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Abstract—Application-specific instruction-set processors
(ASIPs) are interesting for improving performance or energy-
efficiency for a set of applications of interest while supporting
flexibility via compiler-supported programmability. In the
past years, the open source hardware community has become
extremely active, mainly fueled by the massive popularity of the
open-standard RISC-V instruction set architecture. However,
the community still lacks an open source ASIP co-design tool
that supports rapid customization of RISC-V-based processors
with an automatically retargetable programming toolchain.

To this end, we introduce OpenASIP 2.0: A co-design toolset
that is built on top of our earlier ASIP customization toolset
work by extending it to support customization of RISC-V-
based processors. It enables RTL generation as well as high-
level language programming of RISC-V processors with custom
instructions. In this paper, in addition to describing the toolset’s
key technical internals, we demonstrate it with customization
cases for AES, CRC and SHA applications. With the example
custom instructions easily integrated using the toolset, the run
time was reduced by 44% on average compared to the standard
RISC-V ISA. The speedups were achieved with a negligible
datapath area overhead of 1.5%, and a 1.4% reduction in the
maximum clock frequency.

Index Terms—ASIP, RISC-V, co-design tools, compilers

I. INTRODUCTION

Application-specific instruction-set processors (ASIPs) offer
a middle ground in terms of flexibility and performance
between general purpose processors and fixed function accel-
erators, while allowing instruction set customization for an
application domain. This enables to tailor the architecture to
achieve better performance or energy-efficiency in targeted
applications, while maintaining programmability. [1]

However, programming of ASIPs requires special atten-
tion as the compiler toolchain must be aware of the cus-
tom instructions so that they can be used when compiling
programs. Moreover, the manual customization of processor
implementations and their details, such as function units (FUs),
is laborious and error-prone work. To overcome these barriers,
co-design toolsets offer support for programming and hard-
ware generation of ASIPs. Even though the RISC-V ISA has
gained traction both in academia and industry, the open source
community still lacks an open source implementation of a co-
design toolset targeted for RISC-V-based ASIPs.

Processor co-design tools based on processor description
languages (PDLs) simplify processor customization, while

also enabling the retargetability of the compiler toolchain.
However, PDLs tend not to differentiate between instructions
and operations, preventing the description of operation se-
mantics separately from the sources and targets of operands.
In addition, reuse of already implemented operations is not
typically supported when customizing instruction sets with
PDLs. [2]

To increase processor hardware-software co-design produc-
tivity while keeping performance and area overheads minimal,
we introduce the first open source, retargetable toolset for
generating and programming RISC-V-based ASIPs supporting
custom instructions.1 Furthermore, we describe an automatic
generation of function unit RTL from directed acyclic graph
(DAG) based operation representations that allow reuse of
operation descriptions, and integrate it with generation of
RISC-V custom instructions.

We demonstrate the toolset by designing and integrating
an instruction set extension (ISE) for AES, CRC and SHA
applications, which reduced the run time by 44% on average
with a small area overhead of 1.5% when synthesized with a
28 nm technology.

II. RELATED WORK

The rising popularity of the RISC-V ISA has created
motivation for RISC-V generators with retargetable compiler
toolchains. Multiple proprietary ASIP co-design toolsets such
as Synopsys ASIP Designer [3], Codasip Studio [4] and Andes
[5] ship with support for custom instructions as well as mod-
ification for the microarchitectural implementation of RISC-
V-based processors. However, the tools are not open source,
lacking the freedom of the hardware community to extend
and adopt them for their academic, hobbyist and commercial
purposes.

The open source community maintains toolsets for the
customization of RISC-V implementations such as the Chisel-
based Rocket Chip Generator [6] and the TL-Verilog-based
WARP-V project [7]. Even though the open source tools have
extensive support for configuring the microarchitecture, such
as pipelining and branch prediction, they lack support for
an automatically retargetable programming toolchain and the

1The code will be published together with this paper.



automatic hardware generation of custom instructions, which
hinders the design space exploration of RISC-V-based ASIPs.

With Codasip Studio and ASIP Designer, users describe the
processor architecture and implementation with the codAL and
nML PDLs that are used to reconfigure the compiler toolchain
and generate the processor RTL. While this allows to describe
the processor architecture on a high level, description of
instructions is tightly coupled with the architecture definition,
which prevents reuse of already described operations. [2][3][8]

Kultala et al. [9] describe a DAG-based operation set de-
scription incorporated with OpenASIP co-design toolset [10].
The DAG-based operation set description utilizes operation set
libraries and reusing of already implemented operations as part
of the operation description. This simplifies the description of
operations and allows reuse between architectures. However,
in its current state, the DAG-based descriptions are only
used for automatic instruction selection, and cannot therefore
be used to automatically generate hardware implementations
for operations. We extended the toolset by adding automatic
hardware generation from DAG-based operation descriptions
to minimize the design effort when customizing ASIPs.

III. PROCESSOR CUSTOMIZATION IN OPENASIP

In this section, we overview OpenASIP, formerly known as
TTA-based Co-Design Environment (TCE). OpenASIP is an
open source co-design toolset that has compilation, simulation
and hardware generation support for ASIPs based on transport
triggered architecture (TTA). TTA is a highly modular stat-
ically scheduled exposed datapath [11] architecture. Unlike
with operation triggered architectures [12], TTA programming
interface is based on explicit moves that result in execution of
operations as a side-effect. The low level programming inter-
face and modular structure enables TTA template to be used
for describing other more dynamic processor architectures.

We chose OpenASIP as a base for our customization flow
due to the modular structure and the massive amount of
previous functionality done over the past two decades that
could be reused and extended for RISC-V ASIP customization.

A. Customization Flow

Fig. 1 presents the processor customization flow in Ope-
nASIP. The toolset ships with a retargetable compiler and
hardware generator that adapt to a high-level architecture
description. The hardware descriptions of processors gener-
ated by the toolset can be simulated in RTL simulation and
synthesized with third party vendor tools.

Architecture definition file (ADF) is an XML-based file
that describes the architectural information that is needed to
program the processor. In addition to architectural information,
the architecture definition file describes parts of the microar-
chitectural details of RISC-V implementations, such as FU
configurations and operation latencies that are visible in the
programming interface of TTA-based processors. The function
units described in the architecture definition include operations
that are described in separate operation set databases. The
operation set databases only describe the semantics of the
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Fig. 1: Processor customization in OpenASIP with a retar-
getable compiler and automatic hardware generation.

operations, while the operation latency is defined in the
architecture definition’s FU description.

In the OpenASIP flow, the architecture definition does not
describe instruction encodings. Instead, they are automatically
generated to a binary encoding map (BEM) from the architec-
ture definition. Binary encoding map is used in the generation
of decode logic and program binaries.

When the processor RTL is generated, the user can give
the processor generator tool an implementation definition file
(IDF) that links the function unit descriptions in the architec-
ture definition to hardware implementations of the matching
FUs in the hardware databases (HDBs). If an implementa-
tion definition file is not passed to the processor generator
tool, the function unit generator proposed in this work can
automatically generate the hardware from the operation set
entries if the operation behaviour is described as a sequence
of already implemented operations in a separate operation set
abstraction layer (OSAL), or if the operation implementations
are described with an HDL in the hardware database.

B. Operation Set Customization

The operation set abstraction layer consists of operation
entries that describe all the operations that can be used by the
toolset. The abstraction layer is divided further into subcompo-
nents, where the XML-based operation property file describes
all the information that is needed to use the operation in the
compiler flow. Furthermore, the semantics of the operation can
be described as a DAG if the operation is implemented as a
sequence of already implemented operations. An example of
such an operation is shown in Fig. 2. A sigma function used
to accelerate SHA encryption is represented by using basic
operations and immediate values, with one input IO(1) and
one output IO(3). One unused input operand, IO(2), is used
to pad the operation to the RISC-V R-format.

IV. IMPLEMENTATION

This section describes the extensions made to the OpenASIP
toolset, which enables rapid hardware generation and retar-
getable compiler support for RISC-V processors with custom
instructions.

A. Function Unit Generator

During processor generation, implementation definition files
link hardware database HDL implementations of FUs to the
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Fig. 2: Code description (a) and a DAG (b) of a SHA-256
sigma function with an unused input operand.

descriptions of FUs found in the architecture definition file.
While this allows users to heavily modify the hardware imple-
mentation, it is impractical for rapid design space exploration
as the user must write the RTL implementations of entire FUs
by hand when the architecture is modified.

We extend the hardware generation flow of OpenASIP with
a function unit generator tool that automatically generates
hardware descriptions of FUs from operation descriptions, in
case the implementation definition file does not define all or
any of the FU implementations. In addition, the function unit
generator automatically generates operation pipelines based on
the operation latency described in the architecture definition.

To incorporate custom operations to processors, two options
were implemented into the function unit generator. First, the
user can describe the operation as an HDL snippet. Instead of
an FU implementation, operation snippets describe only the se-
mantics of a single operation with VHDL or Verilog. Creation
of the FU modules, as well as connecting the snippet operands
to FU inputs and outputs is handled by the function unit
generator, as long as pre-defined signal names for operands are
used. The snippet is added as a hardware database entry, after
which it can be used to automatically generate the hardware
description when the operation is included in the architecture
definition. The snippet option, of course, requires the user to
be knowledgeable in writing HDL as demonstrated in Fig. 3
that represents a byte reflection snippet with an unused input
operand, op2, to pad the operation to the RISC-V R-format.

for bits in 0 to 7 loop
op3(bits) <= op1(7-bits);

end loop;

Fig. 3: A VHDL snippet for a byte reflection operation.

The second option is to describe the custom operation as
a DAG consisting of already implemented operations. If the
operation can be constructed using existing operations, the
user does not need knowledge of HDL coding. The operations
included in the toolset have snippet entries in the hardware
database, which allows users to automatically generate hard-
ware when those operations are used, as well as to use them in
description of DAG-based custom operations as demonstrated
in Fig. 2.
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Fig. 4: The compilation flow with a hook to the OpenASIP
LLVM backend for processing custom instructions.

B. RISC-V Customization

Our approach for RISC-V customization uses operation set
libraries that contain operation descriptions. To incorporate
operations between different instruction types, architecture
definition and binary encoding map templates were extended
for the description of operation triggered instruction formats.
Operations are added to architecture definition and binary
encoding map instruction formats as entries, which allows to
reuse the operation descriptions between different instruction
types. This way, operations are described independently of the
instruction type.

To utilize the extensive support for customization and gen-
eration of TTA-based ASIPs, the core functionality of the
hardware generation flow was reused, and the decode and
control logic generation extended for RISC-V implementa-
tions. As encodings for all instructions are described in a
binary encoding map, decode logic for custom instructions
is automatically added when the decoder RTL is generated.
The current toolset implementation supports generation of
the RV32E/I(M) subsets with optional custom instructions,
configurable single-issue in-order pipeline with 3-4 stages,
tailoring of the bypass network and operation latencies.

C. Runtime Compiler Adaptation

To utilize the upstream LLVM RISC-V backend and bin-
tools without needing to reconfigure and compile them each
time the processor architecture is modified, we extended the
LLVM RISC-V backend by adding a hook to OpenASIP’s
LLVM backend. In the compiler frontend, OpenASIP is loaded
to the compilation flow as a dynamic library together with



#define _OA_RV_AES283XOR(i1, i2, o1) do {
unsigned __oa_op_output_1 = (unsigned)0;
asm ("//aes283xor \%0, \%1, \%2":
"=r"( __oa_op_output_1):
"r"((unsigned)(i1)),
"r"((unsigned)(i2)));

o1 = __oa_op_output_1;
} while(0)

Fig. 5: Example of a custom instruction intrinsic that defines
the instruction name and operands.

the architecture definition file. As the RISC-V backend and
bintools are not modified during run time, they cannot recog-
nize the custom instructions. Therefore, they must be handled
by OpenASIP’s LLVM backend and replaced with binaries
that describe the encoding and operand fields of the custom
instructions.

Fig. 4 shows the compiler hook in more detail. The high-
level source code is processed and optimized in the compiler
front- and middle-end after which the intermediate represen-
tation is passed to the compiler backend for target-specific
phases of the compilation. OpenASIP hooks into the compila-
tion flow as a preemit pass between the register allocation and
code emission phases of the RISC-V backend. At this stage,
the backend has allocated registers for the custom instructions
which allows to replace them with matching instruction bina-
ries based on the generated binary encoding map. In addition
to the binary, the custom instruction is inserted as a comment
to increase readability of the generated assembly.

In the high-level source code, custom instructions are in-
voked with intrinsics. An example of such an intrinsic is
presented in Fig. 5. In addition to the operands, the intrinsic
describes the name of the instruction. As the RISC-V backend
cannot recognize custom instructions, we included the instruc-
tion name as a comment to the inline assembly intrinsic that is
then processed by the OpenASIP backend when the instruction
is expanded before code emission.

An important phase in the processing of custom instructions
is the generation of the binary encoding map when the Ope-
nASIP LLVM backend is hooked into from the RISC-V LLVM
backend. As discussed in Section III, the binary encoding map
is automatically generated from the architecture definition file
and it identifies the encoding for each instruction. RISC-V
ISA reserves free opcodes that can be used to add custom
instructions to the instruction set. When an instruction in the
architecture definition is not recognized as an implemented
standard RISC-V instruction, a binary encoding is generated
for it by utilizing the free opcodes of the RISC-V ISA. When
the OpenASIP LLVM backend detects a RISC-V custom
instruction, it is able to construct the matching binary by
combining the allocated register indexes and the operation
code from the generated binary encoding map.

As mentioned previously, in the current compiler imple-

mentation, the programmer invokes the custom instructions
with the use of automatically generated intrinsics. Automatic
pattern matching based custom instruction selection is left for
future work. From the programmer’s perspective, it is useful
if the compiler can independently utilize custom instructions
with the use of instruction selection patterns, but typically
with more exotic operation chains, the programmer must
directly invoke them anyhow due to practical issues with
automated instruction selection. An example of this is inter-
block instructions, such as saturation arithmetics that require
instruction selection across basic blocks [13].

V. DESIGN CASE STUDIES

For the case study examples, we chose the advanced encryp-
tion standard (AES) benchmark implemented in CHStone [14],
a cyclic redundancy check (CRC) implementation [15] and the
secure hash algorithm (SHA) implemented in the Embench
benchmark suite. These applications were chosen because they
benefit from custom instructions that are cheap to implement
in hardware, which makes them interesting candidates for
instruction set customization.

We demonstrated the customization flow by generating cus-
tom instructions for the applications both with the DAG-based
descriptions and HDL snippets, and evaluate the performance
and area results against an identical RV32IM implementation
without custom instructions which serves as a baseline for the
evaluation.

To identify suitable custom instructions, we compiled the
benchmarks for the RV32IM subset and ran the compiled
programs with an instruction set simulator. We used the profile
data generated by the simulator to identify commonly executed
sequences of instructions that are interesting for designing a
custom instruction set extension.

A. Operation Implementations

The AES algorithm executes a sequence of shifting and a
conditional xor of a value frequently. Implementing such a
sequence of operations as a custom instruction is particularly
interesting as it can be used to reduce the amount of expensive
control flow instructions in the program. The semantics of the
instruction are simple to describe as an HDL snippet or as a
DAG with the use of a select operation.

The CRC-32 algorithm uses byte and word reflection to
reverse the bit order of received data and the remainder value.
The reflection operation is complex to describe as a DAG as
it uses bit manipulation. However, it is cheap to implement
in hardware with the use of an HDL snippet because it only
includes shuffling the bits of an operand as shown in Fig. 3.

The RISC-V cryptography ISE [16] introduces custom
instructions for the acceleration of SHA implementations.
The instructions combine the rotation and xoring operations
required to implement the SHA functionality. In this work,
we implemented the SHA-256 sigma and sum instructions as
custom instructions. As they combine multiple basic opera-
tions, they are ideal to implement as a DAG as seen in Fig. 2.



sha256sig0 : rotr7(in)⊕ rotr18(in)⊕ (in ≫ 3)
sha256sig1 : rotr17(in)⊕ rotr19(in)⊕ (in ≫ 10)
sha256sum0 : rotr2(in)⊕ rotr13(in)⊕ rotr22(in)
sha256sum1 : rotr6(in)⊕ rotr11(in)⊕ rotr25(in)
reflect8 : ∀i ∈ [0, 7], out[i] = in[7− i]
reflect32 : ∀i ∈ [0, 31], out[i] = in[31− i]

aes283xor :

{
(in ≪ 1), (in ≫ 7) ̸= 1

(in ≪ 1)⊕ 283, (in ≫ 7) = 1

Fig. 6: Included custom operations.

B. Evaluation

All of the custom instructions presented in Fig. 6 were added
to an architecture definition that was configured with three
pipeline stages. The generated RTL was evaluated by synthe-
sizing the cores with Synopsys Design Compiler and a 28
nm process technology without hardware support for division.
Table I presents the areas and maximum clock frequencies of
the cores. The addition of custom instructions only increased
the area utilization by 1.5% and decreased the maximum clock
frequency by 1.4%, thanks to the simplicity of the operation
semantics. The operations consist of constant shifts and xor
operations that can be implemented in hardware at a low cost.

TABLE I: Post-synthesis properties of the cores.

RV32IM RV32IM + ISE
Area (µm2) 21337 21666
Fmax (GHz) 1.43 1.41

The applications were compiled with the toolchain with and
without the custom ISE, and were run in ModelSim to acquire
clock cycle information. The cycle counts acquired from RTL
simulation are combined with the matching maximum clock
frequencies to calculate the run time of the applications in
Fig. 7. As seen in the figure, the custom instructions reduce
the run time significantly, approximately 44% on average. The
SHA benchmark benefits the most from the use of custom
instructions as the sum and sigma functions appear in the
program frequently, which reduced the run time by 49%.
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Fig. 7: Run time relative to the RV32IM baseline.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a hardware-software co-design
toolset for programming and customizing of RISC-V-based
ASIPs. It includes a retargetable compiler toolchain and
support for automatic hardware generation from a high-level
architecture definition. We demonstrated the toolset by tailor-
ing an ISE for the AES, CRC and SHA applications. The
generated ISE reduced run time by 44% on average with
a small 1.5% overhead in the core area. The demonstration
showed that the instruction set customization can be done
with little design effort with the proposed toolset while vastly
improving the application performance with minimal hardware
overhead.
In the future we plan to investigate adding automatic custom
instruction selection from the DAG-based operation descrip-
tions for RISC-V code generation.
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