Plastic Evolved
p_e_same <- data.frame(Direction<- c("Upregulated genes", "Upregulated genes", "Upregulated genes", "Downregulated genes", "Downregulated genes", "Downregulated genes"), comparison <- c("C→C", "C→hP", "hP→hP", "C→C", "C→hP", "hP→hP"), LFC <- c(0.01, 1, 1.5, -0.01, -1, -1.5))
p_not_e <- data.frame(Direction<- c("Upregulated genes", "Upregulated genes", "Upregulated genes", "Downregulated genes", "Downregulated genes", "Downregulated genes"), comparison <- c("C→C", "C→hP", "hP→hP", "C→C", "C→hP", "hP→hP"), LFC <- c(0.01, 1, 1, -0.01, -1, -1))
e_not_p <- data.frame(Direction<- c("Upregulated genes", "Upregulated genes", "Upregulated genes", "Downregulated genes", "Downregulated genes", "Downregulated genes"), comparison <- c("C→C", "C→hP", "hP→hP", "C→C", "C→hP", "hP→hP"), LFC <- c(0.01, 0.01, 1, -0.05, -0.05, -1))
p_e_opposite<- data.frame(Direction<- c("Upregulated genes", "Upregulated genes", "Upregulated genes", "Downregulated genes", "Downregulated genes", "Downregulated genes"), comparison <- c("C→C", "C→hP", "hP→hP", "C→C", "C→hP", "hP→hP"), LFC <- c(0, 1, 0, 0, -1, 0))
p_e_opposite$comparison <- ordered(p_e_opposite$comparison, levels=c("C→C", "C→hP", "hP→hP"))
peo <- ggplot(data=p_e_opposite, aes(x=factor(comparison), y=LFC, colour=Direction, group=Direction)) + geom_path(lineend = "round",linejoin = "round", size=2) + theme(text = element_text(family = "Helvetica"))+scale_color_manual(values = c("green3", "orchid4")) + theme(axis.title.x = element_blank(), axis.text.x = element_blank(), axis.title.y = element_blank(), axis.text.y = element_blank(), axis.text=element_text(size=13, color = "black", face = "bold")) + theme(legend.position = "none") + geom_hline(yintercept=0, linetype="dashed", color = "black") + ylim(-3,3) + annotate("text", x=4.5, y=2.5, label = "Maltase (1) \n UDP-glucuronosyltransferase (1) \n Trehalose transporter (1) \n Cytochrome P450 (1) \n Other (1) ", color = "orchid4", hjust = 1, size = 4, family = "Helvetica")
peo

p_not_e$comparison <- ordered(p_not_e$comparison, levels=c("C→C", "C→hP", "hP→hP"))
pne <- ggplot(data=p_not_e, aes(x=factor(comparison), y=LFC, colour=Direction, group=Direction)) + geom_path(lineend = "round",linejoin = "round", size=2) + theme(text = element_text(family = "Helvetica")) + scale_color_manual(values = c("green3", "orchid4")) + theme(axis.title.x = element_blank(), axis.text.x = element_blank(), axis.title.y = element_blank(), axis.text.y = element_blank(), axis.text=element_text(size=13, color = "black", face = "bold")) + theme(legend.position = "none") + geom_hline(yintercept=0, linetype="dashed", color = "black") + ylim(-3,3) + annotate("text", x=4.5, y=3, label = "Phospholipase A2 activity (1) ", color = "orchid4", hjust = 1, size = 4, family = "Helvetica") + annotate("text", x=4.5, y=-2.6, label = "Cathepsin B (3) \n Proteolysis (3) \n Maltase (1) \n Alpha-glucosidase (1) ", color = "green3", hjust = 1, size = 4, family = "Helvetica")
pne

p_e_same$comparison <- ordered(p_e_same$comparison, levels=c("C→C", "C→hP", "hP→hP"))
pes <- ggplot(data=p_e_same, aes(x=factor(comparison), y=LFC, colour=Direction, group=Direction)) + geom_path(lineend = "round",linejoin = "round", size=2) + theme(text = element_text(family = "Helvetica")) + scale_color_manual(values = c("green3", "orchid4")) + theme(axis.title.x = element_blank(), axis.text.x = element_blank(), axis.title.y = element_blank(), axis.text.y = element_blank()) + theme(legend.position = "top", legend.title = element_blank()) + geom_hline(yintercept=0, linetype="dashed", color = "black") + ylim(-3,3) + scale_colour_manual(values = c("green3", "orchid4"), labels = c("Downregulated genes", "Upregulated genes")) + annotate("text", x=4.5, y=-3, label = "Cathepsin B (3) ", color = "green3", hjust = 1, size = 4, family = "Helvetica")
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.

e_not_p$comparison <- ordered(e_not_p$comparison, levels=c("C→C", "C→hP", "hP→hP"))
enp <- ggplot(data=e_not_p, aes(x=factor(comparison), y=LFC, colour=Direction, group=Direction)) + geom_path(lineend = "round",linejoin = "round", size=2) + theme(text = element_text(family = "Helvetica")) + scale_color_manual(values = c("green3", "orchid4")) + theme(axis.title.x = element_blank(), axis.title.y = element_blank(), axis.text.y = element_blank(), axis.text=element_text(size=13, color = "black", face = "bold")) + theme(legend.position = "none") + geom_hline(yintercept=0, linetype="dashed", color = "black") + ylim(-3,3) + annotate("text", x=4.5, y=1.7, label = "Structural constituent of cuticle (10) \n Oxidation-reduction process (6) \n Transferring acyl groups (4) \n Trehalose transporter (1) \n Proteolysis (3) \n UDP-glucuronosyltransferase (3) \n G protein-coupled receptor activity (4) \n Carbohydrate metabolic process (1) \n Chitin metabolic process (2) \n N-acetyltransferase activity (2) \n Other (13) ", color = "orchid4", hjust = 1, size = 4, family = "Helvetica") + annotate("text", x=4.5, y=-1.9, label = "Cathepsin B (2) \n Proteolysis (4) \n UDP-glucuronosyltransferase (1) \n Oxidation-reduction process (1) \n Lipid metabolic process (1) \n Maltase (2) \n Transcription (1) \n Peptide transport (1) \n Other (3) ", color = "green3", hjust = 1, size = 4, family = "Helvetica")
enp

figure1 <- ggarrange(pne, pes, peo, enp, labels = c("A", "B", "C", "D"), label.x = 0, label.y = 1, hjust = 0, vjust = 1, font.label = list(size = 30, color = "black", face = "bold", family = "Helvetica"), ncol = 1, nrow = 4, common.legend = TRUE, legend="top", align = c("hv"))
evolution1 <- annotate_figure(figure1, bottom = text_grob("Treatment", color = "black", face = "bold", size = 20, family = "Helvetica"), left = text_grob("Expression relative to C→C", color = "black", rot = 90, face = "bold", size = 20, family = "Helvetica"))
cairo_pdf("evolution.pdf", height = 23, width = 8)
evolution1
dev.off()
## png
## 2
###HEATMAP - each table separately###
my_palette <- colorRampPalette(c("#107C10", "#DEDFE4", "#5B2071"))(n = 299)
colors = c(seq(-2,-0.10,length=100),seq(-0.09,0.09,length=100),seq(0.10,2,length=100))
#Fig 5
#5a
zscore_5a <- read.csv("./fig_5_a_data_final.csv", header = TRUE)
hd_data <- scale(zscore_5a)
hd_data
## CCF1 CCF2 CCF3 CCF4 CCF5 CPF1
## [1,] -1.48535542 -1.4282384 -1.3024204 -1.4737265 -1.4334478 -0.87690983
## [2,] -0.72919256 -0.7301793 -0.7917117 -0.7223234 -0.6587267 -0.83071456
## [3,] -0.09446503 -0.3999716 -0.3037643 -0.4325037 -0.4256771 -0.09574919
## [4,] -0.38735658 -0.5352016 -0.4784524 -0.3707452 -0.4539554 -0.21292718
## [5,] -0.57194507 -0.4364955 -0.6154887 -0.4593531 -0.3137673 -0.77638021
## [6,] 1.96256612 1.8773612 1.9447689 1.9182788 2.0416832 2.26059718
## [7,] 0.16398809 0.3433652 0.2965486 0.2025500 0.0448826 0.68699470
## [8,] 0.92126661 1.0357510 1.0283173 0.9474406 0.8605453 0.30294585
## [9,] 0.22049386 0.2736091 0.2222027 0.3903825 0.3384633 -0.45785677
## CPF2 CPF3 PPF1 PPF2 PPF3 PPF4
## [1,] -0.5915387 -0.5462605 -0.82292569 -0.8986225 -0.43441488 -0.18598792
## [2,] -1.1506951 -0.8472107 -0.75413771 -0.8536743 -0.71112231 -1.05320783
## [3,] -0.4085509 -0.1880209 -0.38673733 -0.3311347 -0.46994090 -0.43340847
## [4,] -0.3904642 -0.3880287 -0.37592559 -0.2787797 -0.57576279 -0.40780187
## [5,] -0.6756679 -0.6851276 -0.37592559 -0.3951066 -0.49179166 -0.51344100
## [6,] 2.0952481 2.4253546 2.28390413 2.3085040 2.36165025 2.32892363
## [7,] 0.7350496 0.4906325 0.90886238 0.6608149 0.83941767 0.71656871
## [8,] 0.7153151 0.1619919 0.04936258 0.3013696 -0.04085694 0.08965095
## [9,] -0.3286959 -0.4233306 -0.52647718 -0.5133706 -0.47717844 -0.54129619
## attr(,"scaled:center")
## CCF1 CCF2 CCF3 CCF4 CCF5 CPF1 CPF2 CPF3
## 9.376090 9.567707 9.536794 9.244461 9.279456 8.544608 8.552152 8.465650
## PPF1 PPF2 PPF3 PPF4
## 8.340560 8.315563 8.341707 8.328951
## attr(,"scaled:scale")
## CCF1 CCF2 CCF3 CCF4 CCF5 CPF1 CPF2 CPF3
## 1.2243884 1.4147155 1.3186872 1.1232294 1.1971701 0.8211013 0.6019908 0.7571553
## PPF1 PPF2 PPF3 PPF4
## 0.7800781 0.6700602 0.6876650 0.6306186
hd_data <- data.frame(hd_data)
treat_data <- read.csv("./fig_5_a_gene_final.csv", header = TRUE)
rownames(hd_data) <- treat_data[,1]
numerix_data <- hd_data
heatmap.2(as.matrix(numerix_data), Rowv=FALSE,Colv=FALSE, scale = "row", symm=F,symkey=F,symbreaks=T, breaks=colors, cexRow=0.6, cexCol =1.5, lmat = matrix(c(4,2,3,1), nrow=2, ncol=2), lhei = c(0.2,0.9), lwid = c(0.3,0.7), margins=c(10,5), sepwidth=c(0.05,0.05), key=F, key.title=NA, keysize=0.5, key.par=list(mgp=c(1, 0.5, 0), mar=c(1,0.5,0.4,0.4)), trace="none", density.info="none", col = my_palette)
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Using scale="row" or scale="column" when breaks arespecified can produce
## unpredictable results.Please consider using only one or the other.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Rowv is FALSE, while dendrogram is `both'. Omitting row dendogram.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Colv is FALSE, while dendrogram is `column'. Omitting column
## dendogram.

pdf("figure_5_a_heatmap.pdf",paper = "a4r")
heatmap.2(as.matrix(numerix_data), Rowv=FALSE,Colv=FALSE, scale = "row", symm=F,symkey=F,symbreaks=T, breaks=colors, cexRow=0.6, cexCol =1.5, lmat = matrix(c(4,2,3,1), nrow=2, ncol=2), lhei = c(0.2,0.9), lwid = c(0.3,0.7), margins=c(10,5), sepwidth=c(0.05,0.05), key=F, key.title=NA, keysize=0.5, key.par=list(mgp=c(1, 0.5, 0), mar=c(1,0.5,0.4,0.4)), trace="none", density.info="none", col = my_palette)
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Using scale="row" or scale="column" when breaks arespecified can produce
## unpredictable results.Please consider using only one or the other.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Rowv is FALSE, while dendrogram is `both'. Omitting row dendogram.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Colv is FALSE, while dendrogram is `column'. Omitting column
## dendogram.
## png
## 2
#5b
zscore_5b <- read.csv("./fig_5_b_data_final.csv", header = TRUE)
hd_data <- scale(zscore_5b)
hd_data
## CCF1 CCF2 CCF3 CCF4 CCF5 CPF1
## [1,] 0.2535459 0.2713281 0.2299318 0.4104758 0.4959639 0.1321272
## [2,] 0.8488222 0.8363369 0.8650078 0.7294451 0.6550766 0.9273682
## [3,] -1.1023681 -1.1076650 -1.0949396 -1.1399208 -1.1510406 -1.0594954
## CPF2 CPF3 PPF1 PPF2 PPF3 PPF4
## [1,] 0.5214855 0.01572837 0.2445012 0.2096128 0.3807466 0.1719480
## [2,] 0.6314678 0.99204304 0.8550745 0.8785790 0.7536998 0.9028766
## [3,] -1.1529533 -1.00777141 -1.0995757 -1.0881918 -1.1344464 -1.0748245
## attr(,"scaled:center")
## CCF1 CCF2 CCF3 CCF4 CCF5 CPF1 CPF2 CPF3
## 9.053388 9.112966 9.118379 8.811569 8.917771 8.454624 8.539815 8.304696
## PPF1 PPF2 PPF3 PPF4
## 8.106452 8.039404 8.072545 8.015008
## attr(,"scaled:scale")
## CCF1 CCF2 CCF3 CCF4 CCF5 CPF1 CPF2 CPF3
## 0.9589834 1.1518245 1.1095175 0.8076733 0.9046229 0.7530849 0.7619592 0.8249850
## PPF1 PPF2 PPF3 PPF4
## 0.6877322 0.5871477 0.5765094 0.5127190
hd_data <- data.frame(hd_data)
treat_data <- read.csv("./fig_5_b_gene_final.csv", header = TRUE)
rownames(hd_data) <- treat_data[,1]
numerix_data <- hd_data
heatmap.2(as.matrix(numerix_data), Rowv=FALSE,Colv=FALSE, scale = "row", symm=F,symkey=F,symbreaks=T, breaks=colors, cexRow=0.6, cexCol =1.5, lmat = matrix(c(4,2,3,1), nrow=2, ncol=2), lhei = c(0.2,0.9), lwid = c(0.3,0.7), margins=c(10,5), sepwidth=c(0.05,0.05), key=F, key.title=NA, keysize=0.5, key.par=list(mgp=c(1, 0.5, 0), mar=c(1,0.5,0.4,0.4)), trace="none", density.info="none", col = my_palette)
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Using scale="row" or scale="column" when breaks arespecified can produce
## unpredictable results.Please consider using only one or the other.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Rowv is FALSE, while dendrogram is `both'. Omitting row dendogram.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Colv is FALSE, while dendrogram is `column'. Omitting column
## dendogram.

pdf("figure_5_b_heatmap.pdf",paper = "a4r")
heatmap.2(as.matrix(numerix_data), Rowv=FALSE,Colv=FALSE, scale = "row", symm=F,symkey=F,symbreaks=T, breaks=colors, cexRow=0.6, cexCol =1.5, lmat = matrix(c(4,2,3,1), nrow=2, ncol=2), lhei = c(0.2,0.9), lwid = c(0.3,0.7), margins=c(10,5), sepwidth=c(0.05,0.05), key=F, key.title=NA, keysize=0.5, key.par=list(mgp=c(1, 0.5, 0), mar=c(1,0.5,0.4,0.4)), trace="none", density.info="none", col = my_palette)
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Using scale="row" or scale="column" when breaks arespecified can produce
## unpredictable results.Please consider using only one or the other.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Rowv is FALSE, while dendrogram is `both'. Omitting row dendogram.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Colv is FALSE, while dendrogram is `column'. Omitting column
## dendogram.
## png
## 2
#5c
zscore_5c <- read.csv("./fig_5_c_data_final.csv", header = TRUE)
hd_data <- scale(zscore_5c)
hd_data
## CCF1 CCF2 CCF3 CCF4 CCF5 CPF1
## [1,] -0.5215696 -0.4298007 -0.3856790 -0.4285993 -0.4384812 -0.5282047
## [2,] -0.6323416 -0.7354732 -0.7224334 -0.7598285 -0.6023591 -0.6060783
## [3,] -0.3154515 -0.2082361 -0.2691966 -0.2574431 -0.3133303 -0.3138252
## [4,] 1.7712831 1.7562697 1.7629880 1.7542974 1.7793178 1.7744526
## [5,] -0.3019204 -0.3827598 -0.3856790 -0.3084266 -0.4251471 -0.3263444
## CPF2 CPF3 PPF1 PPF2 PPF3 PPF4
## [1,] -0.4777720 -0.5523589 -0.21046237 -0.551304679 -0.4957220 -0.4403270
## [2,] -0.5455523 -0.5319024 -1.15471193 -0.780038495 -0.6419724 -0.8231674
## [3,] -0.4265404 -0.2923546 -0.16469751 0.004106924 -0.3371541 -0.2687637
## [4,] 1.7834965 1.7789437 1.60902322 1.714048560 1.7720423 1.7362750
## [5,] -0.3336318 -0.4023278 -0.07915142 -0.386812310 -0.2971938 -0.2040168
## attr(,"scaled:center")
## CCF1 CCF2 CCF3 CCF4 CCF5 CPF1 CPF2 CPF3
## 8.027369 7.910267 7.715588 7.984553 7.983086 8.355812 8.696520 8.379981
## PPF1 PPF2 PPF3 PPF4
## 7.623018 7.596894 7.924960 7.940301
## attr(,"scaled:scale")
## CCF1 CCF2 CCF3 CCF4 CCF5 CPF1 CPF2 CPF3
## 1.0666507 1.0635861 0.6476769 0.9836512 1.1149581 1.3485711 1.8975421 1.2816942
## PPF1 PPF2 PPF3 PPF4
## 0.4286695 0.3992282 0.9038466 0.7682994
hd_data <- data.frame(hd_data)
treat_data <- read.csv("./fig_5_c_gene_final.csv", header = TRUE)
rownames(hd_data) <- treat_data[,1]
numerix_data <- hd_data
heatmap.2(as.matrix(numerix_data), Rowv=FALSE,Colv=FALSE, scale = "row", symm=F,symkey=F,symbreaks=T, breaks=colors, cexRow=0.6, cexCol =1.5, lmat = matrix(c(4,2,3,1), nrow=2, ncol=2), lhei = c(0.2,0.9), lwid = c(0.3,0.7), margins=c(10,5), sepwidth=c(0.05,0.05), key=F, key.title=NA, keysize=0.5, key.par=list(mgp=c(1, 0.5, 0), mar=c(1,0.5,0.4,0.4)), trace="none", density.info="none", col = my_palette)
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Using scale="row" or scale="column" when breaks arespecified can produce
## unpredictable results.Please consider using only one or the other.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Rowv is FALSE, while dendrogram is `both'. Omitting row dendogram.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Colv is FALSE, while dendrogram is `column'. Omitting column
## dendogram.

pdf("figure_5_c_heatmap.pdf",paper = "a4r")
heatmap.2(as.matrix(numerix_data), Rowv=FALSE,Colv=FALSE, scale = "row", symm=F,symkey=F,symbreaks=T, breaks=colors, cexRow=0.6, cexCol =1.5, lmat = matrix(c(4,2,3,1), nrow=2, ncol=2), lhei = c(0.2,0.9), lwid = c(0.3,0.7), margins=c(10,5), sepwidth=c(0.05,0.05), key=F, key.title=NA, keysize=0.5, key.par=list(mgp=c(1, 0.5, 0), mar=c(1,0.5,0.4,0.4)), trace="none", density.info="none", col = my_palette)
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Using scale="row" or scale="column" when breaks arespecified can produce
## unpredictable results.Please consider using only one or the other.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Rowv is FALSE, while dendrogram is `both'. Omitting row dendogram.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Colv is FALSE, while dendrogram is `column'. Omitting column
## dendogram.
## png
## 2
#5d
zscore_5d <- read.csv("./fig_5_d_data_final.csv", header = TRUE)
hd_data <- scale(zscore_5d)
hd_data
## CCF1 CCF2 CCF3 CCF4 CCF5 CPF1
## [1,] 2.82975225 3.847486122 3.83863830 3.48713822 3.42284647 3.674394366
## [2,] -0.81334863 -0.536534902 -0.53034744 -0.67661977 -0.54976389 -0.397557941
## [3,] 0.90508504 1.734814961 1.45387028 0.94816425 1.46630927 1.560706393
## [4,] -0.68120078 -0.551858828 -0.54398265 -0.90632159 -0.85272306 -0.695959169
## [5,] 0.31325651 0.859049494 0.85943500 -0.07136203 -0.17215836 0.243084925
## [6,] -0.18542855 -0.125644168 -0.03435833 -0.07136203 -0.06668209 -0.017156710
## [7,] -0.30375842 0.340280704 0.04309470 0.02316334 -0.21201003 0.167085268
## [8,] -0.52702219 -0.002871615 -0.05865817 -0.28831983 -0.41420150 -0.212326273
## [9,] -0.81334863 -0.807459428 -0.85294242 -0.75478133 -0.82221439 -0.857883653
## [10,] -0.26993372 0.800112487 0.40464450 0.15559768 0.15862594 0.449309317
## [11,] 0.04803544 0.277050667 0.36458364 0.20493411 0.22998582 0.213187825
## [12,] -0.35100149 -0.298117822 -0.39387110 -0.33579050 -0.28207508 -0.519289727
## [13,] -0.32705519 -0.744221790 -0.61616805 -0.51819126 -0.61112595 -0.714207626
## [14,] -0.57442322 -0.830068457 -0.87616539 -0.59325264 -0.63275742 -0.771974378
## [15,] 0.38208000 0.218228934 -1.35488028 0.75387966 -0.23945585 0.675405257
## [16,] 0.37597614 0.305517168 0.29299184 0.64689431 0.52352416 0.572409703
## [17,] 0.17012453 0.319530003 0.28067323 0.36987529 0.48580500 0.377049272
## [18,] -0.25893780 -0.358497662 -0.16161474 -0.14974840 -0.12748446 -0.360199996
## [19,] 0.92162489 0.658553969 0.57429688 0.78255806 0.84880670 0.735206528
## [20,] -0.35100149 -0.333901096 -0.36014585 -0.33579050 -0.01464202 -0.244683458
## [21,] -1.11838745 -0.959581409 -0.87616539 -0.95251341 -1.07027203 -1.017881071
## [22,] -0.32705519 -0.668320411 -0.67977786 -0.56742674 -0.44828082 -0.533879162
## [23,] -0.74299740 -0.599645864 -0.57201028 -0.70677221 -0.73947662 -0.881411396
## [24,] 0.57422326 1.234837202 0.87175108 0.68194674 0.41924017 0.613269734
## [25,] 2.03606591 2.760692069 2.58295016 2.28593945 2.15759705 2.514792351
## [26,] -0.76532991 -0.744221790 -0.60114523 -0.86423014 -0.63275742 -0.771974378
## [27,] -0.29234049 -0.067362072 0.02039811 -0.22542766 -0.03747812 -0.191267098
## [28,] 0.97015285 1.108133911 1.05293694 0.79468823 1.16318207 0.977884006
## [29,] -0.51191813 -0.230122256 -0.33834221 -0.47175175 -0.44828082 -0.360199996
## [30,] 0.06403657 0.573716906 0.37615136 0.23485097 0.22069966 0.265095616
## [31,] 0.24720439 0.567883502 0.37038018 0.47815968 0.44310175 0.342991235
## [32,] -0.11716145 -0.067362072 -0.05865817 -0.31652574 -0.26766522 -0.130333340
## [33,] -0.76532991 -0.830068457 -0.83077094 -0.86423014 -0.91982411 -0.835265010
## [34,] -1.05502891 -0.959581409 -0.90060221 -0.90632159 -1.04468320 -0.931676303
## [35,] -0.76532991 -0.650552916 -0.45314175 -0.78898838 -0.66649079 -0.813456499
## [36,] -0.08927794 0.108443146 0.21074429 0.37522355 0.19242851 0.159246929
## [37,] 0.12585442 0.744026944 0.82187921 0.50765519 0.42724016 0.548569501
## [38,] -0.72159851 -0.830068457 -0.69668805 -0.64774079 -0.68993230 -0.857883653
## [39,] 0.58470521 0.849380359 0.96304606 0.69917613 1.09350373 0.584194075
## [40,] -0.66204162 -0.878140513 -0.80952412 -0.55482946 -0.73947662 -0.504937818
## [41,] -0.68120078 -0.551858828 -0.73194298 -0.78898838 -0.75249157 -0.931676303
## [42,] -0.68120078 -0.011871904 -0.45314175 -0.53022047 -0.36540467 -0.212326273
## [43,] -0.92956254 -1.143274706 -1.05159783 -1.09877944 -1.20549466 -1.125924040
## [44,] -0.15558704 -0.057928554 0.10157514 -0.17438700 -0.17215836 -0.063033052
## [45,] -0.83940735 -1.143274706 -1.35488028 -1.06420490 -1.20549466 -1.170830486
## [46,] -0.17537804 -0.396611764 0.57429688 -0.55482946 -0.48376122 -0.336047335
## [47,] -0.40106426 -0.492173169 -0.47806563 -0.54243006 -0.43107498 -0.504937818
## [48,] -0.89704985 -0.878140513 -0.95401797 -0.95251341 -0.90216113 -0.881411396
## [49,] 0.17734119 0.041146828 0.40464450 -0.09431121 0.06193669 0.143433107
## [50,] 3.03053262 0.602540631 0.64258959 2.11014156 2.43302268 2.612914392
## [51,] 2.89579493 0.658553969 0.72143912 2.21974248 2.21294583 1.710457699
## [52,] 0.01532000 -0.135656593 -0.19827505 0.01615394 -0.02600262 -0.212326273
## [53,] -0.28106638 -0.422904514 -0.55786519 -0.29763251 -0.31154468 -0.449707499
## [54,] -0.66204162 -0.807459428 -1.01589642 -0.66203153 -0.97742648 -0.987368949
## [55,] 2.80081842 2.538917607 2.76081157 2.46681368 2.74090663 1.676477423
## [56,] -0.96556096 -1.266366481 -0.66330020 -1.39235208 -0.53999711 -0.857883653
## [57,] -0.92956254 -1.143274706 -1.09215463 -1.00426753 -1.02088216 -1.224140809
## [58,] -0.14583948 -0.686536336 -0.58643189 -0.33579050 -0.47475058 -0.360199996
## [59,] -0.57442322 -0.521488395 -0.51694943 -0.56742674 -0.62186137 -0.476905575
## [60,] 1.90175612 1.922337655 2.29513700 2.18211756 1.55473784 2.046028830
## [61,] 1.14626315 0.764661104 0.80915090 1.19255257 1.09095732 1.018875523
## [62,] -1.05502891 -1.143274706 -1.09215463 -1.03297016 -1.16394292 -1.086395849
## [63,] 0.28067427 -0.230122256 -0.17978318 0.57425601 0.32797979 0.009576212
## [64,] -0.78872570 -1.143274706 -0.78909669 -1.03297016 -0.79331065 -0.931676303
## [65,] 0.75627828 0.413799319 0.62340391 0.50278078 0.47428872 0.542550776
## CPF2 CPF3 PPF1 PPF2 PPF3 PPF4
## [1,] 2.875242859 3.49327230 3.39497582 3.63208647 3.623342215 4.11377349
## [2,] -0.557972707 -0.71877932 -0.29576264 -0.32451743 -0.342138430 -0.56683276
## [3,] 0.652556712 0.94581272 1.99361578 1.91529983 1.946054200 1.59279399
## [4,] -0.661870809 -0.69918098 -0.52129870 -0.55985265 -0.624227082 -0.73976826
## [5,] 0.445451148 0.43515385 1.11946608 1.01038460 0.972923995 1.29595570
## [6,] -0.118269240 -0.03037258 0.16069346 0.07001036 0.021331430 -0.01034233
## [7,] -0.223300763 0.13235885 0.87648235 0.63266911 0.549229731 0.32926775
## [8,] -0.366266986 -0.25316596 0.34326769 0.23278787 0.198863536 0.18832378
## [9,] -0.722550929 -0.78198109 -0.89281670 -0.68167190 -0.836011266 -0.65487328
## [10,] 0.107424664 0.24140514 1.18348058 0.99690460 0.841053283 1.00677996
## [11,] -0.031874186 0.26895532 0.45351382 0.55190897 0.591507673 0.48883439
## [12,] -0.590557951 -0.66179072 0.01296054 0.17890184 -0.002900383 -0.30230856
## [13,] -0.342580659 -0.47265459 -0.36948252 -0.36224424 -0.249199978 -0.21741590
## [14,] -0.643153725 -0.71877932 -0.35563784 -0.57399870 -0.493975182 -0.57881624
## [15,] 0.477869147 -1.32195182 1.87977566 1.65672937 1.844138321 2.13706075
## [16,] 0.423374712 0.45899403 0.86693606 1.05652555 0.781608386 1.03829694
## [17,] -0.007340801 0.19892545 0.74405192 1.17287352 0.814060153 0.35973118
## [18,] -0.483239132 -0.54553024 -0.12997872 0.26938028 -0.118980601 0.20540209
## [19,] 0.514695694 0.43515385 1.11349577 1.23676644 1.069586868 0.99398660
## [20,] -0.007340801 -0.04799447 0.28418793 0.16584825 0.193699706 0.48426516
## [21,] -0.846780818 -0.90893181 -0.89281670 -0.83165046 -0.836011266 -0.97727162
## [22,] -0.557972707 -0.59296897 -0.34879305 -0.58841837 -0.317025345 -0.47677101
## [23,] -0.767850458 -0.66179072 -0.62785778 -0.54596822 -0.509167670 -0.56683276
## [24,] 0.062980615 -0.02166647 1.42134547 1.28142748 1.352971198 0.90122717
## [25,] 1.977133281 2.43158045 2.56863162 2.49758891 2.517959414 2.60129416
## [26,] -0.681285752 -0.73906034 -0.41232728 -0.61814546 -0.595282565 -0.73976826
## [27,] -0.193443188 0.02921379 0.24963877 0.50084895 0.293037867 0.16518526
## [28,] 0.819919154 0.95848836 1.20603608 1.44684726 1.241543883 1.50532548
## [29,] -0.469255464 -0.50097822 -0.11910869 -0.11676532 -0.132675977 -0.22559595
## [30,] 0.157115897 0.24140514 0.61135634 0.66140859 0.583920347 0.40900176
## [31,] 0.417795442 0.77548997 0.69313369 0.65922068 0.722887390 0.75016315
## [32,] -0.275433303 -0.19024288 0.02721845 0.12576875 0.050913820 -0.16962702
## [33,] -0.877431306 -0.73906034 -0.83780520 -0.74275579 -0.725273231 -0.73976826
## [34,] -0.846780818 -1.05124414 -0.97086698 -0.96601703 -0.983559164 -0.89270848
## [35,] -0.681285752 -0.48668792 -0.61839354 -0.46128860 -0.499008920 -0.54338793
## [36,] 0.008696741 0.28923762 0.27659672 0.45019736 0.295421496 0.29280910
## [37,] 0.383791618 0.60474534 0.83542959 0.72537741 0.786525670 0.69216950
## [38,] -0.681285752 -0.60952081 -0.58167618 -0.66522609 -0.660487200 -0.64165525
## [39,] 0.275811035 1.15227031 1.82102909 1.51459176 1.883471348 1.00677996
## [40,] -0.557972707 -0.66179072 -0.44967699 -0.53911988 -0.618349842 -0.40498267
## [41,] -0.527031043 -0.56099670 -0.48871263 -0.79043157 -0.660487200 -0.62866812
## [42,] -0.428913146 -0.38065361 -0.03095581 0.06284047 0.050913820 -0.13891413
## [43,] -1.055369935 -0.93945562 -0.98812655 -1.01104954 -0.994401948 -0.85511043
## [44,] -0.015454024 0.01250470 0.26126622 0.22968624 0.226878521 -0.03078549
## [45,] -1.055369935 -1.16556524 -0.97086698 -0.96601703 -0.972966073 -0.85511043
## [46,] -0.164537350 -0.38065361 0.01296054 -0.06284733 0.180692561 0.33439391
## [47,] -0.415954610 -0.48668792 -0.47288285 -0.36776645 -0.300639994 0.16518526
## [48,] -0.949911274 -0.73906034 -0.75245687 -0.70713700 -0.796900655 -0.91254481
## [49,] 0.143141855 -0.09332762 0.32876465 0.34780072 0.323673585 0.09923435
## [50,] 3.788996532 3.06417730 -0.10301277 -0.43692395 0.623276455 0.02294989
## [51,] 2.958806768 2.04264863 0.04129725 -0.09153090 0.102322362 0.08685173
## [52,] -0.254201517 0.06192244 -0.97086698 -0.90021979 -0.781926386 -0.69603459
## [53,] -0.428913146 -0.20045626 -0.97086698 -1.02731461 -1.028620454 -1.08170821
## [54,] -0.643153725 -0.57680194 -1.32099312 -1.28403068 -1.357166792 -1.05291328
## [55,] 2.008431093 2.07530997 0.11791273 -0.03887114 -0.118980601 0.34458707
## [56,] -0.949911274 -1.10085364 -1.32099312 -1.39523790 -1.458909565 -1.44265139
## [57,] -0.911362938 -0.90893181 -1.44944234 -1.39523790 -1.357166792 -1.44265139
## [58,] -0.091546019 -0.11200676 -1.13532417 -1.02731461 -0.983559164 -0.71030384
## [59,] -0.625067122 -0.62648814 -0.95422975 -1.06227532 -1.171515450 -0.91254481
## [60,] 2.266337247 1.62748725 0.09590953 0.12916296 0.371632580 0.66025223
## [61,] 0.888831615 1.08768655 -0.42707745 -0.30881756 -0.449948336 -0.15416150
## [62,] -0.995676444 -1.16556524 -1.44944234 -1.39523790 -1.357166792 -1.44265139
## [63,] 0.070515095 0.02088993 -0.92258821 -0.99545952 -1.016911086 -0.93317941
## [64,] -0.722550929 -0.90893181 -1.32099312 -1.20271732 -1.209925240 -1.14775194
## [65,] 0.703102222 0.67747142 -0.52129870 -0.36776645 -0.493975182 -0.38547006
## attr(,"scaled:center")
## CCF1 CCF2 CCF3 CCF4 CCF5 CPF1 CPF2 CPF3
## 8.206679 8.260681 8.196216 8.162349 8.253549 8.161888 8.125050 8.162071
## PPF1 PPF2 PPF3 PPF4
## 8.576667 8.525233 8.518615 8.371382
## attr(,"scaled:scale")
## CCF1 CCF2 CCF3 CCF4 CCF5 CPF1 CPF2 CPF3
## 0.8483150 0.7894191 0.7884004 0.7428587 0.8093764 0.7072927 0.8311124 0.7822091
## PPF1 PPF2 PPF3 PPF4
## 0.9994455 1.0014098 0.9531684 0.8618531
hd_data <- data.frame(hd_data)
treat_data <- read.csv("./fig_5_d_gene_final.csv", header = TRUE)
rownames(hd_data) <- treat_data[,1]
numerix_data <- hd_data
heatmap.2(as.matrix(numerix_data), Rowv=FALSE,Colv=FALSE, scale = "row", symm=F,symkey=F,symbreaks=T, breaks=colors, cexRow=0.6, cexCol =1.5, lmat = matrix(c(4,2,3,1), nrow=2, ncol=2), lhei = c(0.2,0.9), lwid = c(0.3,0.7), margins=c(10,5), sepwidth=c(0.05,0.05), key=F, key.title=NA, keysize=0.5, key.par=list(mgp=c(1, 0.5, 0), mar=c(1,0.5,0.4,0.4)), trace="none", density.info="none", col = my_palette)
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Using scale="row" or scale="column" when breaks arespecified can produce
## unpredictable results.Please consider using only one or the other.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Rowv is FALSE, while dendrogram is `both'. Omitting row dendogram.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Colv is FALSE, while dendrogram is `column'. Omitting column
## dendogram.

pdf("figure_5_d_heatmap.pdf",paper = "a4r")
heatmap.2(as.matrix(numerix_data), Rowv=FALSE,Colv=FALSE, scale = "row", symm=F,symkey=F,symbreaks=T, breaks=colors, cexRow=0.6, cexCol =1.5, lmat = matrix(c(4,2,3,1), nrow=2, ncol=2), lhei = c(0.2,0.9), lwid = c(0.3,0.7), margins=c(10,5), sepwidth=c(0.05,0.05), key=F, key.title=NA, keysize=0.5, key.par=list(mgp=c(1, 0.5, 0), mar=c(1,0.5,0.4,0.4)), trace="none", density.info="none", col = my_palette)
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Using scale="row" or scale="column" when breaks arespecified can produce
## unpredictable results.Please consider using only one or the other.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Rowv is FALSE, while dendrogram is `both'. Omitting row dendogram.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Colv is FALSE, while dendrogram is `column'. Omitting column
## dendogram.
## png
## 2
###Fig 6###
#6a
zscore_6a <- read.csv("./fig_6_a_data_final.csv", header = TRUE)
hd_data <- scale(zscore_6a)
hd_data
## PPF1 PPF2 PPF3 PPF4 PCF1 PCF2
## [1,] -0.21324893 -0.30296938 -0.14986945 -0.23604163 0.786966768 1.035402988
## [2,] -0.77324608 -0.74452086 -0.63383609 -0.75567190 0.010857098 0.312265065
## [3,] 0.23694426 0.11102414 0.08697300 0.20816822 1.278502233 1.083769826
## [4,] -0.46597663 -0.37547953 -0.45114407 -0.29238321 0.295722454 0.274989542
## [5,] -0.45693441 -0.33850404 -0.53130288 -0.27324275 0.076968811 0.233892267
## [6,] -1.20427520 -1.10612303 -1.11208686 -0.99374717 -0.854354881 -0.607182995
## [7,] 0.23694426 0.03834745 -0.02522290 0.43389369 1.143201158 1.539967475
## [8,] -0.92970636 -0.88390331 -0.73700489 -0.75567190 -0.740951007 -0.646904674
## [9,] -0.92970636 -1.00494399 -0.98029904 -1.02316313 -0.817578154 -0.545764388
## [10,] -0.45693441 -0.42065938 -0.46769576 -0.35220606 -0.211709982 -0.091475094
## [11,] 1.76757174 1.48875398 1.69375224 1.77240952 2.921304952 3.006289030
## [12,] 0.15983555 0.16078996 0.13150040 0.18952558 0.578243574 0.717200151
## [13,] 0.61757751 0.32508061 0.54067933 0.56720370 0.954337111 0.972296189
## [14,] 0.67876423 0.60801619 0.76953454 1.08742307 1.191390506 1.406224656
## [15,] -0.10125144 0.07122392 -0.12611813 0.09859414 2.070621220 1.974069887
## [16,] -0.27786428 -0.21426130 -0.20746108 0.05042531 -0.085172692 -0.038395771
## [17,] -0.48435163 -0.24657809 -0.28660978 -0.03706991 -0.246411471 -0.196053108
## [18,] -0.58284583 -0.50418282 -0.45662642 -0.37302731 1.147082636 1.030574539
## [19,] -0.80132908 -0.98777638 -1.11208686 -0.85035131 -0.817578154 -0.838531737
## [20,] -1.24792747 -1.10612303 -1.19339237 -1.39189093 -1.119165670 -0.922080033
## [21,] -0.27786428 -0.35066197 -0.19903653 -0.25446854 -0.097908149 0.005771174
## [22,] 0.12448575 0.26820448 0.09665550 -0.22695382 -0.565505196 -0.640114091
## [23,] 1.03953868 1.19452685 0.92035029 1.14256511 -0.246411471 -0.098322819
## [24,] -0.26314091 -0.54169374 -0.23315993 -0.40517898 -0.970761244 -0.970813249
## [25,] -0.56216471 -0.49688806 -0.43489972 -0.49718313 -0.761735823 -0.945707164
## [26,] -0.70799497 -0.64012184 -0.69837071 -0.72168062 -0.970761244 -0.984012073
## [27,] 2.06186966 1.67801080 2.07725105 1.11036840 0.290009418 0.124830333
## [28,] 0.90786571 1.31733088 0.95442302 0.44936442 -0.000621981 -0.166000931
## [29,] 1.30373266 1.38476918 1.22271323 1.09729911 0.243107303 0.048038167
## [30,] 3.74838706 3.91300367 3.90402805 4.28437185 2.107575960 1.585445311
## [31,] -0.20631771 -0.26314913 -0.25952741 -0.49718313 -0.682835645 -0.838531737
## [32,] -0.01702924 -0.04386902 -0.03960235 -0.14858672 -0.629887412 -0.829053826
## [33,] 0.76567958 0.77748516 0.71278779 0.49969764 -0.192489308 -0.431607625
## [34,] 0.13976340 0.21212308 0.15315771 -0.09141068 -0.472308583 -0.704027592
## [35,] -0.78712783 -0.70459522 -0.66179970 -0.67384841 -0.970761244 -0.958058951
## [36,] -0.92970636 -0.94024505 -0.93298695 -0.83008716 -1.149505441 -1.114417162
## [37,] -1.10592574 -1.13107867 -1.14976712 -1.13090827 -1.346228967 -1.363288147
## [38,] 0.40697753 0.55455399 0.40987849 0.38099901 -0.206864859 -0.436671362
## [39,] -0.41306772 -0.75491649 -0.59377762 -0.56035213 -0.938382629 -0.984012073
## PCF3 PCF4 PCF5 CCF1 CCF2 CCF3
## [1,] 0.7754710 0.65710244 0.66888469 0.60255302 0.56332495 0.571418766
## [2,] 0.1476284 -0.01430930 0.14351624 -0.16226505 -0.19944125 -0.195880099
## [3,] 1.0077524 1.50538525 0.90638322 1.13941034 1.12059280 1.185304555
## [4,] 0.3784786 0.36948736 0.47549768 0.56859764 0.20057608 0.364706212
## [5,] 0.3812101 0.07407258 0.36817849 0.23134505 0.03675693 0.164012915
## [6,] -0.6832271 -0.89072629 -0.74078181 -0.62029503 -0.79677504 -0.709246302
## [7,] 1.6515920 0.81890198 1.59002926 1.81206757 1.28215133 1.442071294
## [8,] -0.5342212 -0.74268253 -0.62759229 -0.65561122 -0.73826111 -0.716966180
## [9,] -0.4570877 -0.79082931 -0.53678389 -0.64661689 -0.71996384 -0.837427984
## [10,] 0.1339611 -0.40014615 0.10785025 0.01879898 0.15633055 0.006576547
## [11,] 2.9762221 3.05099680 2.92388349 2.93718457 2.95936235 2.947970176
## [12,] 0.7099837 0.61013121 0.82144793 0.67265219 0.60489199 0.670178488
## [13,] 0.7461588 0.87589792 0.79057051 0.86619581 1.10106246 1.054385501
## [14,] 1.6866827 0.95126883 1.63920903 1.29048857 1.26141533 1.206747014
## [15,] 1.6562660 1.99080345 1.65239145 1.73817093 1.93982639 1.895089852
## [16,] 0.3920682 -0.33096863 0.41430587 0.29635551 0.15633055 0.233396851
## [17,] 0.2632021 -0.42845185 0.38633500 0.06878974 0.14334059 -0.087619726
## [18,] 1.4473321 0.77038162 1.38844962 0.93125987 1.01655918 0.968971993
## [19,] -0.7120071 -0.87854392 -0.74968239 -0.73213356 -0.95094719 -0.800276563
## [20,] -1.0425318 -1.00345646 -0.71481849 -0.93575489 -1.14975190 -1.109533417
## [21,] 0.1810283 -0.16486316 0.09124347 0.12822341 0.12687407 0.141720146
## [22,] -0.8589018 -0.42270722 -0.72335448 -0.70241014 -0.63561126 -0.724785377
## [23,] 0.2354732 -0.22570138 0.33906032 -0.12243759 -0.22756962 -0.252999875
## [24,] -0.7635719 -0.92942636 -0.81602920 -0.68330612 -0.88585864 -0.921166136
## [25,] -1.0209057 -0.82194428 -1.02550334 -1.01513898 -0.83943642 -0.847143826
## [26,] -0.9819247 -0.90324778 -1.13717451 -1.07126420 -1.06337676 -0.877474469
## [27,] -0.5568076 0.39337670 -0.44973398 0.04408354 0.14006784 0.207240223
## [28,] -0.3872120 0.18738074 -0.15685583 -0.28666311 -0.21809730 -0.261461161
## [29,] -0.1370628 0.34750192 -0.17404041 0.31287333 0.01107413 -0.059779901
## [30,] 1.2844587 2.38509081 1.38384658 1.83515057 2.16670981 2.182398068
## [31,] -0.9154779 -0.66504274 -0.92756470 -1.07126420 -0.79677504 -0.818526873
## [32,] -0.9471503 -0.52688271 -0.95331572 -0.83078718 -0.58964802 -0.686644250
## [33,] -0.5416679 0.07407258 -0.62018884 -0.37129859 -0.04627353 -0.195880099
## [34,] -0.7745173 -0.36747422 -0.71481849 -0.51585584 -0.47962634 -0.494537694
## [35,] -1.0660724 -0.89072629 -1.09540189 -1.03295554 -0.99519614 -1.024878742
## [36,] -1.0660724 -1.12127730 -1.05866244 -1.26407334 -1.08274354 -1.072843742
## [37,] -1.2027705 -1.36685284 -1.40835919 -1.31461990 -1.40397419 -1.280626154
## [38,] -0.5195629 -0.20348569 -0.47974285 -0.49361077 -0.36078656 -0.309493245
## [39,] -0.8862164 -0.97210576 -0.98067833 -0.96583850 -0.80713362 -0.956996788
## CCF4 CCF5
## [1,] 0.55859065 0.67532376
## [2,] -0.15651219 -0.16880976
## [3,] 0.81807508 0.81409078
## [4,] 0.17137393 0.10016902
## [5,] 0.24124415 0.06753100
## [6,] -0.70267110 -0.76107887
## [7,] 1.41648885 1.74115750
## [8,] -0.75734833 -0.72078894
## [9,] -0.65194219 -0.64068532
## [10,] 0.14099802 0.22933187
## [11,] 2.83092037 2.94792167
## [12,] 0.69572540 0.54747785
## [13,] 0.88983889 0.64327479
## [14,] 1.54519110 1.40779734
## [15,] 1.73256726 1.58468801
## [16,] 0.40504015 0.14742831
## [17,] 0.07450402 0.05922158
## [18,] 1.10234229 0.98211672
## [19,] -0.74926232 -0.72078894
## [20,] -1.04677555 -1.11532876
## [21,] 0.12238651 -0.13166080
## [22,] -0.68049300 -0.61769004
## [23,] 0.05477751 0.01092302
## [24,] -0.85380930 -0.74738120
## [25,] -0.95807123 -0.97460272
## [26,] -1.06106506 -1.06296948
## [27,] 0.09389613 0.45568089
## [28,] -0.15249537 -0.01850943
## [29,] 0.15628468 0.26474259
## [30,] 2.17992239 2.27327852
## [31,] -0.93551039 -0.82656894
## [32,] -0.78222277 -0.74738120
## [33,] -0.25352411 -0.22537243
## [34,] -0.66607860 -0.60644596
## [35,] -1.07588537 -1.11532876
## [36,] -1.10737930 -1.21275692
## [37,] -1.47104004 -1.30581587
## [38,] -0.14849367 -0.24743255
## [39,] -1.01958752 -0.98475835
## attr(,"scaled:center")
## PPF1 PPF2 PPF3 PPF4 PCF1 PCF2 PCF3 PCF4
## 8.473508 8.449924 8.428104 8.302307 8.829596 8.750382 8.631339 8.873288
## PCF5 CCF1 CCF2 CCF3 CCF4 CCF5
## 8.653863 8.655817 8.767623 8.717608 8.588515 8.665947
## attr(,"scaled:scale")
## PPF1 PPF2 PPF3 PPF4 PCF1 PCF2 PCF3 PCF4
## 0.9327351 0.9487637 0.9078229 0.8436576 1.2639515 1.1900302 1.1444048 1.2768454
## PCF5 CCF1 CCF2 CCF3 CCF4 CCF5
## 1.0834130 1.0633365 1.1678244 1.1478161 0.9928264 1.0372565
hd_data <- data.frame(hd_data)
treat_data <- read.csv("./fig_6_a_gene_final.csv", header = TRUE)
rownames(hd_data) <- treat_data[,1]
numerix_data <- hd_data
heatmap.2(as.matrix(numerix_data), Rowv=FALSE,Colv=FALSE, scale = "row", symm=F,symkey=F,symbreaks=T, breaks=colors, cexRow=0.6, cexCol =1.5, lmat = matrix(c(4,2,3,1), nrow=2, ncol=2), lhei = c(0.2,0.9), lwid = c(0.3,0.7), margins=c(10,5), sepwidth=c(0.05,0.05), key=F, key.title=NA, keysize=0.5, key.par=list(mgp=c(1, 0.5, 0), mar=c(1,0.5,0.4,0.4)), trace="none", density.info="none", col = my_palette)
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Using scale="row" or scale="column" when breaks arespecified can produce
## unpredictable results.Please consider using only one or the other.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Rowv is FALSE, while dendrogram is `both'. Omitting row dendogram.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Colv is FALSE, while dendrogram is `column'. Omitting column
## dendogram.

pdf("figure_6_a_heatmap.pdf",paper = "a4r")
heatmap.2(as.matrix(numerix_data), Rowv=FALSE,Colv=FALSE, scale = "row", symm=F,symkey=F,symbreaks=T, breaks=colors, cexRow=0.6, cexCol =1.5, lmat = matrix(c(4,2,3,1), nrow=2, ncol=2), lhei = c(0.2,0.9), lwid = c(0.3,0.7), margins=c(10,5), sepwidth=c(0.05,0.05), key=F, key.title=NA, keysize=0.5, key.par=list(mgp=c(1, 0.5, 0), mar=c(1,0.5,0.4,0.4)), trace="none", density.info="none", col = my_palette)
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Using scale="row" or scale="column" when breaks arespecified can produce
## unpredictable results.Please consider using only one or the other.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Rowv is FALSE, while dendrogram is `both'. Omitting row dendogram.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Colv is FALSE, while dendrogram is `column'. Omitting column
## dendogram.
## png
## 2
#6b
zscore_6b <- read.csv("./fig_6_b_data_final.csv", header = TRUE)
hd_data <- scale(zscore_6b)
hd_data
## PPF1 PPF2 PPF3 PPF4 PCF1 PCF2
## [1,] -0.1438060194 -0.1076440 0.07492055 0.25319976 0.62433191 0.6949267
## [2,] 2.5926640557 2.3668930 2.57767007 2.51317088 2.69442724 2.5500547
## [3,] -0.4347133086 -0.4090142 -0.51802728 -0.02840592 0.40086281 0.7961274
## [4,] -0.7424088197 -0.8981489 -0.68726764 -0.66863663 -0.50803414 -0.4135962
## [5,] -0.8782362156 -0.8542506 -0.90414826 -0.86607579 -0.79019569 -0.7765042
## [6,] -0.5072399658 -0.7371965 -0.58884710 -0.55023959 -0.56685403 -0.6787838
## [7,] 0.0002166964 0.1428076 -0.02386592 -0.19799288 -0.39244922 -0.4846993
## [8,] -0.5905077504 -0.5728933 -0.48313139 -0.73410027 -0.54563678 -0.6383873
## [9,] -0.5532119910 -0.5728933 -0.60643883 -0.75247888 -0.69014944 -0.6383873
## [10,] 0.4809703204 0.5828265 0.28670411 0.04527829 -0.23984101 -0.2806841
## [11,] 0.7762729981 1.0595137 0.87243169 0.98628104 0.01353835 -0.1300666
## PCF3 PCF4 PCF5 CCF1 CCF2 CCF3
## [1,] 0.79029778 0.61654545 0.6209829 0.027175152 0.48936605 0.1134258
## [2,] 2.49179286 2.75321241 2.4800747 2.587946674 2.65429918 2.6380027
## [3,] 0.75287341 0.19757731 0.7918497 -0.006966694 -0.37223830 -0.2634765
## [4,] -0.43952616 -0.43564623 -0.6010233 -0.824439005 -0.66913088 -0.6490069
## [5,] -0.84741555 -0.75901529 -0.8156365 -0.806524876 -0.71823633 -0.7891867
## [6,] -0.64562740 -0.66890737 -0.6659430 -0.595294632 -0.51445848 -0.5335750
## [7,] -0.43268126 -0.41192882 -0.3047958 -0.063057739 -0.29564894 -0.3634298
## [8,] -0.69473142 -0.50485065 -0.6107673 -0.614994015 -0.55873363 -0.3719241
## [9,] -0.63176350 -0.57901245 -0.7406613 -0.397880340 -0.71823633 -0.7891867
## [10,] -0.43952616 -0.15823574 -0.4894870 -0.299450334 0.04670036 0.1663089
## [11,] 0.09630741 -0.04973861 0.3354068 0.993485809 0.65631730 0.8420485
## CCF4 CCF5
## [1,] 0.25583262 0.03757161
## [2,] 2.54599734 2.63593981
## [3,] 0.07232605 -0.02504735
## [4,] -0.72528069 -0.78253347
## [5,] -0.91877753 -0.86750761
## [6,] -0.62927556 -0.59314883
## [7,] 0.04401403 -0.10248445
## [8,] -0.79120525 -0.63844500
## [9,] -0.50314703 -0.41914429
## [10,] -0.21792457 -0.09923975
## [11,] 0.86744058 0.85403932
## attr(,"scaled:center")
## PPF1 PPF2 PPF3 PPF4 PCF1 PCF2 PCF3 PCF4
## 8.343211 8.306367 8.275133 8.346394 8.262825 8.488335 8.534795 8.311095
## PCF5 CCF1 CCF2 CCF3 CCF4 CCF5
## 8.552616 8.555354 8.263527 8.246348 8.375776 8.478667
## attr(,"scaled:scale")
## PPF1 PPF2 PPF3 PPF4 PCF1 PCF2 PCF3 PCF4
## 1.091599 1.034983 1.161455 1.113305 1.436096 1.751835 1.660068 1.558687
## PCF5 CCF1 CCF2 CCF3 CCF4 CCF5
## 1.599328 1.315219 1.211108 1.202691 1.120690 1.258053
hd_data <- data.frame(hd_data)
treat_data <- read.csv("./fig_6_b_gene_final.csv", header = TRUE)
rownames(hd_data) <- treat_data[,1]
numerix_data <- hd_data
heatmap.2(as.matrix(numerix_data), Rowv=FALSE,Colv=FALSE, scale = "row", symm=F,symkey=F,symbreaks=T, breaks=colors, cexRow=0.6, cexCol =1.5, lmat = matrix(c(4,2,3,1), nrow=2, ncol=2), lhei = c(0.2,0.9), lwid = c(0.3,0.7), margins=c(10,5), sepwidth=c(0.05,0.05), key=F, key.title=NA, keysize=0.5, key.par=list(mgp=c(1, 0.5, 0), mar=c(1,0.5,0.4,0.4)), trace="none", density.info="none", col = my_palette)
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Using scale="row" or scale="column" when breaks arespecified can produce
## unpredictable results.Please consider using only one or the other.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Rowv is FALSE, while dendrogram is `both'. Omitting row dendogram.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Colv is FALSE, while dendrogram is `column'. Omitting column
## dendogram.

pdf("figure_6_b_heatmap.pdf",paper = "a4r")
heatmap.2(as.matrix(numerix_data), Rowv=FALSE,Colv=FALSE, scale = "row", symm=F,symkey=F,symbreaks=T, breaks=colors, cexRow=0.6, cexCol =1.5, lmat = matrix(c(4,2,3,1), nrow=2, ncol=2), lhei = c(0.2,0.9), lwid = c(0.3,0.7), margins=c(10,5), sepwidth=c(0.05,0.05), key=F, key.title=NA, keysize=0.5, key.par=list(mgp=c(1, 0.5, 0), mar=c(1,0.5,0.4,0.4)), trace="none", density.info="none", col = my_palette)
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Using scale="row" or scale="column" when breaks arespecified can produce
## unpredictable results.Please consider using only one or the other.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Rowv is FALSE, while dendrogram is `both'. Omitting row dendogram.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Colv is FALSE, while dendrogram is `column'. Omitting column
## dendogram.
## png
## 2
#6c
zscore_6c <- read.csv("./fig_6_c_data_final.csv", header = TRUE)
hd_data <- scale(zscore_6c)
hd_data
## PPF1 PPF2 PPF3 PPF4 PCF1 PCF2
## [1,] -0.63623400 -0.94719309 -0.77362017 -0.98815900 -0.8944253 -0.93290127
## [2,] 1.31820121 1.39130955 1.65299073 1.67141917 2.1700975 1.98973254
## [3,] -0.11979459 -0.15113557 -0.19642327 -0.31772414 -0.1749346 -0.36248708
## [4,] -0.71239813 -0.77659598 -0.83421250 -0.49525054 -0.6538068 -0.73081748
## [5,] -0.71239813 -0.94719309 -0.98058863 -0.98815900 -0.8944253 -0.93290127
## [6,] -0.89648199 -0.94719309 -0.98058863 -0.80149632 -0.6538068 -0.93290127
## [7,] -0.89648199 -0.60625317 -0.83421250 -0.80149632 -0.8944253 -0.93290127
## [8,] -0.44631122 -0.38278145 -0.29670762 -0.06194653 -0.4780054 -0.39917375
## [9,] 0.56869522 0.71942682 0.47099197 0.64141620 -0.2158063 0.03011474
## [10,] 0.43366435 0.62899645 0.40765107 0.34887630 0.5856055 0.43447759
## [11,] -0.41040155 -0.35783007 -0.41515881 -0.49525054 -0.2593761 -0.43862086
## [12,] -0.52867849 -0.70599283 -0.54211834 -0.61519463 -0.4780054 -0.52908750
## [13,] -0.31607251 -0.16924860 -0.39672331 -0.49525054 -0.1363237 -0.32806182
## [14,] -0.14143389 -0.33391424 -0.34469064 -0.34382108 -0.5542810 -0.48155605
## [15,] -0.31607251 -0.40891698 -0.29670762 -0.34382108 -0.3062434 -0.32806182
## [16,] -0.71239813 -0.65185746 -0.62237782 -0.61519463 -0.8944253 -0.58308611
## [17,] -0.89648199 -0.94719309 -0.72715256 -0.80149632 -0.6538068 -0.52908750
## [18,] -0.14143389 0.03957828 -0.06148669 -0.13820495 -0.5542810 -0.43862086
## [19,] -0.89648199 -0.94719309 -0.83421250 -0.98815900 -0.8944253 -0.93290127
## [20,] 0.65123599 0.63746779 0.75980626 0.56141728 0.4901626 0.75918019
## [21,] 3.87470528 3.73466828 3.77146734 3.53916417 3.5479027 3.31287444
## [22,] -0.37700984 -0.08262344 0.06506984 -0.34382108 0.2970529 -0.05662182
## [23,] 1.58802779 1.44758650 1.39700081 1.44884532 1.3792834 1.68559297
## [24,] -0.09876758 -0.08262344 -0.08443220 -0.39958524 0.2246108 -0.20681655
## [25,] 0.53630725 0.36613224 0.22871472 0.32419838 0.2493063 0.88713126
## [26,] -0.23535856 -0.35783007 -0.31230701 -0.24508589 -0.1749346 -0.17962449
## [27,] 0.01680355 0.20940638 0.09422794 0.69848051 0.2734425 0.48990147
## [28,] 0.50305033 0.62899645 0.68580012 1.04529951 0.5482741 0.66722484
## PCF3 PCF4 PCF5 CCF1 CCF2 CCF3
## [1,] -0.93903781 -0.67948955 -0.8465279 -0.674765807 -0.84803443 -0.810277208
## [2,] 1.82803186 2.57290827 1.5331742 3.142419177 3.49490941 3.337436732
## [3,] -0.61897100 0.00980045 -0.4645414 -0.090170835 0.30074194 0.004864253
## [4,] -0.61897100 -0.52817573 -0.5233035 -0.354247021 -0.22301327 -0.766031334
## [5,] -0.75412824 -0.88657586 -1.0238566 -0.768205503 -0.84803443 -0.329047715
## [6,] -0.93903781 -0.88657586 -1.0238566 -0.976639740 -1.07742739 0.721453440
## [7,] -0.67761936 -0.59382851 -1.0238566 -1.185493594 -1.07742739 2.237605993
## [8,] -0.38572737 -0.26726320 -0.2548598 0.349781435 -0.05831872 -0.233782404
## [9,] 0.58591120 0.07687017 0.7585084 2.112031050 1.91817980 1.495807332
## [10,] -0.09703638 0.63131594 0.4999381 1.580145527 1.44031388 1.265605228
## [11,] -0.13763325 -0.52817573 -0.3866834 -0.016059277 -0.25380626 -0.147670598
## [12,] -0.67761936 -0.59382851 -0.7731490 -0.560608894 -0.61912627 -0.270635364
## [13,] -0.41720522 -0.33996679 -0.2960467 -0.280559904 -0.19332964 -0.270635364
## [14,] -0.05840441 -0.52817573 0.1253109 0.931487314 0.56330707 0.270190164
## [15,] -0.25003081 -0.23401585 -0.2751587 -0.129327115 -0.28584319 0.004864253
## [16,] -0.56957432 -0.59382851 -0.7168921 -0.527026616 -0.68038618 -0.484951270
## [17,] -0.75412824 -0.67948955 -0.7168921 -0.719108625 -0.84803443 -0.536599490
## [18,] -0.15876182 -0.52817573 0.2008599 0.646817706 0.28244523 0.073682959
## [19,] -0.93903781 -0.88657586 -0.8465279 -0.890227434 -0.68038618 -0.860540534
## [20,] 0.82142730 0.30573999 0.9081848 0.102628221 -0.13688502 -0.270635364
## [21,] 3.63127010 3.44573321 3.6169013 1.069790733 1.17395138 -1.186144709
## [22,] -0.38572737 0.11894651 -0.3866834 -0.674765807 -0.31927933 -0.655192644
## [23,] 1.45261680 1.32006630 1.3367630 0.069968781 0.42196261 0.046661018
## [24,] -0.38572737 -0.08890062 -0.4645414 -0.976639740 -0.43020001 -0.592858260
## [25,] 0.46737258 0.15921223 0.3806393 -0.354247021 -0.31927933 -0.510267638
## [26,] -0.09703638 -0.33996679 -0.1970720 -0.719108625 -0.68038618 -0.810277208
## [27,] 0.47862268 -0.08890062 0.2249249 -0.109558459 -0.22301327 -0.623143584
## [28,] 0.59616281 0.63131594 0.6352443 0.001690069 0.20639958 -0.099480683
## CCF4 CCF5
## [1,] -0.59172433 -0.891373773
## [2,] 3.19299749 1.957000444
## [3,] 0.29663179 0.167256792
## [4,] -0.24099944 -0.817675707
## [5,] -1.12278111 -0.338352613
## [6,] -1.12278111 1.470997464
## [7,] -0.76832447 3.235689514
## [8,] 0.15290069 -0.266857257
## [9,] 1.99820670 1.448802481
## [10,] 1.16538319 0.773073960
## [11,] -0.48513200 -0.164545615
## [12,] -0.76832447 -0.266857257
## [13,] -0.15795651 -0.349054781
## [14,] 1.25168167 0.612752641
## [15,] -0.19024042 -0.416293639
## [16,] -0.68886700 -0.615926641
## [17,] -0.72657951 -0.138398749
## [18,] 0.42567317 0.186758971
## [19,] -0.68886700 -1.022055299
## [20,] -0.06732815 -0.416293639
## [21,] 1.46855745 -0.009027748
## [22,] -0.72657951 -0.949924989
## [23,] 0.15290069 0.237317069
## [24,] -0.59172433 -0.919413318
## [25,] -0.11156474 -0.556936778
## [26,] -0.76832447 -1.067586559
## [27,] -0.19024042 -0.664076242
## [28,] -0.09659383 -0.218998733
## attr(,"scaled:center")
## PPF1 PPF2 PPF3 PPF4 PCF1 PCF2 PCF3 PCF4
## 7.753224 7.746346 7.777694 7.801418 7.662099 7.687006 7.772244 7.729321
## PCF5 CCF1 CCF2 CCF3 CCF4 CCF5
## 7.821563 7.865399 7.752518 7.882594 7.818830 8.066407
## attr(,"scaled:scale")
## PPF1 PPF2 PPF3 PPF4 PCF1 PCF2 PCF3 PCF4
## 0.6973887 0.6527895 0.6625261 0.6814592 0.5971112 0.5991821 0.6860380 0.6782196
## PCF5 CCF1 CCF2 CCF3 CCF4 CCF5
## 0.6773747 0.6219947 0.5796124 0.6361497 0.6152600 0.7386354
hd_data <- data.frame(hd_data)
treat_data <- read.csv("./fig_6_c_gene_final.csv", header = TRUE)
rownames(hd_data) <- treat_data[,1]
numerix_data <- hd_data
heatmap.2(as.matrix(numerix_data), Rowv=FALSE,Colv=FALSE, scale = "row", symm=F,symkey=F,symbreaks=T, breaks=colors, cexRow=0.6, cexCol =1.5, lmat = matrix(c(4,2,3,1), nrow=2, ncol=2), lhei = c(0.2,0.9), lwid = c(0.3,0.7), margins=c(10,5), sepwidth=c(0.05,0.05), key=F, key.title=NA, keysize=0.5, key.par=list(mgp=c(1, 0.5, 0), mar=c(1,0.5,0.4,0.4)), trace="none", density.info="none", col = my_palette)
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Using scale="row" or scale="column" when breaks arespecified can produce
## unpredictable results.Please consider using only one or the other.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Rowv is FALSE, while dendrogram is `both'. Omitting row dendogram.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Colv is FALSE, while dendrogram is `column'. Omitting column
## dendogram.

pdf("figure_6_c_heatmap.pdf",paper = "a4r")
heatmap.2(as.matrix(numerix_data), Rowv=FALSE,Colv=FALSE, scale = "row", symm=F,symkey=F,symbreaks=T, breaks=colors, cexRow=0.6, cexCol =1.5, lmat = matrix(c(4,2,3,1), nrow=2, ncol=2), lhei = c(0.2,0.9), lwid = c(0.3,0.7), margins=c(10,5), sepwidth=c(0.05,0.05), key=F, key.title=NA, keysize=0.5, key.par=list(mgp=c(1, 0.5, 0), mar=c(1,0.5,0.4,0.4)), trace="none", density.info="none", col = my_palette)
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Using scale="row" or scale="column" when breaks arespecified can produce
## unpredictable results.Please consider using only one or the other.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Rowv is FALSE, while dendrogram is `both'. Omitting row dendogram.
## Warning in heatmap.2(as.matrix(numerix_data), Rowv = FALSE, Colv = FALSE, :
## Discrepancy: Colv is FALSE, while dendrogram is `column'. Omitting column
## dendogram.
## png
## 2