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Abstract—Differentiable architecture search (DARTS) has
gained significant attention amongst neural architecture search
approaches due to its effectiveness in finding competitive network
architectures with affordable computational complexity. However,
DARTS’ search space is designed such that even a randomly
sampled architecture performs reasonably well. Moreover, due to
the complexity of search architectural building block or cell, it is
unclear whether these are certain operations or the cell topology
that contributes most to achieving higher final accuracy. In this
work, we dissect the DARTS’s search space to understand which
components are most effective in producing better architectures.
Our experiments show that: (1) Good architectures can be
discovered regardless of the search network depth; (2) Seperable
convolution with 3x3 kernel is the most effective operation in this
search space; and (3) The cell topology also has substantial effect
on the accuracy. Based on these insights, we propose an efficient
search approach referred to as eDARTS, which searches on a
pre-specified cell having good topology with increased attention to
important operations, using a shallow search supernet. Moreover,
we propose some optimizations for eDARTS that significantly
speed up the search as well as alleviate the well known skip
connection aggregation problem of DARTS. eDARTS achieves
an error rate of 2.53% on CIFAR-10 using a 3.1M parameters
model whereas the search cost is less than 30 minutes.

I. INTRODUCTION

Deep neural networks have performed remarkably well
across a variety of computer vision tasks such as image
classification, object detection and semantic segmentation
[1], [2], [3]. However, the complexity of such networks
has increased dramatically over the past few years [4], [5]
and therefore, manual network design demands significant
engineering effort to be spent in exploring large spaces of
hyper parameters. As a result, neural architecture search (NAS),
as a means to automate the design of neural networks, has
gained a lot of interest from both academia and industry. Early
approaches for modern NAS used reinforcement learning [6],
[7] or evolutionary algorithms [8], [9] and found competitive
architectures. These methods however, were computationally
too intensive i.e. requiring 2000 [7] or 3150 [8] GPU days.
DARTS [10] formulated the architectural building block or a
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Fig. 1: DARTS’ search cell with complex topology and equal
attention to all operations (top) vs eDARTS’ with operation at-
tention (bottom). An increased attention to important operations
with a simple, pre-specified cell topology allows searching with
a shallow supernet yet discovering high quality cells.

cell searching problem in a differentiable manner and brought
down the computational cost to just one day.

The substantial reduction in the computational complexity
has increased interest around differentiable architecture search
framework with a number of potential improvements proposed
[11], [12], [13], [14], [15], [16]. For example, P-DARTS
[11] reports the depth gap problem between search and
evaluation scenarios of DARTS and proposes to progressively
increase the search network depth. Moreover, it identifies
the skip connection bias problem, also noted by others [17],
[18], and restricts the number of skip connections in the
discovered cells. PC-DARTS [12] shows improved results by
decreasing the memory and computation overhead of DARTS
and reducing the information flow in the supernet to fewer
channels. However, works such as [19], on the other hand,
show that it is the expertly crafted DARTS’ search space
itself that even a randomly sampled architecture performs quite
well. Consequently, it becomes unclear to know which factor
contributes most to discovering better cells. Hence, DARTS
framework can be improved by further investigating a number
of directions i.e. the effect of different operations on the



resulting cells, the effect of information flow through different
path possibilities, and the depth gap. Therefore, we motivate
our study through the following scientific questions:

1) Which factor has a larger impact on accuracy and
efficiency: the search network depth, the operation search
space or the information flow path of the cells?

2) Can we use this information to enhance the resulting cell
quality and speed up the search?

To find the answers, we conduct extensive experimentation to
study the effect of different operations, different cell topologies
and the search network depth on the quality of discovered cells.
Our contributions can be summarized as follows:
• Through extensive experimentation, we empirically show

that good cells can be discovered independent of the
search network depth.

• By dissecting DARTS’ search space [10] multiple ways
and searching in sub spaces, we show that among learnable
operations of this search space (i.e. sep-3x3, sep-5x5, dil-
3x3, dil-5x5), separable convolutions in general, are more
effective operations in deciding the final performance of
a discovered cell on CIFAR-10 while dilated convolutions
tend to deteriorate it.

• Through the analysis of the different paths that can be
used by a cell, we demonstrate that not all of them lead
to good solutions, thus it is also critical to consider good
information flow in the search space.

• We empirically show that search can be sped up drastically
using only a subset of the target dataset and finetuning
architectural parameter update rate, yet maintaining the
discovered cell quality.

• Based on our findings, we propose eDARTS which
searches along a simpler cell structure with increased
attention to important operations, see Figure 1.

Our proposed optimisations enable eDARTS to: (1) carry
search along a shallow, 5 layer search network; (2) bring down
the computational cost from 1.5 to just 0.015 GPU days while
maintaining the discovered cell quality; and (3) on average
reduce the skip connections from 6 to 2 in the discovered cells
thus combating the skip connection bias. eDARTS’ discovered
cell achieves an error rate of 2.53 on CIFAR-10 using only
3.1M parameters. On CIFAR-100, the discovered cell has an
error rate of just 16.83% with a 3.5M parameter model.

II. BACKGROUND AND RELATED WORK

Since AlexNet [20], there has been a wide interest in
improving deep convolutional neural networks for image
classification and other related tasks. However, early networks,
following AlexNet, were hand crafted by the experts and
demanded significant engineering efforts [21], [22], [23], [4],
[24], [1]. More recently, there is an increased interest in
automating the process of designing such networks for a given
task. Some of the works try to search for an end to end network
structure [6], [25], [26] while others focus on finding a network
building block or a cell [7], [10]. Most of these works require
enormous compute and are not feasible for many researchers.

Therefore, what has sparked widespread interest in NAS is the
low computational complexity of ENAS [27] and specifically
DARTS [10].

A. Differentiable Architecture Search

There has been substantial research effort around improving
DARTS i.e. P-DARTS [11] notices depth gap between search
and evaluation networks and proposes to progressively increase
the search network depth. PC-DARTS [12] works on decreasing
the still large memory requirements of DARTS and reduces the
search cost to 0.1 GPU days. GDAS [13] deploys a gradient
architecture sampler to efficiently traverse the directed acyclic
graph (DAG) search space. Fair DARTS [28] studies the
skip connection bias problem of the DARTS and proposes
collaborative competition as well as gaussian noise addition to
differential process removing unfair advantage skip connections
possess. EDAS [29] improves DARTS speed to 0.125 GPU days
by sampling a single edge in the cell for parameter update.
FBNet [30] is one of the differentiable search method that
searches for mobile architectures.

B. Understanding Neural Architecture Seaarch

Another very interesting line of work is being about
investigating the performance of one shot NAS approaches.
Why certain algorithms work better than the others? Is it
because of the search algorithm, the training pipeline or expertly
crafted search space. [31] is an important recent work to fairly
compare the weight sharing architecture search methods. [32]
provides a fixed search space and a unified benchmark for a
fair comparison of any recent NAS algorithm. A closely related
work is that of [19] which shows that many search spaces are
being crafted such that even randomly picked up architectures
are good and the training protocol itself has a higher impact
on the final accuracy. It also investigates DARTS’ search space
and shows that it has narrow accuracy range and the final
network wiring or macro architecture has more effect than the
operations themselves. Our work however, investigate DARTS’
search space on a micro level, i.e. we study the properties of
a cell itself and not the macro network architecture.

C. DARTS Preliminaries

We leverage DARTS [10] as our baseline framework which
searches for an architectural cell. The discovered cell is eventu-
ally stacked up to form a network of desired complexity. A cell
is a directed acyclic graph consisting of an ordered sequence of
N nodes, {x0, x1, · · ·, xN−1}. Each node x(i) is a feature map
and each edge E(i,j) is associated with some operation o(i,j)

being applied on x(i). Each cell has two input nodes and a
single output node where the input nodes are defined as the cell
outputs from the previous two layers and the output is obtained
by applying concatenation operator to all the intermediate nodes
i.e. xN−1 = concat(x0, x1, · · ·, xN−2). Each intermediate
node is represented as x(j) =

∑
i<j o

(i,j)x(i). The main idea
of DARTS is to place a mixture of candidate operations O
(e.g. convolutions, residual and pooling operations) at each
edge and eventually learn the best one. To make the search



TABLE I: Sub Search Spaces Splits

Search Space Operations
SS1 sep-3x3, dil-3x3
SS2 sep-5x5, dil-5x5
SS3 sep-3x3, sep-5x5
SS4 dil-3x3, dil-5x5
SS5 sep-3x3, dil-5x5
SS6 sep-5x5, dil-3x3
SS7 sep-3x3, sep-5x5, dil-3x3
SS8 sep-3x3, sep-5x5, dil-5x5

space differentiable, DARTS relaxes the categorical choice of
a particular operation to a softmax over all possible operations:

o(i,j)(x) =
∑
o∈O

exp (α
(i,j)
o )∑

o′∈O exp (α
(i,j)
o′ )

o(x)

where the operation mixing weights for a pair of nodes (i, j)
are parameterized by a vector α(i,j) of dimension |O|. For
more details, please refer to the original paper [10].

III. METHODOLOGY

In this section, we provide the methodology for assessing
how search network depth, operations and edges effect the
discovered cells, and the main components of eDARTS, which
searches along a simpler pre-determined path in the DAG with
operation attention, Figure 1. We also describe optimizations
that help alleviating the skip connection bias problem of
DARTS as well as speed up the search significantly.

A. Effect of Search Depth and Operations

DARTS [10] works by searching for a cell on a network
of a given depth. However, searching with deeper networks
can be prohibitive due to memory limitations. DARTS tries
to search on a network of increased depth i.e. 20 layers, by
decreasing the initial number of channels e.g., from 16 to
6, which however, results in worst cells. Potential reasons
suggested for worst performance could either be the enlarged
discrepancy of the number of channels between search and
evaluation scenarios or the fact that searching deeper might
require a different set of hyperparameters. To reduce the search
depth discrepancy, P-DARTS [11] proposes to progressively
reduce the search space while increasing the search network
depth. It starts the search with a shallower network (i.e., 5
layers) but with the full search space (i.e., 8 operations),
and then progressively increases search depth while pruning
the operation search space. When it reaches a depth that is
sufficiently close to the evaluation depth, its search space is
limited to only a fraction of the original operations. In this way,
it is possible to search for an increased depth. However, during
the search space approximation, operations important for the
deeper networks may already have been dropped down whilst
searching within the shallower network. Essentially decisions
on which operations to keep are based on the shallower network
search process rather than the deeper network. Therefore, there
is limited understanding still of how the depth of a network
impacts the resulting cell quality.

Fig. 2: Test Accuracy for each split search space under shallow
(5 layers) and deep (16 layers) search configurations.

To understand the effect of depth better, it is necessary to
perform search for networks with varying number of layers
e.g. 5 and 20. However searching for deeper networks can be
problematic due to potential GPU memory limitations (DARTS’
search settings consume almost entire 11GB memory for one
1080Ti). Hence, we cannot simultaneously search deeper and
within full search space using a reasonable number of channels
and batch size. For example, to fit a (20-16)1 search supernet
into memory, we decrease the batch size to 16 but the resulting
cells perform worse than shallower-searched cells. We want
to come up with a way to search deeper and on all possible
operations in the search space without added memory cost.
Since we cannot search on all the operations simultaneously,
the proposed methodology involves splitting the search space
and search within each subspace with shallower as well as
deeper networks. In this way, it is possible to explicitly and
effectively study the effect of depth on the search process with
respect to all operations and without running into memory
issues.

There are 4 learnable operations in the DARTS’ search space
i.e. seperable and dilated convolutions with filters 3x3 and 5x5
filters, whereas 3 operations are parameter free. The idea is
to keep the parameter free operations in all the sub search
spaces while only a subset of learnable operations as these
actually incur increased memory cost. Essentially there are six
possible combinations for learnable operations, if we choose
only 2 out of 4 for each sub search space. In Table I, we show
how we create sub search spaces where the last two search
spaces are for additional experiments to investigate the effect
of dilated convolutions in detail. Also note that each sub search
space contains skip, none and either max or average pooling
operation. Experimental details are discussed in section IV-C,
but Figure 2 reveals some interesting insights, i.e. with the
same number of initial channels, searching deeper yields only
marginally better cells than searching shallower. However, the
search cost increases drastically with increased depth therefore,

1Notation: L-C where L is the number of layers and C is the channels in
the first layer.



much faster search can be performed with shallow networks
without significant accuracy drops.

An added benefit of searching within split search spaces is
that we are able to have a closer look at which operations can
lead to better cells. Therefore, another interesting insight from
Figure 2 is that on average, an all separable convolution search
space yields the best cells while an all dilated convolution
search space produces worst, see for example SS3 i.e. all
separable and SS4 i.e. all dilated convolution search space.
Moreover, in general, 3x3 kernel operations are better than
5x5 kernel operations and in all cases, substituting a separable
convolution within a search space by a dilated convolution
results in worse performance. Therefore, among operations with
learnable parameters, the best operation is sep-3x3, followed by
sep-5x5 and then dil-3x3 followed by dil-5x5. This indicates
that separable convolutions might provide more meaningful
features towards classification. We can exploit this information
within the search process by adding weight constant wo to the
architectural parameters of operations o(i,j)(x) that are found
to lead to better cells and subtract from the rest. Please note that
putting more emphasis on the best performing operations such
as separable convolutions does not mean we entirely delete
the possibility of other operations, however, we adjust the
weights such that important operations have higher probability
of getting selected. Experimental details are covered in section
IV-C.

B. Exploring Information Flow Paths

With respect to edges in DARTS’ search space, each
intermediate node is connected to all its predecessors during the
search process, Figure 1 (top). At the end of search, top 8 out of
14 edges are chosen on the basis of the highest weights learned
for corresponding operations. This process is referred to as
discretization, where for each intermediate node, only the top
two incoming edges are preserved. In addition to the operations
chosen during the search process, the information flow paths
are crucial to deciding the effectiveness of a certain cell. There
can be numerous cells with the same number of learnable
parameters and even the same operations but the performance
difference can vary significantly. The differentiating factor
amongst these architectures is the flow of information. Hence, it
is important to consider which paths are important and whether
they can be identified. By doing so, we can effectively prune
the search space, both reducing computation and restricting
the search within high-quality information flow paths.

We develop a methodology to answer if some edges are
really more effective than others. Specifically, we first fix the
type of operations such as all separable convolutions for the
normal and all max pooling operations for the reduction cell
(DARTS searches for a normal and a reduction cell). Then, we
train a network for each possible cell topology and rank each
path along the graph (cell) with respect to the resulting test
accuracy. This approach highlights edge configurations that
can potentially lead to high-quality cells.

As evidenced by the surface accuracy map in Figure 3,
even with the same number of parameters and exactly similar

Fig. 3: Accuracy Surface Map of all possible 180 path
combinations with their respective accuracies.

operations, there indeed exist good and bad performing edges
to choose from. Therefore, we exploit this phenomenon by
considering only the best topology with top edges and search
only along this pre-specified path. In addition, we can also
add more attention to the better performing operations such as
separable convolutions. Figure 1 (bottom) shows an example
of a pre-specfied path with operation attention. Please note that
eDARTS’ discretization step only discretizes operations after
search and does not select edges as they are pre-specified.

C. Unbiased and Fast Search

Skip connection bias is a well known problem of DARTS
[11], [17], [18], [15]. While attempting to reproduce DARTS’
search results, we notice that when the supernet training is
making faster progress, there are lesser skip connections, but
when the training loss is close to saturation, skip connections
start to emerge in both normal and the reduction cells. Some
recent works provide an in depth analysis on why DARTS
faces this problem [28], [33] proposing feasible solutions.

We take insights from these works and propose improvements
that simultaneously reduce skip bias and allow for faster search.
First we refer to the ”early stopping” paradigm proposed by
DARTS+ [33] which proposes two criterion for stopping the
search: (1) The search procedure stops when there are two or
more than two skip-connects in one cell, and (2) The search
procedure stops when the ranking of architecture parameters
α for learnable operations becomes stable for a determined
number of epochs (e.g., 10 epochs). We notice that following
either of the criteria is actually equivalent to making fewer
architectural parameter updates throughout the search, and
another way of achieving similar results is by using only a
small subset of the target dataset, however, with the added
advantage of much faster search.

Secondly, we note that both P-DARTS [11] and PC-DARTS
[12] use the ”warm-up” mechanism i.e. first train the supernet
for 10 epochs and only then start architectural parameter
updates for the next 15 epochs. However, they still update
architecture parameters at every training step within an epoch
which makes their search still computationally intensive.
Therefore, we suggest a ”sparse-update” mechanism specifically



for improving the learning of the architectural parameters
and to speed up the search further. Since the architecture
parameters are dependent on the search network weights,
therefore, within each epoch, we let the model weights to
improve significantly before we make any adjustments to
architecture weights. An intuitive explanation for doing that is
we make architecture adjustments only after the search network
has seen a sufficient number of samples and the underlying
model weights’ direction becomes stable. Based on the above,
we summarize our improvements as:
• Searching with a subset of the target dataset for full

50 epochs instead of early stopping reduces the skip
connection bias, yet significantly speeds up the search,
see Table II.

• Using ”sparse-update” through out the search instead of
traditional warm-up is also effective at reducing the skip
connection aggregation problem, with a much reduced
search cost, Table II.

D. Shallow Network Evaluation

Evaluating the cells discovered by NAS approaches is
computationally expensive since training results from CIFAR10
(which is the most common dataset for NAS) are subject to high
variance, hence requiring multiple evaluation runs [34]. And
without training, there is no guarantee that the discovered cells
will yield good final test accuracy. For example, DARTS [10]
and PC-DARTS [12] discover cells by searching for a shallower
network of 8 layers and 16 initial channels (8−16) and evaluate
on a deeper network of 20− 36. Moreover, evaluating a cell
with training on a 20− 36 network until convergence is too
compute intensive i.e. around 30 hours on a 2080ti GPU.
Further, DARTS runs its search algorithm 4 times, tests the
discovered cells by training a 20− 36 network from scratch
for 100 epochs to get performance estimate of each cell, and
chooses one with the highest validation accuracy. Therefore,
it is necessary to have a faster evaluation criteria to speed
up the overall experimentation. Earlier works have also used
various lower fidelity estimates such as reducing training time
by training; for a fewer epochs, on a subset of data, and with
a downscaled model [7], [35], [36]. Therefore, we use an
approximate evaluation of a discovered cell to speed up the
experimentation by evaluating on a shallower network for only
100 epochs. To get an estimate of the performance of the cells
discovered by DARTS and related works, we evaluate them on
shallower network, see Table III. The averaged test accuracies
of these cells across multiple runs set a baseline on what to
expect from a good cell.

IV. EXPERIMENTS

We evaluate the proposed methodology to measure its
effectiveness in producing high quality cells much faster
than the previous methods. Based on the results of existing
approaches, we first setup a faster evaluation process relying
on shallow networks. Then, we show the impact of searching
deeper and shallower using the sub search spaces. Next, we
evaluate the possible information flow paths within the supernet

TABLE II: Comparison of searching with 1) original DARTS,
2) with only a subset of data, 3) by reducing architectural
parameter updates and 4) combining 2 and 3. Accuracy and
Parameters are averaged while Search Cost is the minimum
across five runs.

Method Skip
Connections

Shallow
Network
Accuracy

Parameters
(M)

Search
Cost
(GPU

Hours)

Normal Reduction

DARTS 14 19 90.25 0.11 36

DARTS
+ Data
Subset

4 14 91.27 0.15 6

DARTS
+ Epoch
Update

5 11 91.33 0.16 4.6

DARTS
+ Data
Subset
+ Epoch
Update

5 8 92.15 0.2 0.85

to identify good candidate edges to search along. Finally, we
evaluate our proposed optimizations for skip connection bias
and search speed. We use both CIFAR-10 and CIFAR-100
for architecture search as well as evaluation scenarios. Both
of these datasets contain 60K, 32 × 32 RGB images. 50K
samples belong to the training while 10K are reserved for
testing purposes.

A. Evaluation of Existing Approaches

Existing works often show results using different hyper-
parameters which makes comparison of different cells rather
challenging. There is a possibility that it is not actually the
discovered cell but the training hyper-parameters which lead
to one discovered cell’s superiority over another. For example,
P-DARTS [11] and PC-DARTS [12], as compared to DARTS,
train their final networks with a slightly bigger batch size
i.e. 128 and a drop path probability of 0.3 instead of 0.2. To
evaluate the performance of the discovered cells, we need
to keep the same training hyper-parameters and run across
multiple seeds. Therefore, we first evaluate the cells discovered
by DARTSV1, DARTSV2, P-DARTS and PC-DARTS, using a
shallow network to set a baseline on the expected performance.
We create a small network of 5 layers (cells) and 16 initial
channels and train it for 100 epochs. We use a batch size of
64, drop path probability of 0.2, learning rate of 0.025 that
drops to 0 using cosine annealing, momentum of 0.9, and
weight decay of 0.0003. We apply gradient clipping at 5 and
do not use cutout or auxiliary tower as in the full evaluation of
DARTS. We train networks using each of the discovered cells
with 10 different seeds and record the average test accuracies
on CIFAR-10.

Mean evaluation accuracies from Table III show that cells
which perform better for deeper networks of 20-36 layers



also perform better on shallower networks of 5-16 layers. For
example, cells discovered with DARTSV1 and DARTSV2
perform worse than PDARTS and PCDARTS. Therefore, as
a rough approximation, cells that perform well on full 20-
36 architectures seem to be performing better for smaller
architectures of 5-16 too. Unless otherwise stated, we use
these shallow network settings to evaluate the effectiveness of
a discovered cell in all of our experiments, hence reducing
the evaluation time from 30 hours to < 3 hours. Moreover,
we train the final networks only when our cell performs well
enough, i.e. test accuracy of > 93% on a shallow network.

B. Unbiased Search via Reduction Techniques

In this section, we show experiments towards reducing
the skip connections whereas simultaneously speeding up the
search. First, we show that it is possible to achieve similar
performance with the improved search, and later we use this
improved search as basis to evaluate the rest of the approaches
from Section III. To build a baseline, we run DARTS with its
original search settings 5 times. The average number of skip
connection for normal and reduction cell combined turn out to
be 7 while the average accuracy is just 90%. We rerun search
with the exact same settings as the original DARTS (2nd order;
please refer to equation 7 in DARTS paper) with only a subset
of data and notice a performance increase of 1%. This also
gives significant speed up, i.e. from 36 hours down to 6 hours
and the average number of skip connections went down to 4,
as shown in Table II.

Next, we evaluate the rate of the architectural parameters
update. DARTS itself updates the architectural parameters for
operations at every step of the training while the supernet
weights themselves are changing rapidly. Using the same
DARTS search settings, we reduce the architectural parameters
update rate to only once per epoch. This improves the resulting
cells by more than 1% on average and the search takes only
4.6 hours. Moreover, the average number of skip connections
is down to 3.

By simultaneously reducing the search data, i.e. using only
2500 samples for training and 2500 for validation (instead
of 25K each in the DARTS), and decreasing the architecture
parameter update frequency we observe an improvement of
almost 2%. Moreover, it brings down the search cost to less
than an hour (0.85 GPU hours or 0.035 GPU days), and reduces
the number of skip connections to 2. Please note that other
than reducing the dataset for search and reducing architectural
parameter updates, all of the search settings are exactly that of
the search scenario from DARTS [10]. Using the above two
techniques combined gives the least number of skip connections
(although not zero) and the fastest gradient based search method
i.e. 11x faster than DARTS+ [33], 8.5x faster than P-DARTS
[11] and 2.8x faster than PC-DARTS [12].

C. Searching Shallow and Deep

To investigate the depth gap and whether some operations
are more effective than others, we perform various experiments
on the search spaces introduced in Section III-A. Initially, for

TABLE III: Evaluation of cells discovered by different NAS
approaches. Cells which perform better for deep networks tend
to perform better for shallow ones too.

Network DARTS V1 DARTS V2 P-DARTS PC-DARTS
Shallow 90.14 91.37 92.76 93.00

Final 97.00 97.24 97.50 97.43

SS1, we run search for 4 different depths i.e. 5, 10, 16, 20 (10
times each) and keep the initial number of channels to 16. We
notice that the resulting cell quality is similar when searching
for depths of 16 and 20 but was superior to when searching
on depth 5. Therefore, for the rest of the spaces, the search is
focused on either 5 (shallow) or 16 (deeper) layer networks. For
each search space; we run the search 10 times each for a shallow
and a deep network (using seeds 20 to 29), train each discovered
cell’s network, and take average of the test accuracy. Figure
2 shows that searching in a 16-16 deep network yields only
marginally better cells than searching in a 5-16 shallow network.
That is except in one case where the search space contains only
separable 3x3 and 5x5 operations. Since the accuracy gap is not
significant, it means that one can search using shallow networks,
which is faster and can still get good cells. A key observation
is that from the resulting cells, the worst performing ones all
have dilated convolution in their search space. Specifically,
dilated convolution 5x5 is the worst operation followed by
dilated convolution 3x3. Overall, the best performing cells are
found in an all separable convolution search space. This leads
us to deduce that separable convolutions are much more likely
to lead to high quality cells. Therefore, in our final search
settings for architectural parameters, we add the following
constant weight factors: 0.0006 to sep3x3 and 0.0004 to sep5x5
while subtracting the same from dil5x5 and dil3x3, which are
empirically found to work best.

D. Searching along the best Paths

Considering the possible graph topologies within the original
DARTS search space, there are 180 possible discrete paths for
each of the normal and reduction cells. Hence, the total number
of possible graph topology combinations for both normal and
reduction cell is 32, 400. Now, considering that the reduction
cell has to appear only twice in a 20 layer network [10],
we can focus on just the normal cell by fixing the reduction
cell. Therefore, we evaluate 180 different, path based shallow
networks, where normal cell comprises of only 3x3 separable
convolutions, with a fixed reduction cell containing only max
pooling. The idea is to discover the best search path by figuring
out the optimal flow of information. Within the best path, the
algorithm then has to search for the right operations only.
This evaluation scheme reveals that different topologies have
different capacities to learn good features and there are indeed,
both good and bad information flow paths. Although all the
operations are similar, the highest accuracy along a certain path
is as high as 92.44% while the lowest, along a different path
was 91.24%. This certainly provides evidence that in addition



TABLE IV: Comparison with state-of-the-art architectures on CIFAR-10 and CIFAR-100 datasets. † As reported by P-DARTS
[11]. ‡ This time is recorded on a GTX 1070 GPU.

Architecture Test Err. (%) Params Search Cost Search Method
C10 C100 (M) (GPU-days)

DenseNet-BC [24] 3.46 17.18 25.6 - manual

NASNet-A + cutout [7] 2.65 - 3.3 1800 RL
AmoebaNet-A + cutout [8] 3.34 - 3.2 3150 evolution
AmoebaNet-B + cutout [8] 2.55 - 2.8 3150 evolution
Hierarchical evolution [9] 3.75 - 15.7 300 evolution
PNAS [37] 3.41 - 3.2 225 SMBO
ENAS + cutout [27] 2.89 - 4.6 0.5 RL

DARTS (first order) + cutout [10] 3.00 17.76† 3.3 1.5 gradient-based
DARTS (second order) + cutout [10] 2.76 17.54† 3.3 4 gradient-based
SNAS + mild constraint + cutout [38] 2.98 - 2.9 1.5 gradient-based
SNAS + moderate constraint + cutout [38] 2.85 - 2.8 1.5 gradient-based
SNAS + aggressive constraint + cutout [38] 3.10 - 2.3 1.5 gradient-based
ProxylessNAS + cutout [39] 2.08 - 5.7 4 gradient-based
PC-DARTS + cutout [12] 2.57 - 3.6 0.1 gradient-based
Fair DARTS [28] 2.54 - 2.8 0.3 gradient-based
P-DARTS CIFAR10 + cutout [11] 2.50 16.55 3.4 0.3 gradient-based
P-DARTS CIFAR100 + cutout [11] 2.62 15.92 3.6 0.3 gradient-based

eDARTS CIFAR10 + cutout 2.53 17.00 3.1 0.015‡ gradient-based
eDARTS CIFAR100 + cutout 2.72 16.83 3.5 0.016 gradient-based

to the operations, cell topology can be a decisive factor in the
resulting final evaluation of a network, see Figure 3.

For exploring different paths, we initially fix the reduction
cell with all max pooling operations to speed up the evaluation.
In the next phase, we take top 20 best performing paths from the
initial evaluation and apply these to both normal and reduction
cells (i.e., same path and all separable 3x3 operations for
both normal and reduction cells) and re-evaluate the unified
paths. One of the best paths results in an accuracy of 93.66%
which is better than our initial shallow baseline from Table III.
Therefore, we create a supernet where the edges are already
fixed with this pre-specified path, and the search is focused
towards learning the right operations only. Moreover, searching
along a smaller super network, i.e. with 8 instead of 14 edges,
further brings down to cost to 0.015 GPU days.

E. Final Architecture Search and Evaluation

For the final architecture search, we incorporate all suggested
improvements; the faster unbiased search from section IV-B,
the focus on separable convolution based on section IV-C, and
run the search along one of the best paths we discover in
section IV-D. We use a shallow supernet of 5 layers with 16
initial channels for the search, where we give slightly higher
weights to choosing separable convolution operations. Overall,
eDARTS’ approach reduces the search cost down to just 0.015
GPU days. For the final evaluation of our discovered cells, we
deploy the exact training pipeline as that of P-DARTS and
PC-DARTS except that we use a smaller batch size of 96
due to GPU memory limitations, and set the initial number
of channels to 32 so that the total number of parameters are
always less than or roughly equal to 3.3M. As shown in Table

IV, on CIFAR-10 we achieve an error of 2.53% with a model
of 3.1M parameters. For CIFAR-100, the error is 16.84% which
is better than DARTS. However, the search cost is the lowest
among all the existing works and we run search only once for
each respective dataset.

F. Ablation Studies

We run search on a 16 layer deep network with an all
separable search space and all 14 edges, and the resulting
best cell gives an error of 2.56%. However, this cell is found
amongst 10 runs of the search, and the cost of each individual
run is roughly around one hour. Next, we run search 10 times
along the pre-specified path but with equal attention to all
operations of the search space, and end up with lower accuracy
cells, i.e. less than 92.5% on shallow network. However with
eDARTS, we need to run search only once for each CIFAR-10
and CIFAR-100 and still get competitive cells.

V. CONCLUSIONS

We propose a search strategy eDARTS that leverages analysis
of the DARTS search space on a micro-level leading to more
informed search and improved search times. Through extensive
experimentation, we show that as compared to search network
depth, operations and cell topologies are more important
factors in deciding the performance of a discovered cell.
As demonstrated by the experiments, the improved search
also alleviates the skip connection bias problem of DARTS.
Consequently, eDARTS can produce competitive architectures
at only a fraction of search cost by putting more attention
to separable convolution operations and searching along a
strong information flow path. Overall, we bring down the



computational cost from 1.5 to just 0.015 GPU days while
maintaining the discovered cell quality.
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