
IJDC | Conference Paper

Submitted March 12, 2022 ~ Accepted April 22, 2022

Correspondence should be addressed to Vicky Rampin, 70 Washington Sq South, New York, NY 10012. Email:

vs77@nyu.edu

This paper was presented at International Digital Curation Conference IDCC22, online, 13-16 June, 2022

The International Journal of Digital Curation is an international journal committed to scholarly excellence and dedicated

to the advancement of digital curation across a wide range of sectors. The IJDC is published by the University of

Edinburgh on behalf of the Digital Curation Centre. ISSN: 1746-8256. URL: http://www.ijdc.net/

Copyright rests with the authors. This work is released under a Creative Commons Attribution

License, version 4.0. For details please see https://creativecommons.org/licenses/by/4.0/

International Journal of Digital Curation

2022, Vol. 17, Iss. 1, pp.
1 http://dx.doi.org/10.2218/ijdc.v17i1.xxx

DOI: 10.2218/ijdc.v17i1.xxx

Who writes scholarly code?

Sarah Nguyễn

University of Washington

Vicky Rampin

New York University

Abstract

This paper presents original research about the behaviours, histories, demographics, and motivations of

scholars who code, specifically how they interact with version control systems locally and on the Web. By

understanding patrons through multiple lenses – daily productivity habits, motivations, and scholarly needs -

- librarians and archivists can tailor services for software management, curation, and long-term reuse, raising

the possibility for long-term reproducibility of a multitude of scholarship.

http://www.ijdc.net/
http://dx.doi.org/10.2218/ijdc.v17i1.xxx

2 | Who writes scholarly code?

IJDC | Conference Paper

Introduction

Computational scholarship is dependent on software; from specialty boutique scripts created by

individuals or groups for one-off analyses to full-fledged software packages distributed worldwide

(Hettrick, 2014). Reproducibility requires more than just access to the immediate code being

used; it also requires its dependencies, down to the operating system (Steeves, Rampin, &

Chirigati, 2018). Software preservation is therefore key to long-term reproducibility; holding other

research materials (such as data) without the code that transforms it into the intellectual or

analytical result has less utility, and may even make those materials more difficult to understand

(Chassanoff & Altman, 2019).

With the rise in scholars coding as a part of their research and teaching/learning, version

control systems (VCS) have also become more integrated into the academic toolkit (Milliken,

Nguyễn, & Steeves, 2021). VCS are “system[s] that record changes to a file or set of files over time

so that you can recall specific versions later” (Chacon & Straub, 2014). Version control is done on

a repository which contains all the metadata and history for all tracked files. The most popular

VCS today is Git (StackOverflow, 2018), which was created in 2005 as an attempt to create a more

user-friendly VCS (Torvald, n.d.).

An ecosystem has emerged around these VCS to promote wide sharing of repositories on the

Web. These source code “forges” are web-based platforms that provide support for open and

collaborative software development as well as bug tracking and wikis. When Git was created, a

separate category was formed—a Git Hosting Platform (GHP), which either exclusively supports

Git (such as GitHub and GitLab) or foregrounds its support (like SourceForge) (Milliken et al.,

2021). With GHP, there are now social features in addition to the local version control that Git

offers. The friendly web-based interface with additional functionality such as wikis, task

management, and static hosting of web pages, also expands its possible use cases and makes the

platform attractive to academics creating and working with a variety of materials and

computational research.

However, GHP do not provide long-term preservation of the repositories that they host, and

in fact, some have depreciated, taking all the hosted work with them (Squire, 2017). With more

scholarship and knowledge being produced using Git as a tool and being hosted and accessed on

GHP, there is a dearth of understanding scholars’ practices and behaviors using Git and GHP and

how libraries and archives can preserve research software, with its necessary components (such as

wikis documenting how to use it), for longer term reuse. We present original research on

academics using version control, specifically how these scholars are using version control locally as

well as via GHP, as individuals and in collaboration. We ask:

RQ1: Who is using version control and GHP? What are their experiences learning and using

it, and what are their motivations? What are key characteristics of scholars’ use of version control

and GHP?

RQ2: How are users setting up their work to be archived later on? Where are they archiving

their work?

RQ3: How do the collaborations facilitated by hosting code on GHP contribute to long-term

usability of scholarly code?

Background

The use of VCS and GHP have been integrated into academic work, and scholars have shared

the benefits and drawbacks to using them. These toolkits are influential to the creation and

sharing of knowledge now more than ever, and as knowledge creation moves towards FAIR

principles for both data (Wilkinson et al., 2016) and software (Lamprecht et al., 2019), we explore

how GHP supports (or does not) tasks scholars need to carry out within the academic ecosystem:

 Nguyễn & Rampin | 3

IJDC | Conference Paper

• Version control: A history of changes allows scholars to gather a more comprehensive

understanding on how computations, scripts, and analyses have evolved through a study

by viewing line-by-line changes in the code base, as well as who in the research team to

contact for questions (Hrynaszkiewicz, 2013; Kaki, Sivaramakrishnan, & Jagannathan,

2019; Meloni, 2019).

• Community & collaboration: When researchers publish data, scripts, and software used

in their study onto a GHP, there are lower barriers for reuse "and [it can] serve as a

powerful catalyst to accelerate progress" (Langille, Ravel, & Fricke, 2018; Ram, 2013;

Vanderplas, 2014/2021).

• Method tracking: Scholars are writing protocols to aggregate, manage, and analyze data

into lab and field notebooks. Git commit history can give researchers and team members

reference to understand the iterative progress of a study. Data analysis pipelines, also

known as processing workflows, can benefit from version control systems for exposure,

collaborative feedback, and reproducibility of the methodology (CARPi, Minges, & Piel,

2017; Dallas, 2015/2019; Raj, 2016; Ram, 2013).

• Education: Syllabi, open education resources (OER), and course management can be

hosted on GHP. Students and teachers also benefit from GHP as the platform enhances

collaboration, communication, feedback, provenance of course materials and submitted

work, and exposes students to industry experience (Britton, 2014; Croxall, 2012; Glassey,

2019; Laadan, Nieh, & Viennot, 2010; Lawson, 2013; Metz, 2015; Ross, 2019).

• Quality assurance: GHP allows for merging small changes of code often throughout the

development cycle and provides testing for bugs in data structures and code changes. This

ensures quality experimentation and analyses (Benedetto, Podstavkov, Fattoruso, &

Coimbra, 2019; Krafczyk, Shi, Bhaskar, Marinov, & Stodden, 2019; Widder, Hilton,

Kästner, & Vasilescu, 2019; Yenni et al., 2018).

• Reproducibility: Through publishing, hosting code, and versioning for transparent

methodologies, reviewers are able to obtain scripts to replicate analyses, “permit[ting]

others to fully understand what a researcher has done” (Stodden, Leisch, Peng, Leisch, &

Peng, 2018). When researchers cite their own Git repository within their paper, reviewers

can navigate to that repository and access the source code, computational environment

(when provided), and data in order to replicate the study (Vanderplas, 2016).

• Peer production: As a product of communal and collaborative tasks, scholars can take a

wiki-like approach to crowdsourcing and commons-based development practices on

GHP. This makes use of the assignment and bug tracking features (aljedaxi, 2019/2019;

Astropy, 2011/2022; Zotero, 2011/2022; Perez, 2012).

• Publishing: Publishing on GHP “can build up well-documented and robust code libraries

that may be reused for future projects and for teaching purposes” (Allen & Mehler,

2019). Common features in GHP, such as web hosting and continuous integration (CI),

can help communicate the full scholarship pipeline that can be integrated into a research

object bundle (Soiland-Reyes, Gamble, & Haines, 2014).

Academic research on the uses of version control and GHP in scholarly experiences tends to

focus on the beneficial possibilities of using the tool throughout the research process, which leaves

a gap in understanding who is using Git in academia and their general usage. This article offers a

necessary perspective to understand what scholars report to use, ignore, and champion, as well as

addresses how curators can help prepare to preserve source code repositories for future reuse,

aiding in the long-term reproducibility of the scholarship.

Methodology

To understand scholars who use Git and GHP, we undertook a three-part mixed methods study.

The first part included focus group sessions with self-identified minimal Git users, followed by a

4 | Who writes scholarly code?

IJDC | Conference Paper

survey which targeted Git users of all levels. The last part was in-depth interviews with survey

participants who opted in. All participants self-identified as people who contribute to academic

activities and are embedded in scholarly environments. The results presented here were derived

from the survey only (Steeves & Nguyễn, 2020) in order to provide a quantitative perspective to

research findings.

The goal of the survey was to better understand the landscape of academic users of VCS and

GHP, in order to gather a wide-ranging and comparable census across the spectrum of their

behaviors. The survey was open for four months and two days. There were 54 questions divided

into seven sections: Background, Learning Git, Teaching Git, Features on GHP, Scholarship,

Sustainability, and Demographics. The full survey and resulting data are freely available (Steeves

& Nguyễn, 2020). Hosted on Qualtrics, the survey included branching logic to determine

participant eligibility and to display probing questions based on participant answers. Multiple

choice options within the survey were influenced by patterns understood from the literature

review and analysis of focus group data, such as the list of popular GHP options and terminology

that beginners and non-users could comfortably comprehend.

Recruitment for the survey was conducted through social media, listservs, targeted outreach,

and snowball sampling—participants shared the survey with their colleagues. The survey was open

to an international audience. We aimed to collect at least 500 survey submissions, and received

496 total survey submissions. A sample email that was sent out to recruit participants and the list

of distribution channels we contacted is available in the OSF
1

.

The survey was open during the COVID-19 pandemic, therefore, the sample population of

those who participated in the survey may lack representation from potential participants who had

experienced extenuating circumstances. Those who volunteered their time to submit their self-

reflections on the survey also self-identified as scholars and/or academics which may have left less

representation to students who do not yet self-identify as full-time scholars. Also, this survey came

from the perspective of libraries and archival practices, and as is common in library-hosted

surveys, there is a potential loss in the sample population from those who do not already make

use of the library’s resources and/or are not already slightly motivated or interested to join a

conversation about Git.

This paper represents a statistical analysis of the survey results to provide a broad overview of

scholars’ use of VCS and GHP. The data analysis includes frequency distributions and cross-

tabulation. The analysis was done using R and tidyverse packages (Müller & Bryan, 2020;

Pedersen, 2020; Wickham, 2007; Wickham et al., 2019), and the source code is also openly

available (Rampin, 2022).

Results

The survey results represent broad-scale behaviors, motivations, and workflows of academic

coders who use a VCS. 496 participants took the survey overall. On average, the survey took 15

minutes to complete and had a 90% completion rate. Of these participants, 358 fit the four

criteria for inclusion in analysis: 1) they currently work or study at an academic institution, 2) they

write or (re)use code in their work, and 3) they use a version control system for that code, and 4)

they consent to participate.

Participant population

At the end of the survey, we asked participants to share some basic information about their

current work and academic status. This included their field of study, current role, length of time

in their current role, and the type of institution in which they work. Using this information, we can

better understand how using VCS manifests in different contexts.

1

 https://osf.io/nu649

https://osf.io/nu649

 Nguyễn & Rampin | 5

IJDC | Conference Paper

Of those who answered, there were 140 staff members (45 of which were postdocs), 81

students (58 doctoral, 19 Masters, 6 undergraduate), and 76 faculty members (49 tenure-

track/tenured, 27 continuing contract), with 24 selecting “other”. The length of time in their

current role varied, though of the survey respondents who answered most were starting out. 269

respondents indicated that they were in their current position for up to seven years (172 were in

years 0-3, 97 in years 4-7), while 53 were in their positions for more than eight years (25 in years

8-10, 28 selected 11+ years). 195 of these participants were situated in a public university, 93 in a

private university, and 33 in “other” (popular text write-ins included “research institute,”

“government agency,” and “non-profit organization”).

Additionally, participants were asked to choose which discipline they align with the most. The

list of 83 disciplines was drawn from NSF Science and Engineering Degrees: 1966–2010

Classification of Fields of Study (“National Center for Science and Engineering Statistics

Appendix B Science and Engineering Degrees: 1966–2010,” 2013, pp. 1966–2010) and

Wikidata academic discipline query (“Wikidata Query: Academic Discipline,” 2020). When

grouped into larger categories, of those who answered 226 were from STEM, 74 from Social

Sciences, 13 from the Humanities, and 10 selected “Multidisciplinary.”

Table 1. Distribution of field and status among participants

 Continuing

contract

faculty

Tenure

track

faculty

Staff Postdoc Doctoral

student

Masters

student

Undergrad

student

Other

Humanities 1 4 3 2 1 0 0 2

Multi 0 1 4 3 0 0 0 2

Social Science 13 13 27 4 7 3 0 7

STEM 13 31 61 36 50 16 6 13

The majority of the participants are public university staff members and students early in their

roles. When looking at earlier survey answers, these participants reported that they started their

careers using Git or were trained to practice version control as a part of their job expectations.

This direct job expectation led scholars to Git and GHP, and training in the context of a position

(with discrete outcomes) was a factor that can lower the barrier-to-entry to the tools.

Version Control Use

Git is the most popular VCS across all groups. It is the VCS that most participants began using

(217 participants), and also the one that most participants currently use (354 participants). Fig. 1

shows a comparison across different local VCS. When using VCS locally, more participants use a

terminal (297) than a graphical user interface (GUI, 107 participants). 43 participants selected

“other” and wrote text responses that included many mentions of extensions to popular

development environments (such as RStudio, VS Code, and Emacs), as well as a web browser

(e.g. only uploading documents to web-based repositories on GHP).

6 | Who writes scholarly code?

IJDC | Conference Paper

Figure 1. First and current VCS used by participants.

When using a GHP on the Web, an overwhelming number of participants use GitHub as

their primary GHP—343. The next most popular was GitLab.com (140 participants), then

Bitbucket (74), then self-hosted solutions (57), and finally 7 participants did not use a web-hosted

platform for storing and working on their source code (write-in text suggested this was largely for

security/confidentiality reasons). Of those who self-hosted a GHP, text responses included self-

hosted GitLab, Gerrit, Gitea, and Git-on-a-Linux server (no GUI). Of those that selected “Other,”

text responses included sourcehut, codeberg, darcshub, and dropbox.

Many participants use both Git and their GHP of choice on a daily basis (177, as seen in

Table 2). Most of the time, participants used Git and GHP equally (88 weekly, 15 monthly, 10

quarterly, 1 yearly). Some participants used Git daily but GHP weekly (21), and to a lesser extent

the opposite (14 participants used a GHP daily and Git weekly). In the case of the latter, this

could be indicative of making more contributions to the scholarly ephemera around code (see

Table 3), rather than code contributions. Scholarly ephemera are rich material which provides

context to the source code development process, including content that provides insights into the

genesis of a project, communications between its contributors and collaborators, and the

procedures and interactions that brought it to its most current state (Milliken, Nguyễn, & Rampin,

2019). These artifacts are important when understanding the history of a repository, the

relationships between repositories, the branching and network formation of repositories and their

contributors, and the ways in which this information could be used to track derivatives of current

work. An example would be bug trackers—a GHP feature which combines discussions, to-do lists,

and notifications. An example is the “issue” feature in GitHub and GitLab. Bug trackers are used

to do everything from peer review to calls for retraction. We argue that all of these activities need

to be preserved in addition to the source code, and that those contributions are significant to the

development of scholarly code overall.

Table 2. Participants’ frequency in using both Git locally and GHP on the Web.

 Frequency using Git locally

 Daily Weekly Monthly Quarterly Yearly Other

Frequency

using

GHP

Daily 177 14 1 0 0 0

Weekly 21 88 13 1 0 1

 Nguyễn & Rampin | 7

IJDC | Conference Paper

Monthly 1 3 15 1 0 0

Quarterly 2 1 0 10 0 0

Yearly 0 0 0 0 1 0

Other 0 0 0 0 0 1

Additionally, participants demonstrated their significant usage of various GHP features that

contribute to the creation of scholarly ephemera. In Table 3, the spread of GHP features

according to participant status type shows how often each group makes use of each feature. Of all

the GHP features, merge requests (e.g. on GitHub, forking and making a pull request), bug

tracking, and web hosting (e.g. GitLab Pages) tend to be the most popular. Of note is that

postdocs use Continuous Integration (CI, services that automate building, testing, and shipping

code) more than web hosting, master’s students use code annotation more than bug tracking, and

undergrads use code annotation more than web hosting. When looking at postdocs’ free-text

answers to how they use CI, most popular responses included automating tests (from unit tests

and self-harm checks, down to linting), making websites, building documentation, and publishing

packages. Understanding where there are contributions to the scholarly ephemera around a

project can inform what might be needed alongside the code repository itself in order to make it

useful in the long-term.

Table 3. Participants’ use of GHP features, by status.

Status Project

Boards

CI Code

annotation

Merge

requests

Bug

tracker

Web

hosting

Wiki Other

Staff 36 49 56 81 80 63 41 5

Postdoc 10 28 24 36 35 25 12 2

Doctoral

student

17 23 31 50 49 36 14 3

Masters student 3 4 8 17 7 8 1 0

Undergrad

student

1 3 4 6 4 2 2 0

Continuing

contract faculty

9 11 15 22 22 22 10 0

Tenure track

faculty

12 24 26 42 34 34 10 4

Other 10 12 13 16 19 15 10 2

8 | Who writes scholarly code?

IJDC | Conference Paper

In combination with questions about past and current usage, participants were asked about

what motivated them to use VCS and GHP. We found collaboration to be the strongest motivator

for both local and Web-based use, with openness as a second major motivator. Scholars have a

simple need for version control, and there currently isn’t a more accepted or widespread system

than Git. This was reflected in the “Other” responses for using a Git locally, which included many

horror stories relating to a lack of code management that prompted participants to seek out a tool

to help them. Participants also wrote about wanting to be able to contribute to open source

software and needing to learn Git under that impetus. Many wrote that it was a requirement for a

class or a job which is, of course, a significant social and economic pressure.

Figure 2. Participants' motivations for using Git locally and GHP, by status.

Figure 2 compares the behavioral motivations of Git and GHP according to participant

scholarly status. The pressures that lead participants to adopt Git into their workflow tend to relate

to broader skills and social pressures, while the reported reasons for using GHP demonstrates

needs for specific features and tasks. There is a larger drive to use GHP due to factors that lead to

providing information to others, whether that is for “openness” or “collaboration”, whereas the

larger drivers to use Git stem from the various personal reasons of “needing a VCS”, which in

turn could be for the use of engaging collaborators. This also served multiple purposes, as we saw

later in the survey when we asked specifically about using GHP as a backup location and provider

for code—275 participants reported GHP as a tool to backup their code and 59 did not

(potentially using other backup methods or none at all).

 Nguyễn & Rampin | 9

IJDC | Conference Paper

Figure 3. Participants self-reported proficiency with Git, by status.

Finally, participants were also asked to rate their proficiency with using Git overall on a scale

of 1 (basic knowledge) to 5 (recognized authority). Most participants rated themselves in the

middle, as ‘intermediate (practical application)’ (see Fig. 3). Staff overwhelmingly reported

intermediate to expert proficiency. Some tenure track, staff, and graduate students reported basic

and novice proficiency levels, which may provide some insight into their openness to engage in

using Git despite their lower proficiency to Git as a tool in their daily workflow.

Teaching & Learning

We were motivated to understand how participants learned Git and GHP and got their

proficiency. Further, it was made clear through the literature review and focus groups that many

academics teach Git and GHP to each other, through formal and informal means. This is a core

academic activity and is embedded throughout, making it vital to understand. This section will

show how participants perceive their teaching and learning experiences with Git and GHP

whether it was in the classroom, among colleagues, or on their own in documentation or

discussion forums.

Of those who answered, 286 participants learned Git after entering postsecondary education,

with 40 having learned it before. 22 selected ‘Other’ with most specifying time periods

traditionally after postsecondary education (e.g. on the job). The majority of these participants

found Git neutral-to-hard to learn, while GHP were rated from easy to very easy to learn. This

may be in part because most GHP are run by for-profit entities who can pay people to run UX

studies and write in-depth documentation, driving the value of the product (the GHP).

10 | Who writes scholarly code?

IJDC | Conference Paper

Figure 4. Participants level of ease learning both Git and GHP, by status.

Tenure track faculty participants were the only community that did not mark Git as “very

easy” to learn while also being one of few other communities who did not perceive GHP as “very

hard” to learn (see Fig. 4). Masters students, postdoctoral students, and continuing contract faculty

also did not perceive GHP as “very hard” to learn. Similarly, master’s students and continuing

contract faculty did not perceive Git as “very hard” to learn.

As said in many Git workshop materials, it is not a tool that someone can learn in one go. To

that end, participants were asked to reflect on how often they re-teach themselves Git. The

majority of our participants re-teach themselves about once a quarter (see Fig. 5). Additionally,

understanding the materials they used to learn Git can shed light on effective (or ineffective)

methods. Participants relied mostly on books, articles, or blog posts to guide them through

instructions on using Git, while online forums and manuals were the second most referenced

learning material, and workshops from resources such as library instruction or Carpentry sessions

were the third most popular learning source. Participants were given a free-text box to list their

favorite learning resources, and many gave credit to Jenny Bryan, software engineer at RStudio,

and her Twitter account for tips and tricks. Additionally, other avenues of learning include trial

and error, and colleagues and friends for emotional support.

 Nguyễn & Rampin | 11

IJDC | Conference Paper

Figure 5. Frequency with which participants re-teach themselves Git.

In addition to questions about how participants learn Git, we also asked about teaching. 198

participants indicated they have taught Git to others (144 indicated they have not). 82% of those

participants do not teach regularly (leaving 18% that do teach Git regularly). Of those who teach:

55 make original instructional materials, 97 mix original and secondary materials, and 43 reuse

materials from others. These participants teach a lot in-person (180), but there were also those

who taught virtually asynchronously (28) and synchronously (43). Participants were asked what

resource would help them teach more effectively, and answers included: a helper in the room

(online or in-person), hosted/curated computational environments for students (to avoid

installation problems), more time to thoughtfully integrate into existing courses, and a concise

handout with graphics.

Research & Sustainability

While many participants reported their motivations for using Git in terms of technical features or

the facilitation of collaborating with co-researchers, there are also external factors which guide

researchers use for such tools. In 2011, the rate of using GHP has increased due to funding

agencies like the National Institute of Health, the National Science Foundation (Rubenstein,

2012), and the National Endowment for the Humanities mandating that publications and authors

make raw data and/or source code available on an openly accessible repository or archive. Many

public and private investors followed suit and included this mandate into their required research

practices. In this section we explore participants’ reported operations in how Git and GHP are

used in research (particularly with respect to collaboration), their funder’s expectations, and the

scholarly ephemera they most use to accomplish their goals.

Among the scholars and academics we surveyed, of those who answered 44 were required by

their funder to publish their research materials openly. 14 were not required to, and 10 were

unsure whether or not they had such a requirement. The rough percentages align with the type of

funding received; 220 participants had funding from public sources (e.g. federal government), 101

were funded privately, 74 did not have research funding, 18 selected ‘other,’ and 6 did not know

how their research was funded. It is encouraging to know there is more incentive to use Git or

GHP in service of open research beside a researcher’s funding source.

That said, most participants’ primary interest in using Git or a GHP was to facilitate their

research workflow in collaboration with others. This brings up concerns on how researchers

12 | Who writes scholarly code?

IJDC | Conference Paper

onboarded new collaborators to share the source code, expectations among group methods, and

standardized language to communicate changes. First, most participants collaborated in the coding

process with colleagues using Git (253, with 75 not working collaboratively). From there, the

survey drilled down into how these teams set their collaboration environment. Participants

reported that when a new collaborator joins their team, the onboarding process or protocol was

not likely to be introduced to team members, particularly when introducing expected coding and

version control practices (150 participants do not have any form of onboarding procedures in

their practice, 84 do, and 16 do not know). This lack of setting agreed upon practices in a

research team can be of concern in regards to the long-term legibility and reusability of source

code for future research initiatives. It also hampers newcomers in learning the toolkits themselves

and how best to go about integrating Git and GHP into their research.

As mentioned earlier, the use of GHP as opposed to Git locally determines the amount of

contributions made to artifacts that are considered scholarly ephemera (see Table 3) vs. direct

code contributions. These scholarly ephemera provide rich insight into the particular activities

and experiences that the participants engaged in within their collaborations—using GHP was a

means “to be involved in a larger conversation” (Milliken et al., 2021). As expected, the majority

of the participants reported collaboration as their activity to engage on GHP, followed by

reproducibility, education and teaching, publishing, then peer review (see Figure 3 in Milliken, et

al., 2021).

In the final part of the survey, we asked participants about their archival strategies for this

research material, including pre-custodial labor practices and deposit practices. Interestingly, 154

participants deposit their code into a repository or archive for long-term access and reuse (157 did

not, and 13 did not know). The most popular repository is Zenodo, followed by the Open

Science Framework (OSF), then institutional repositories. Zenodo’s official integration with

GitHub (Potter & Smith, 2015), the most popular GHP, could be a factor in its popularity

amongst scholars.

Figure 6. Count of participants’ usage of different repositories/archives.

Finally, participants were asked if they would use an academic-specific, user-friendly GHP. It

was an overwhelming “maybe” (205 participants)—66 explicitly said no and 53 explicitly said yes.

Popularity and ubiquitousness of use are criterion that participants expressed when choosing

tools, which may explain this.

 Nguyễn & Rampin | 13

IJDC | Conference Paper

Discussion

This study explores a wide-ranging census of academic coders who use Git and GHP as a part of

their scholarly work. It is the first of its kind in academia, with a few industry counterparts

(GitHub Team, 2021; StackOverflow, 2018). Information gleaned about daily practices, teaching

and learning strategies, research workflows, and sustainability of materials can support the

interests of GLAM workers concerned about the preservation and long-term access and use of

scholarly code.

First and foremost, this survey was paired with a synchronous study to prime the exploration

of understanding how source code and annotations on GHP can “move from a phase where they

are highly active and collaborative, to a state where they are stable, permanently citable, and under

active, professional preservation” (Steeves & Millman, 2018). We are particularly interested in

how the preservation process of source code can be operationalized within Galleries, Libraries,

Archives, and Museums (GLAMs), alongside other research materials such as manuscripts and

data. By understanding who is actively using or ramping up to use GHP or Git, for any of the

many benefits which version control and collaboration provide, we are then able to better

understand the diversity of preservation methods that have been adopted across the academic

landscape and how we, as GLAM workers, can optimize digital preservation services and curation

practices for what is important to both the creators and (re)users of scholarly work.

As found in Milliken’s (2020) environmental scan of preserving source code and its

contextual scholarly ephemera, there are four distinct practical themes through which source code

preservation has been explored and operationalized: self-archiving source code, programmatic

captures, web archiving, and software preservation. In self archiving work, it is common for

scholars to be motivated by open scholarship initiatives and submit their source code and

development repositories to the likes of the Open Science Framework, Zenodo, and institutional

repositories. While these individualized preservation efforts provide platforms for the source code

repositories to be held for long-term storage, their use is not yet ubiquitous in academia.

Institutional and programmatic archiving efforts are necessary to fill in this gap and ensure that

these important research materials are preserved.

There are projects and institutions which have explored how to programmatically preserve

public source code (not specific to research code but inclusive of it) and its ephemera, but these

exist separately. Examples include GHTorrent, GH Archive, and Software Heritage. GHTorrent

and GH Archive “are open source projects that allow large scale mining of data about repositories

on GitHub and provide queryable ways to interact with it” (Milliken, 2020), providing access to

the scholarly ephemera without the source code. On the flip side, Software Heritage “collect and

preserve software in source code form” without the scholarly ephemera to contextualize it (Inria,

2019). There is potential in nascent projects, such as Software Archiving of Research Artefacts

(SARA, 2020), that seek to provide platform integrations to save both the code with the

ephemera, though the approach relies on researchers first initiating a deposit (and then changes

can be mirrored). Then, there is the Web archiving approach to getting both the research code

and its ephemera, since GHP are on the Web. While this approach is encouraging for the

ephemera, getting re-runnable code out of WARC or WACZ files remains an area of work.

In a broad sense, all of the above efforts promote the same initiatives to preserve software as a

whole. The Software Sustainability Institute is one of a handful of organizations that has formed a

community of practice between researchers and funders to advocate for the more sustainable

software practices, championing a relatively new role in academia—Research Software Engineers

(Software Sustainability Institute, 2019). Through these communities of practice, best practices for

software management have been published across researchers and developers. To this point and

due to high demand from community members (Chue Hong et al., 2019), GitHub, the most

mainstream GHP, now recognizes the significance of citation files (Smith, 2021).

The work in this survey and in IASGE as a whole has led to another project which combines

the behavioral data captured during the project (the survey results presented in addition to the

interviews and focus groups data) with the environmental scan of archival approaches in order to

operationalize archiving Git repositories on the Web at scale, with the long-term of preserving re-

14 | Who writes scholarly code?

IJDC | Conference Paper

runnable and reproducible research (understanding that the first step is to first have the materials

to run). This project, Collaborative Software Archiving for Institutions (CoSAI), will explore and

develop “a decentralized and federated platform that will knit together several existing archiving

and software preservation tools [... so that] no one institution can be a bottleneck or failure point

for archiving workflows”, and allowing for shared costs among partners and implementing one of

the gold standards in archiving (Rampin & Klein, 2021). CoSAI is a collaborative project, co-PIs

being Rampin at NYU and Klein at Los Alamos National Laboratory, with project partners at Old

Dominion University and University of Pittsburgh.

By openly publishing this survey data, we hope to provide the means for community

researchers to reuse this data and expand upon our findings described in this paper. There is

potential to not only investigate scholars’ interactions with Git and GHP from a technical

perspective of systems and study of scholarship, but also to look at the social implications of who

tends to become the software manager, stewarding the sustainability of software, including its

preservation, and long term use. We invite others to explore this survey data, as well as any data

from the project, in ways that could improve both information and preservation systems, as well as

learning, teaching, and maintenance work.

Conclusion

This work explores the behaviors, motivations, histories, and demographics of scholars who

code—specifically how they interact with Git locally and on the Web. By better understanding

patrons, GLAM workers can tailor services to better serve the goal of preserving reproducible

research. Understanding of scholars’ behaviors can assist GLAM workers with pre-custodial labor,

facilitating the use, learning, and continued reuse of source code repositories using tools such as

Git. Instruction and outreach around key areas such as documenting software dependencies

(which can make-or-break reproducibility), writing onboarding documentation for collaborators

(facilitating intra-group reproducibility), and preparing software for deposit into a repository are

particular areas where interventions are necessary. This usage data also serves GLAM workers

who want to understand the important facets of research software to preserve for future reuse, as

well as the current strategies employed by potential patrons. Research software is foundational to

the sustainability of the scholarly record; so much relies on it. Understanding its authors,

maintainers, and contributors paves the way for preservation and reuse of research across areas of

study.

Acknowledgements

The Investigating & Archiving the Scholarly Git Experience project was funded by the Alfred P.

Sloan Foundation.

References

aljedaxi. (2019). Aljedaxi/peer_production_license [TeX]. Retrieved from

https://github.com/aljedaxi/peer_production_license (Original work published 2019)

Allen, C., & Mehler, D. M. A. (2019). Open science challenges, benefits and tips in early career

and beyond. PLOS Biology, 17(5), e3000246. https://doi.org/10.1371/journal.pbio.3000246

Astropy [Python]. (2022). The Astropy Project. Retrieved from https://github.com/astropy/astropy

(Original work published 2011)

https://investigating-archiving-git.gitlab.io/

 Nguyễn & Rampin | 15

IJDC | Conference Paper

Benedetto, V. D., Podstavkov, V., Fattoruso, M., & Coimbra, B. (2019). Continuous Integration

service at Fermilab. EPJ Web of Conferences, 214, 05009.

https://doi.org/10.1051/epjconf/201921405009

Britton, J. (2014, February 11). GitHub goes to school. Retrieved March 13, 2022, from The

GitHub Blog website: https://github.blog/2014-02-10-github-goes-to-school/

CARPi, N., Minges, A., & Piel, M. (2017). eLabFTW: An open source laboratory notebook for

research labs (Version 1.4.0) [PHP]. https://doi.org/10.21105/joss.00146

Chacon, S., & Straub, B. (2014). Pro Git Book. Apress. Retrieved from https://git-

scm.com/book/en/v2

Chassanoff, A., & Altman, M. (2019). Curation as “Interoperability With the Future”: Preserving

Scholarly Research Software in Academic Libraries. Journal of the Association for

Information Science and Technology, 0(0). https://doi.org/10.1002/asi.24244

Chue Hong, N. P., Allen, A., Gonzalez-Beltran, A., de Waard, A., Smith, A. M., Robinson, C., …

Pollard, T. (2019). Software Citation Checklist for Authors. Zenodo.

https://doi.org/10.5281/zenodo.3479199

Croxall, B. (2012, March 22). Forking Your Syllabus [News]. Retrieved April 25, 2019, from

ProfHacker: Teaching, tech, and productivity. website:

https://www.chronicle.com/blogs/profhacker/forking-your-syllabus/39137

Dallas, T. (2019). Taddallas/LabNotebook. Retrieved from

https://github.com/taddallas/LabNotebook (Original work published 2015)

GitHub Team. (2021). The State of the Octoverse. GitHub. Retrieved from GitHub website:

https://octoverse.github.com/#sustainable-communities

Glassey, R. (2019). Adopting Git/Github Within Teaching: A Survey of Tool Support.

Proceedings of the ACM Conference on Global Computing Education, 143–149. New York,

NY, USA: ACM. https://doi.org/10.1145/3300115.3309518

Hettrick, S. (2014, December 4). It’s impossible to conduct research without software, say 7 out

of 10 UK researchers. Retrieved from Software Sustainability Institute website:

https://www.software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-

say-7-out-10-uk-researchers

Hrynaszkiewicz, I. (2013, February 28). Social coding and scholarly communication – open for

collaboration [Blog]. Retrieved from Research in progress blog website:

http://blogs.biomedcentral.com/bmcblog/2013/02/28/github-and-biomed-central/

Kaki, G., Sivaramakrishnan, K., & Jagannathan, S. (2019). Version Control Is for Your Data Too.

19. https://doi.org/10.4230/LIPIcs.SNAPL.2019.8

Krafczyk, M., Shi, A., Bhaskar, A., Marinov, D., & Stodden, V. (2019). Scientific Tests and

Continuous Integration Strategies to Enhance Reproducibility in the Scientific Software

Context. 2nd International Workshop on Practical Reproducible Evaluation of Computer

Systems (P-RECS’19). Presented at the ACM Federated Computing Research Conference,

Phoenix, Arizona. https://doi.org/10.1145/3322790.3330595

16 | Who writes scholarly code?

IJDC | Conference Paper

Laadan, O., Nieh, J., & Viennot, N. (2010). Teaching Operating Systems Using Virtual

Appliances and Distributed Version Control. Proceedings of the 41st ACM Technical

Symposium on Computer Science Education, 480–484. New York, NY, USA: ACM.

https://doi.org/10.1145/1734263.1734427

Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin Del Pico, E., … Capella-

Gutierrez, S. (2019). Towards FAIR principles for research software. Data Science, Preprint,

1–23. https://doi.org/10.3233/DS-190026

Langille, M. G. I., Ravel, J., & Fricke, W. F. (2018). “Available upon request”: Not good enough

for microbiome data! Microbiome Journal, 6(8). https://doi.org/10.1186/s40168-017-0394-z

Lawson, K. (2013, March 26). Forks and Pull Requests in GitHub [News]. Retrieved April 25,

2019, from ProfHacker: Teaching, tech, and productivity. website:

https://www.chronicle.com/blogs/profhacker/forks-and-pull-requests-in-github/47753

Meloni, J. (2019, March 25). A Gentle Introduction to Version Control [News]. Retrieved April

25, 2018, from ProfHacker: Teaching, tech, and productivity. website:

https://www.chronicle.com/blogs/profhacker/a-gentle-introduction-to-version-control/23064

Metz, C. (2015, September 22). GitHub Open Sources a Tool That Teaches Students to Code.

Wired. Retrieved from https://www.wired.com/2015/09/github-open-sources-tool-teaches-

students-code/

Milliken, G. (2020). Environmental Scan. New York University. Retrieved from New York

University website: https://osf.io/wx6zs/

Milliken, G., Nguyễn, S., & Rampin, V. (2019, October 18). Defining Scholarly Ephemera.

Retrieved June 20, 2022, from IASGE website: https://investigating-archiving-

git.gitlab.io/updates/define-scholarly-ephemera/

Milliken, G., Nguyen, S., & Steeves, V. (2021, January 5). A Behavioral Approach to

Understanding the Git Experience. Presented at the Hawaii International Conference on

System Sciences. https://doi.org/10.24251/HICSS.2021.872

Müller, K., & Bryan, J. (2020). here: A Simpler Way to Find Your Files (Version 1.0.1).

Retrieved from https://CRAN.R-project.org/package=here

National Center for Science and Engineering Statistics Appendix B Science and Engineering

Degrees: 1966–2010. (2013, June). Retrieved June 13, 2022, from US National Science

Foundation (NSF) website:

https://www.nsf.gov/statistics/nsf13327/content.cfm?pub_id=4266&id=4

Pedersen, T. L. (2020). patchwork: The Composer of Plots (Version 1.1.1). Retrieved from

https://CRAN.R-project.org/package=patchwork

Perez, F. (2012, January 8). The IPython notebook: A historical retrospective. Retrieved March

13, 2022, from http://blog.fperez.org/2012/01/ipython-notebook-historical.html

Potter, M., & Smith, T. (2015). Making code citable with Zenodo and GitHub. Retrieved July 8,

2019, from Software Sustainability Institute website: https://www.software.ac.uk/blog/2016-09-

26-making-code-citable-zenodo-and-github

 Nguyễn & Rampin | 17

IJDC | Conference Paper

Raj, A. (2016, March 3). From over-reproducibility to a reproducibility wish-list [Blog]. Retrieved

April 25, 2019, from RajLab website: http://rajlaboratory.blogspot.com/2016/03/from-over-

reproducibility-to.html

Ram, K. (2013). Git can facilitate greater reproducibility and increased transparency in science.

Source Code for Biology and Medicine, 8(7), 8. https://doi.org/10.1186/1751-0473-8-7

Rampin, V. (2022). IASGE Survey Analysis. Retrieved from https://gitlab.com/investigating-

archiving-git/survey-analysis

Rampin, V., & Klein, M. (2021). Collaborating on Software Archiving for Institutions. Retrieved

June 20, 2022, from https://sloan.org/grant-detail/9628

Ross, J. (2019). Introduction to Programming for Data Science and Visualization: INFX 511 [Git

repository]. Retrieved May 12, 2019, from Infx511/infx511.github.io website:

https://github.com/infx511

Rubenstein, M. A. (2012, October 4). Dear Colleague Letter—Issuance of a new NSF Proposal &

Award Policies and Procedures Guide [Letter]. Retrieved from

https://www.nsf.gov/pubs/2013/nsf13004/nsf13004.jsp?WT.mc_id=USNSF_109

SARA. (2020). SARA - Software Archiving of Research Artefacts. Retrieved November 24, 2019,

from https://www.sara-service.org/

Smith, A. (2021, August 19). Enhanced support for citations on GitHub. Retrieved June 13, 2022,

from The GitHub Blog website: https://github.blog/2021-08-19-enhanced-support-citations-

github/

Software Sustainability Institute. (2019). The Software Sustainability Institute. Retrieved July 1,

2019, from https://www.software.ac.uk/

Soiland-Reyes, S., Gamble, M., & Haines, R. (2014). Research Object Bundle 1.0.

https://doi.org/10.5281/ZENODO.12586

Squire, M. (2017). The Lives and Deaths of Open Source Code Forges. Proceedings of the 13th

International Symposium on Open Collaboration, 1–8. Galway Ireland: ACM.

https://doi.org/10.1145/3125433.3125468

StackOverflow. (2018). Stack Overflow Developer Survey. Retrieved July 15, 2020, from Stack

Overflow website: https://insights.stackoverflow.com/survey/2018

Steeves, V., & Millman, D. (2018). Investigating & Archiving the Scholarly Git Experience.

Retrieved June 20, 2022, from https://sloan.org/grant-detail/8723

Steeves, V., & Nguyễn, S. (2020). Investigating and Archiving the Scholarly Git Experience [Data

set]. Qualitative Data Repository. https://doi.org/10.5064/F6VOIB8H

Steeves, V., Rampin, R., & Chirigati, F. (2018). Using ReproZip for Reproducibility and Library

Services. IASSIST Quarterly, 42(1), 14–14. https://doi.org/10.29173/iq18

18 | Who writes scholarly code?

IJDC | Conference Paper

Stodden, V., Leisch, F., Peng, R. D., Leisch, F., & Peng, R. D. (2018). Implementing

Reproducible Research. New York, NY: Chapman and Hall/CRC.

https://doi.org/10.1201/9781315373461

Torvald, L. (n.d.). Git Documentation. Retrieved March 7, 2022, from Git website: https://git-

scm.com/docs/git

Vanderplas, J. (2016, April). Driving Reproducibility at UW. Presentation presented at the NYU

Reproducibility Symposium, Brooklyn, NY.

Vanderplas, J. (2021). Mutiband Lomb-Scargle Periodograms [TeX]. Retrieved from

https://github.com/jakevdp/multiband_LS (Original work published 2014)

Wickham, H. (2007). Reshaping Data with the reshape Package. Journal of Statistical Software,

21, 1–20. https://doi.org/10.18637/jss.v021.i12

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., … Yutani, H.

(2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686.

https://doi.org/10.21105/joss.01686

Widder, D. G., Hilton, M., Kästner, C., & Vasilescu, B. (2019). A Conceptual Replication of

Continuous Integration Pain Points in the Context of Travis CI. Proceedings of the 2019 27th

ACM Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 647–658. Tallinn, Estonia: Association for Computing

Machinery. https://doi.org/10.1145/3338906.3338922

Wikidata Query: Academic discipline. (2020). Retrieved June 13, 2022, from Wikidata website:

https://query.wikidata.org/embed.html#SELECT%20%3Facademic_discipline%20%3Facade

mic_disciplineLabel%20WHERE%20%7B%0A%20%20SERVICE%20wikibase%3Alabel%2

0%7B%20bd%3AserviceParam%20wikibase%3Alanguage%20%22%5BAUTO_LANGUAG

E%5D%2Cen%22.%20%7D%0A%20%20%3Facademic_discipline%20wdt%3AP31%20wd%3

AQ11862829.%0A%7D%0ALIMIT%20100

Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., …

Mons, B. (2016). The FAIR Guiding Principles for scientific data management and

stewardship. Scientific Data, 3(1), 1–9. https://doi.org/10.1038/sdata.2016.18

Yenni, G. M., Christensen, E. M., Bledsoe, E. K., Supp, S. R., Diaz, R. M., White, E. P., &

Ernest, S. K. M. (2018). Developing a modern data workflow for evolving data. BioRxiv,

344804. https://doi.org/10.1101/344804

Zotero [JavaScript]. (2022). Zotero. Retrieved from https://github.com/zotero/zotero (Original

work published 2011)

