j − 1)‖2

(23)

where eee���(t + 1, j − 1) = �yyy(t + 1, j − 1) − �̂��(t, j − 1)�
uuu(t, j − 1), ρt ∈ (0, 1] is a step size of ���(t, j), μt > 0 is a
weight factor, and �̂��(t, j) is the estimation of ���(t, j).

With (22) and (23), the estimations of the two terms
eee(t + 1, j) and ∂yyy(t + 1, j)/∂uuu(t, j) is achieved by

êee(t + 1, j) = yyyd(t + 1, j) − yyy(t + 1, j − 1)

− �̂��(t, j)�uuu(t, j) (24)
∂ ŷyy(t + 1, j)

∂uuu(t, j)
= �̂��(t, j). (25)

Therefore, the updating algorithm (21) and the CFDLc (17)
are, respectively, further derived as

�̂��(t, j +1) = �̂��(t, j)(I − ηtλteee(t+1, j − 1)eeeT (t+1, j − 1))

− ηt�̂��(t, j)êee(t + 1, j)eeeT (t + 1, j − 1) (26)

uuu(t, j) = uuu(t, j − 1) − �̂��(t, j)eee(t + 1, j − 1). (27)

Based on the ILC law (27), the two updating algorithms
(23) and (26), and the estimations of eee(t + 1, j) and
∂yyy(t + 1, j)/∂uuu(t, j) given in (24) and (25), a data-driven
ILC scheme is summarized and described in the algorithm
CFDLc-ILC (Algorithm 1).

Remark 5: At step 2 in the CFDLc-ILC, the applied pre-
specified controller can be designed by using the model-
free adaptive control [20] or any other data-driven control
approaches. For simplicity, the model-free adaptive control is
adopted for generating the required I/O data of the nonlinear
system (1) and the PJM estimation �̂��(t, j) before iteration
proceeds. It is worth noting that �̂��(t, j) is required to be
calculated if other data-driven approaches are applied, and it
can be obtained through the I/O data of the nonlinear system
(1) by virtue of the virtual data model (22).

In the CFDLc-ILC, sat(b, b) denotes the projection of a
variable b on [b, b] and jmax is the given maximum iteration

Algorithm 1 CFDLc-ILC

1: Given j = 1 and an arbitrary �̂��(t, j).
2: Obtain yyy(t, j), uuu(t, j) and �̂��(t, j) by applying one pre-

specified controller to (1).
3: Compute �̂��(t, j) by (23) with the resetting mechanism

�̂��(t, j) = sat(���(t),���(t)).
4: Compute �̂��(t, j+1) by (26) with the resetting mechanism

�̂��(t, j + 1) = sat(���(t),���(t)).
5: Obtain uuu(t, j) by (27), and yyy(t + 1, j) by driving (1).
6: If j < jmax, let j = j + 1, and goto Step 3; else goto

Step 7.
7: The iteration terminates.

number, and b, b ∈ R. Obviously, the norms of both ���(t) and
���(t) are less than b1.

Next, the convergence of the proposed CFDLc-ILC is
analyzed based on the following definition.

Definition 1: The ideal PJM ���∗(t) drives eee(t + 1, j) = 000,
where ‖���∗(t)‖ ≤ b1.

Based on the Definition 1 and (17), it has

�uuu∗(t, j) = −���∗(t, j)eee(t + 1, j − 1). (28)

Theorem 3: Let the nonlinear system (1) satisfying
Assumptions 1 and 2 be controlled by the CFDLc-ILC. Then,
the tracking errors of the nonlinear system (1) are asymp-
totically convergent in the iteration domain if the following
condition is satisfied:

b3b1 <
1

2
. (29)

Proof: We define the following function:

V (t + 1, j) = ‖eee(t + 1, j)‖2. (30)

Then, the difference of the function in the iteration domain is

�V (t + 1, j) = V (t + 1, j) − V (t + 1, j − 1)

= ‖eee(t + 1, j)‖2 − ‖eee(t + 1, j − 1)‖2

= ‖�eee(t + 1, j) + eee(t + 1, j − 1)‖2

− ‖eee(t + 1, j − 1)‖2. (31)

According to (22), we have

�eee(t + 1, j) = (yyyd(t + 1, j) − yyy(t + 1, j))

− (yyyd(t + 1, j − 1) − yyy(t + 1, j − 1))

= �yyyd(t + 1, j) − �yyy(t + 1, j)

= �yyyd(t + 1, j) − ���(t, j)�uuu(t + 1, j) (32)

where �yyyd(t + 1, j) = yyyd(t + 1, j)− yyyd(t + 1, j − 1). Taking
(32) into (31) yields

�V (t + 1, j) = ‖�yyyd(t + 1, j) − ���(t, j)�uuu(t + 1, j)

+eee(t + 1, j − 1)‖2 − ‖eee(t + 1, j − 1)‖2.

(33)

Based on (27), (33) is rewritten as

�V (t+1, j) = ‖�yyyd(t+1, j)+���(t, j)�̂��(t, j)eee(t+1, j − 1)

+eee(t + 1, j − 1)‖2 − ‖eee(t + 1, j − 1)‖2.

(34)
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We define the estimation error of the PJM ���(t, j) as
�̃��(t, j) = �̂��(t, j) − ���∗(t), then

�V (t + 1, j)

= ‖�yyyd(t + 1, j) + ���(t, j)�̃��(t, j)eee(t + 1, j − 1)

+eee(t + 1, j + 1) + ���(t, j)���∗(t, j)eee(t + 1, j − 1)‖2

− ‖eee(t + 1, j − 1)‖2. (35)

With Definition 1, (28), and (32), (35) gives

�V (t + 1, j)

= ‖���(t, j)�̃��(t, i)eee(t + 1, j − 1)‖2 − ‖eee(t + 1, j − 1)‖2

≤ (‖���(t, j)‖2‖�̃��(t, j)‖2 − 1)‖eee(t + 1, j − 1)‖2. (36)

Since ‖���(t, j)‖ ≤ b3, ‖�̂��(t, j)‖ ≤ b1 and ‖���∗(t)‖ ≤ b1,
(36) further yields

�V (t + 1, j) ≤ (
4b2

3b2
1 − 1

)‖eee(t + 1, j − 1)‖2. (37)

Based on condition (29), inequality (37) indicates

�V (t + 1, j) < 0. (38)

Inequality (38) illustrates that the tracking errors of the non-
linear system (1) are asymptotically convergent in the iteration
domain.

B. PFDLc-ILC Design and Stability Analysis

Taking the PFDLc (18) into the control criterion
function(19), the updating algorithm of the PPJM �̄��(t, j)
similar to (21) is obtained using the steepest descent method

ˆ̄���(t, j + 1)

= ˆ̄���(t, j) − ηt
∂ J

∂ ˆ̄���(t, j)

= ˆ̄���(t, j)( Ī − ηtλ j�ĒEE(t + 1, j − 1)�ĒEE
T
(t + 1, j − 1))

+ ηt
∂yyy(t + 1, j)

∂uuu(t, j)
eee(t + 1, j)�ĒEE

T
(t + 1, j − 1) (39)

where Ī ∈ R
ml×ml is an identity matrix and ˆ̄���(t, j) is the

estimation of �̄��(t, j). Similar to (26) and (27), the updat-
ing algorithm (39) and the PFDLc (18) are, respectively,
modified as

ˆ̄���(t, j + 1)

= ˆ̄���(t, j)( Ī − ηtλt�ĒEE(t + 1, j − 1)�ĒEE
T
(t + 1, j − 1))

+ ηt�̂��(t, j)êee(t + 1, j)�ĒEE
T
(t + 1, j − 1) (40)

uuu(t, j)

= uuu(t, j − 1) + ˆ̄���(t, j)�ĒEE(t + 1, j − 1). (41)

Based on the ILC law (41), the two updating
algorithms (23) and (40), and the estimations of eee(t + 1, j)
and ∂yyy(t + 1, j)/∂uuu(t, j) given in (24) and (25), the second
data-driven ILC scheme is summarized in the algorithm
PFDLc-ILC (Algorithm 2).

Remark 6: The detailed steps of the CFDLc-ILC and
PFDLc-ILC illustrate that no explicit or implicit dynamic
model and structural information of the nonlinear system (1)
are used in the control system design. The PJMs ���(t, j)

Algorithm 2 PFDLc-ILC

1: Given j = 1 and an arbitrary ˆ̄���(t, 1).
2: Obtain yyy(t, j), uuu(t, j) and �̂��(t, j) by applying one pre-

specified controller to (1).
3: Compute �̂��(t, j) by (23) with the resetting mechanism

�̂��(t, j) = sat(���(t),���(t)).
4: Compute ˆ̄���(t, j+1) by (40) with the resetting mechanism

ˆ̄���(t, j + 1) = sat(�̄��(t), �̄��(t)).
5: Obtain uuu(t, j) by (41) with the resetting mechanism

uuu(t, j) = sat(uuu(t),uuu(t)), and yyy(t + 1, j) by driving (1).
6: If j < jmax, let j = j + 1, and goto Step 3; else goto

Step 7.
7: The iteration terminates.

and ���(t, j), and the PPJM �̄��(t, j) are automatically tuned
using only the measured I/O data of the nonlinear system (1).
Besides, the obtained CFDLc (17) and PFDLc (18) are
independent of the nonlinear system (1). Therefore, the two
proposed CFDLc-ILC and PFDLc-ILC are pure data-driven
ILC approaches.

According to Assumption 4, the norms of both �̄��(t) and
�̄��(t) are less than b2. Similar to Definition 1, the following
definition is required for the stability analysis of the proposed
PFDLc-ILC.

Definition 2: The ideal PPJM �̄��
∗
(t) drives eee(t + 1, j) = 000,

where ‖�̄��∗
(t)‖ ≤ b2.

Based on Definition 2 and (18), it has

�uuu∗(t, j) = �̄��
∗
(t, j)�ĒEE(t + 1, j − 1). (42)

Theorem 4: Let the nonlinear system (1) satisfying
Assumptions 3 and 4, be controlled by the PFDLc-ILC.
Then, the tracking errors of the nonlinear system (1) are
uniformly ultimately bounded in the iteration domain for all
t ∈ {1, 2, . . . , T } if the following two conditions are satisfied:

b3b2 <
1

2
(43)

|�yd(t + 1, j)| ≤ b4 (44)

where b4 is a positive constant.
Proof: With (18) and (30), we rewrite (33) as

�V (t+1, j)=‖�yyyd(t+1, j) − ���(t, j) ˆ̄���(t, j)�ĒEE(t+1, j −1)

+eee(t + 1, j − 1)‖2 − ‖eee(t + 1, j − 1)‖2.

(45)

Defining the estimation error of the PJM �̄��(t, j) as
˜̄���(t, j) = ˆ̄���(t, j) − �̄��

∗
(t), (45) yields

�V (t + 1, j)

= ‖�yyyd(t + 1, j) − ���(t, j) ˜̄���(t, j)�ĒEE(t + 1, j − 1)

+eee(t + 1, j − 1) − ���(t, j)�̄��
∗
(t, j)�ĒEE(t + 1, j − 1)‖2

− ‖eee(t + 1, j − 1)‖2. (46)
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Based on Definition 2 and (42), (46) further gives

�V (t + 1, j)

= ‖�yyyd(t + 1, j) − ���(t, j) ˜̄���(t, j)�ĒEE(t + 1, j − 1)

+eee(t + 1, j − 1) − ���(t, j)�uuu∗(t, j)‖2

− ‖eee(t + 1, j − 1)‖2. (47)

Equation (32) and the Definition 2 yield that

�eee∗(t + 1, j) = −eee(t + 1, j − 1)

= �yyyd(t + 1, j) − ���(t, j)�uuu∗(t + 1, j). (48)

Combining (47) and (48) together gives

�V (t + 1, j) = ‖ − ���(t, j) ˜̄���(t, j)�ĒEE(t + 1, j − 1)‖2

− ‖eee(t + 1, j − 1)‖2

≤ (‖���(t, j)‖‖ ˜̄���(t, j)‖‖�ĒEE(t + 1, j − 1)‖)2

− ‖eee(t + 1, j − 1)‖2. (49)

Furthermore, uuu(t, j) = sat(uuu(t),uuu(t)) leads to

‖uuu(t, j)‖ ≤ 2(‖uuu(t)‖ + ‖uuu(t)‖). (50)

Based on the condition (44) and ‖���(t, j)‖ ≤ b3, (32)
generates

‖�eee(t + 1, j)‖ ≤ ‖�yyyd(t+1, j)‖ + ‖���(t, j)‖‖�uuu(t+1, j)‖
≤ b4 + 2b3(‖uuu(t)‖ + ‖uuu(t)‖). (51)

Therefore, there exists a positive constant α such that

‖�ĒEE(t + 1, j)‖2 ≤ ‖eee(t + 1, j − 1)‖2 + α. (52)

Besides, ‖ ˆ̄���(t, j)‖ ≤ b2 and ‖�̄��∗
(t)‖ ≤ b2 imply that

‖ ˜̄���(t, j)‖ = ‖ ˆ̄���(t, j) − �̄��
∗
(t)‖ ≤ 2b2. (53)

With ‖���(t, j)‖ ≤ b3, (52), and (53), (49) yields

�V (t + 1, j) ≤ 4b2
3b2

2(‖eee(t + 1, j − 1)‖2 + α)

− ‖eee(t + 1, j − 1)‖2

= (
4b2

3b2
2 − 1

)‖eee(t + 1, j − 1)‖2 + 4αb2
3b2

2

(54)

which implies

‖eee(t + 1, j)‖2 ≤ (
4b2

3b2
2

) j−1‖eee(t + 1, 1)‖2

+ 4αb2
3b2

2

1 − (
4b2

3b2
2

) j−2

1 − 4b2
3b2

2

. (55)

Based on condition (43), inequality (55) satisfies

lim
j→∞

‖eee(t + 1, j)‖ = 2b3b2
(
α/

(
1 − 4b2

3b2
2

)) 1
2 . (56)

Therefore, the tracking errors of the nonlinear system (1) are
uniformly ultimately bounded in the iteration domain for all
t ∈ {1, 2, . . . , T }.

Remark 7: With the PFDLc-ILC, the stability of the nonlin-
ear system (1) is guaranteed by Theorem 4. Through reason-
able setting of the �̄��(t, j), a low bound can be achieved when
�̄��(t, j) approximates �̄��

∗
(t, j); that is, ‖�̄��(t, j) − �̄��

∗
(t, j)‖

tends to zero. In this case, the condition (43) is easily satisfied.

Consequently, the tracking errors for all t ∈ {1, 2, . . . , T } are
close to zero when the iteration j tends to infinity.

For the CFDLc-ILC, it can be seen that, at each time
instant t in each iteration j , the I/O data required to be
collected for generating the control input vector uuu(t, j) are
yyy(t +1, j −1), yyy(t +1, j −2), uuu(t, j −1), and uuu(t, j −2); that
is, the collected data size is 4m. The I/O data for PFDLc-ILC
are yyy(t+1, j−1), . . . , yyy(t+1, j−l), uuu(t, j−1) and uuu(t, j−2);
that is, the collected data size is (l +2)m. The aforementioned
observations indicate that, in general, the proposed two data-
driven ILC approaches have fast computation speeds to a
certain extent. Furthermore, since the controlled system is
repeatable and operates from identical initial conditions in
each iteration, then, for the same time instant t in different
iterations, the change of ���(t, j) is slow or remains almost
the same even if the controlled plant is data sensitive or the
system itself has some obvious variances [20], [36], which
implies that the two proposed ILC approaches are relatively
robust even with raw collected I/O data.

IV. SIMULATION AND EXPERIMENT

To demonstrate the effectiveness of the proposed
CFDLc-ILC and PFDLc-ILC, a simulation and an experiment
are considered in this section. The simulation is conducted
on a complicated nonlinear MIMO discrete-time system. The
experiment is carried out on an LMG2A-CB6-CC8 Gantry-
type linear motor drive system to further demonstrate the
applicability of the proposed CFDLc-ILC and PFDLc-ILC in
practice. For comparison, the P-type ILC and high-order ILC
are also applied. It should be pointed out that the two systems
are considered unknown and are used only to generate the
I/O data for the simulation and practical application.

A. Simulation

The following nonlinear discrete-time MIMO system is
considered [36]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x11(t + 1, j) = x2
11(t, j)

1 + x2
11(t, j)

+ 0.3x12(t, j),

x12(t + 1, j) = x2
11(t, j)

1 + x2
12(t, j) + x2

21(t, j) + x2
22(t, j)

+ a(t)u1(t, j)

x21(t + 1, j) = x2
21(t, j)

1 + x2
21(t, j)

+ 0.2x22(t, j),

x22(t + 1, j) = x2
21(t, j)

1 + x2
11(t, j) + x2

12(t, j) + x2
22(t, j)

+ b(t)u2(t, j)
y1(t + 1, j) = x11(t + 1, j)
y2(t + 1, j) = x21(t + 1, j)

(57)

where a(t) = 1 + 0.1sin(2β t/150) and b(t) = 1 +
0.1cos(2β t/150) are the time-varying parameters. From the
definitions of the system output vector and control input
vector, it is known that uuu(t, j) = [u1(t, j), u2(t, j)]T and
yyy(t, j) = [y1(t, j), y2(t, j)]T .
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Fig. 1. Learning performances of P-type ILC and CFDLc-ILC on emax,1.

Fig. 2. Learning performances of P-type ILC and CFDLc-ILC on emax,2.

The desired output vector yyyd(t) = [y1(t), y2(t)]T is given as{
yd,1(t)=−0.25+0.25cos(0.25β t/100)+0.25sin(0.5β t/100)

yd,2(t)=0.25sin(0.25β t/100) + 0.25sin(0.5β t/100).

(58)

In the simulations, the terminal time instant is T = 800
and the maximum iteration number is 160. The initial system
outputs and control inputs are given as y1(1, j) = 0.0039,
y2(1, j) = 0.0059, y1(2, j) = 0.0078, y2(2, j) = 0.0118 and
u1(1, j) = u2(1, j) = u1(2, j) = u2(2, j) = 0, respectively.

The simulation results are shown in Figs. 1–4, which
provide the learning performances of the four ILC approaches:
CFDLc-ILC, PFDLc-ILC, P-type ILC, and high-order ILC,
where the vertical axis is the maximum absolute value of the
tracking error emax,im ( j) = supt∈1,2,...,800|yd,im (t) − yim (t, j)|,
im = 1, 2, j = 1, 2, . . . , 160.

From Figs. 1 and 2, it is obvious that the convergence speed
of CFDLc-ILC is faster than that of P-type ILC on both of
the tracking errors emax,1( j) and emax,2( j), which reduce to
0.0160 and 0.0177 for CFDLc-ILC, and 0.0277 and 0.0351 for
P-type ILC, respectively, when the iteration period terminates.
Furthermore, the faster convergence speed of PFDLc-ILC than
that of high-order ILC is obvious, as shown in Figs. 3 and 4,
where the emax,1( j) and emax,2( j) for high-order ILC still
remain 0.0850 after 34 iterations and 0.1009 after 37 iterations,
respectively.

B. Experiment

The experimental setup of the LMG2A-CB6-CC8
Gantry-type linear motor drive system is shown in Fig. 5.
It mainly includes five components: host computer, links-box,
terminal block, driver, and linear motor drive system. The host
computer configured with the Simulink and RT-SIM software

Fig. 3. Learning performances of high-order ILC and PFDLc-ILC on emax,1.

Fig. 4. Learning performances of high-order ILC and PFDLc-ILC on emax,2.

Fig. 5. Experimental setup.

is responsible for modeling, monitoring, and managing the
simulated control environment of the linear motor drive
system. The links-box is used to compile the simulated
control environment and communicate with the terminal
block. The terminal block transfers the computed voltage
signal (control input) from the links-box through Ethernet,
and the x-axis and y-axis position signals of the linear motor
drive system, where the x-axis and y-axis are assembled
orthogonally with two linear motors. The driver serves for
driving the x-axis and y-axis to perform a given control task.

In the following experiments, two tasks are considered:
task 1 is to track a circle, and task 2 is to track a cardioid
with noisy sensing.

1) Circle: In the experiment, two cases are considered for
the linear motor drive system. In case 1, identical desired
outputs are imposed, and case 2 is the iteration-varying desired
outputs. For the two cases, the iteration number that the linear
motor drive system runs is 6. The sampling time is 0.001 s
and the experiment time is given as 12.6 s in each iteration,
which means the terminal time T = 12 600.
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Fig. 6. Learning performances of P-type ILC and CFDLc-ILC on
x-axis (Case 1).

Fig. 7. Learning performances of P-type ILC and CFDLc-ILC on
y-axis (Case 1).

Fig. 8. Tracking trajectories of CFDLc-ILC (Case 1).

Case 1: The identical desired outputs are{
yd,1(t) = 0.1cos(0.5β(t + 2400)/12600)
yd,2(t) = 0.1sin(0.5β(t + 2400)/12600)

(59)

where yd,1(t) and yd,2(t) are the desired x-axis and y-axis
positions, respectively. Actually, the desired x-axis and y-axis
positions formulate the desired circle with radius r = 0.1 m
in the xy coordinate system.

Figs. 6–8 illustrate the experimental results between
CFDLc-ILC and P-type ILC, where Figs. 6 and 7 give the
learning convergence of the tracking errors on x-axis and
y-axis positions versus the iteration, and Fig. 8 shows the
x-axis and y-axis positions at the first, third, and sixth itera-
tions by applying CFDlc-ILC.

It is demonstrated from Figs. 6 and 7 that the convergence
speed of CFDLc-ILC is faster than that of P-type ILC on
both of the tracking errors emax,1 and emax,2, in which emax,1

Fig. 9. Learning performances of high-order ILC and PFDLc-ILC on
x-axis (Case 1).

Fig. 10. Learning performances of high-order ILC and PFDLc-ILC on
y-axis (Case 1).

Fig. 11. Tracking trajectories of PFDLc-ILC (Case 1).

and emax,2 of CFDLc-ILC are lower 0.0034 m and 0.0012 m,
respectively, than those of P-type ILC when the iteration
period terminates. Besides, from Fig. 8, it can be seen that the
tracking circle has been much close to the desired circle after
the third iteration, and the details shown in Fig. 8 demonstrate
that the CFDLc-ILC can achieve an approximately perfect
tracking at the sixth iteration.

The experimental results between PFDLc-ILC and high-
order ILC are shown in Figs. 9–11, where Fig. 11 gives
the tracking trajectories of PFDLc-ILC at the first, third,
and sixth iterations. By comparing the values of emax,1 and
emax,2 at the last iteration between PFDLc-ILC and high-order
ILC, as shown in Figs. 9 and 10, the tracking accuracies
of PFDLc-ILC raise 15.2213× and 36.8292× than that of
the high-order ILC on the x-axis and y-axis, respectively,
only after six iterations. From the details shown in Fig. 11,
approximately perfect tracking is achieved using PFDLc-ILC
after six iterations.
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Fig. 12. Learning performances of P-type ILC and CFDLc-ILC on x-axis
(Case 2).

Fig. 13. Learning performances of P-type ILC and CFDLc-ILC on
y-axis (Case 2).

Fig. 14. Learning performances of high-order ILC and PFDLc-ILC on
x-axis (Case 2).

Fig. 15. Learning performances of high-order ILC and PFDLc-ILC on
y-axis (Case 2).

Case 2: The iteration-varying desired outputs are
yd,1(t, j) = yd,1(t)+ d(t, j) and yd,2(t, j) = yd,2(t)+ d(t, j),
where d(t, j) is a random number with the magnitude of
0.001 m for any time instant t and iteration number j ,
t = 1, 2, . . . , 12 600, j = 1, 2, . . . , 6.

The experimental results for CFDLc-ILC and P-type ILC
are presented in Figs. 12 and 13, which illustrate the

Fig. 16. Learning performances of P-type ILC and CFDLc-ILC on x-axis.

Fig. 17. Learning performances of P-type ILC and CFDLc-ILC on y-axis.

Fig. 18. Tracking trajectories of CFDLc-ILC.

Fig. 19. Learning performances of high-order ILC and PFDLc-ILC on x-axis.

better learning performance of CFDLc-ILC than P-type
ILC in the case of the iteration-varying desired outputs.
Figs. 14 and 15 display the better learning performance of
PFDLc-ILC than high-order ILC. In general, the effectiveness
of the learning performance on CFDLc-ILC and PFDLc-ILC is
demonstrated from Figs. 12–15. Besides, the maximum errors
shown in Figs. 12–15 would not converge to zero due to the
existence of d(t, j), which is demonstrated by Theorem 4.

2) Cardioid: In the experiment, the sampling time is still
0.001 s, and the running time is set as 6.3 s in each iteration
(that is, T = 6300). The sensing noise is generated by
the random number d(t, j) with magnitude of ±0.001 m.
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Fig. 20. Learning performances of high-order ILC and PFDLc-ILC on y-axis.

Fig. 21. Tracking trajectories of PFDLc-ILC.

The desired outputs are⎧⎪⎪⎨
⎪⎪⎩

yd,1(t) = 0.05

(
sin

(
2β t

6300

)
+ 0.5 sin

(
4β t

6300

))

yd,2(t) = 0.05

(
cos

(
2β t

6300

)
+ 0.5 cos

(
4β t

6300

))
.

(60)

The experimental results for CFDLc-ILC, P-type
ILC, PFDLc-ILC, and high-order ILC are presented
in Figs. 16–21, where Figs. 18 and 21, respectively, show the
tracking trajectories of CFDLc-ILC and PFDLc-ILC at the
first, third, and sixth iterations. These results illustrate that,
in the case of noisy sensing, the CFDLc-ILC and PFDLc-ILC
have better learning performances than the P-type ILC
and high-order ILC, respectively, and the tracking errors
are reduced to within a small bound after six iterations of
applying the proposed CFDLc-ILC and PFDLc-ILC.

V. CONCLUSION

In this article, two data-driven ILC approaches are proposed
for a class of unknown nonlinear repetitive discrete-time
MIMO systems. The learning controllers are constructed by
extending the CFDL and PFDL methods to the multidimen-
sional space in the iteration domain on an unknown ideal
learning controller. The determined learning controllers are
independent of the controlled plants, and the corresponding
complexities of the learning controllers do not increase with
that of the controlled plants. By virtue of the CFDL data model
of the controlled nonlinear systems, the learning control gain
updating algorithms are formulated using only the measured
I/O data of the controlled plants through the steepest descent
method. The stability and convergence of the two data-driven
ILC approaches are achieved theoretically under a general-
ized Lipschitz condition. Finally, comparative analyses with
simulated and experimental results are provided to verify the
effectiveness of the two data-driven ILC approaches. In future

work, it is worth investigating the design and analysis of robust
data-driven iterative learning control approaches, for dealing
with noisy sensing, and further investigating the case of more
general DL methods for the learning controller design in order
to deal with more complex nonlinear systems.
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