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Section 1

Introduction
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Introduction

• Once a model is obtained, it is crucial to study
its performance and impact
• How do we find a correlation between quality

and evaluation score?
• What are the common techniques in Natural

Language Processing (NLP)?
• We need reproducibility, scalability, and proper

benchmarking (Dacrema et al., 2019) Source: bamenny (2016)

Core Idea: Measure Twice and Cut Once
You can invent a method every day. How do you know if it is actually good?
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How to Evaluate?

Online Evaluation

Pros:
+ Objective
+ Interpretable

Offline Evaluation

Pros:
+ Scalable
+ Reproducible
+ Safe

Cons:
− Can hurt users
− Irreproducible
− Poor scalability

Cons:
− Can be unobjective

Today we will focus on offline evaluation,
refer to Kohavi et al. (2020) on online evaluation.
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Ground Truth

Offline evaluation requires ground truth to
be available; typical sources are:
• Expert Assessment
• Gold and Silver Standards
• Crowdsourcing

Source: Finnsson (2017)
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Ground Truth: Expert Assessment I

In Expert Assessment, the output of the system is manually evaluated by a
group of expert assessors who ultimately decide whether it works well or
not.

Examples:
• Search engines
• Sensitive domains (Medicine, Security, etc.)
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Ground Truth: Expert Assessment II

Pros:
+ Very high quality and accuracy
+ Evaluation can be very complex

Cons:
− Does not scale
− Have to trust the experts
− Only one data point per expert
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Ground Truth: Gold and Silver Standards I

Gold Standards are well-known, expert-annotated, and trustworthy
datasets dedicated to a particular problem. Silver Standards are the gold
ones matched with unverified data.

Examples:
• Gold: Penn Treebank (Marcus et al., 1993), WordNet (Fellbaum, 1998),

FrameNet (Baker et al., 1998)
• Silver: BabelNet (Navigli et al., 2012)
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Ground Truth: Gold and Silver Standards II

Pros:
+ Very high quality and accuracy
+ Trusted by the community

Cons:
− Could be missing for your task or be smaller than needed
− Requires expert annotation or matching
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Ground Truth: Crowdsourcing I

Crowdsourcing is a type of participative online activity in which
the requester proposes to a group of individuals ... the voluntary
undertaking of a task (Estellés-Arolas et al., 2012).

Examples:
• Data Acquisition: Wikipedia, Wiktionary, ESP Game (von Ahn et al.,

2004), Common Voice (Ardila et al., 2020)
• System Evaluation: Search Relevance (Alonso et al., 2008), Machine

Translation (Callison-Burch, 2009), Intruders (Chang et al., 2009)
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Ground Truth: Crowdsourcing II

Pros:
+ Scalability
+ Flexibility

Cons:
− Need for task design
− Need for quality control
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Decision Support Systems

Suppose that you have a decision support system (DSS).

• The system’s response can be positive
or negative; both can be true or false:
Type I error aka false positive (FP)
Type II error aka false negative (FN)
• A confusion matrix C ∈ Z0+k×k shows

how well a decision support system
works for k > 1 classes

, It would be more convenient to have a
single number indicating the system’s
performance

Actual
+ −

Pr
ed

ic
te

d + TP FP

− FN TN

Note that in some sources
this matrix is transposed!
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Information Retrieval Evaluation

Two ways for evaluating Information Retrieval (IR) systems: unranked and
ranked, see van Rijsbergen (1979, Chapter 7) and Manning et al. (2008,
Chapter 8).

In unranked evaluation, a set of all the obtained results is assessed.
• Accuracy, Precision, Recall, and F-score, Fowlkes–Mallows Index,

ROC-AUC, ...

In ranked evaluation, an ordered list of results is assessed.
• Precision@K, Mean Average Precision, NDCG, pFound and ERR, ...

Dr. Dmitry Ustalov Evaluation in NLP August 19, 2022 14 / 63



Section 2

Classification Evaluation
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Accuracy

Accuracy (Ac) is the fraction of correct responses provided by the system.

Ac =
TP+TN

TP+TN+FP+FN

• Interpretable
• Easy to compare against a random baseline of Ac = 1

k

• Biased when the class distribution is skewed (Powers, 2008)
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Precision and Recall

Kent et al. (1955) designed precision and recall for IR systems.

Precision (Pr) is the fraction of retrieved documents
that are relevant:

Pr =
TP

TP+FP

Recall (Re) is the fraction of relevant documents
that are retrieved:

Re =
TP

TP+FN

Re

TP
FP

FN TN

Pr

Source: Nichtich (2008)

• Not very useful without each other
• Biased when the class distribution is skewed (Powers, 2008)
• How to get a single-figure measure?
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F-score (aka F-measure or Dice coefficient)

F-score (Fβ) is the weighted harmonic mean of precision and recall (van
Rijsbergen, 1979), also known as the Dice coefficient:

Fβ = (1 + β2) · Pr ·Re
β2 · Pr+Re

F1 = 2 · Pr ·Re
Pr+Re

Fowlkes–Mallows Index (FM) is the geometric mean of precision and
recall (Fowlkes et al., 1983):

FM =
√
Pr ·Re

So far we considered only the binary classification case.
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Multiple Classes

What if we have more than two classes, i.e., k > 2?
Micro-Average. Compute scores for each class together:

Prmicro =
∑k

i=1 TPi∑k
i=1(TPi +FPi)

, Remicro =
∑k

i=1 TPi∑k
i=1(TPi +FNi)

Macro-Average. Compute Pri and Rei for each 1 ≤ i ≤ k:

Prmacro = 1
k

∑k
i=1 Pri , Remacro = 1

k

∑k
i=1Rei

Weighted. For each 1 ≤ i ≤ k use the number of gold instances #(i):

Prweighted =
∑k

i=1(#(i)·Pri)∑k
i=1 #(i)

, Reweighted =
∑k

i=1(#(i)·Rei)∑k
i=1 #(i)

Try not to use averaging, but if necessary,
use macro-average (Gösgens et al., 2021b).
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Issues with Traditional IR Scores

Despite the huge popularity of Ac,Pr,Re,
etc., these scores have major issues (Powers,
2008; Chicco et al., 2020; Gösgens et al.,
2021b):
• they are biased toward dominant

classes
• they can easily be manipulated
• they are not metrics

Source: Rahman Rony (2016)
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Bias

Consider a part-of-speech tagger that classifies everything as NN
and our evaluation dataset is imbalanced.

Ac =
90

90 + 10 + 0 + 0
= 90%

Pr =
90

90 + 10
= 90%

Re =
90

90 + 0
= 100%

F1 = 2 · 0.9 · 1
0.9 + 1

≈ 95%

FM =
√
0.9 · 1 ≈ 95%

P\E NN VBP
NN 90 10
VBP 0 0

Not a very good evaluation of
such a trivial classifier.

Labels are part-of-speech (PoS) tags from the Penn Treebank
(Marcus et al., 1993), e.g., influence/NN is a singular or mass noun,

influence/VBP is a non-third person singular present verb.
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Mathews Correlation Coefficient

Matthews (1975) proposed the correlation coefficient MCC ∈ [−1, 1] that
balances classes of different sizes:

MCC =
TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

In the previous example,MCC = 90×0−10×0√
(90+10)(90+0)(0+10)(0+0)

= 0.
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Mathews Correlation Coefficient: Multiclass

Gorodkin (2004) generalized MCC to multiple classes as the RK

coefficient of the confusion matrix C :

RK =

∑
k,l,mCkkClm − CklCmk√∑

k (
∑

l Ckl)

(∑
l′

k′ ̸=k
Ck′l′

)√∑
k (
∑

l Clk)

(∑
l′

k′ ̸=k
Cl′k′

)

MCC and RK are stable except in very extreme cases,
see Chicco et al. (2020) and Gösgens et al. (2021b) for a detailed discussion.
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Symmetric Balanced Accuracy

Gösgens et al. (2021b) proposed Symmetric Balanced Accuracy (SBA),
addressing many drawbacks of the previous criteria. Given the confusion
matrix C and the number of classes k ≥ 2, we define it as

SBA =
1

2k

k∑
i=1

(
Cii

ai
+

Cii

bi

)
,

where ai is the number of actual instances and bi is the number of
predicted instances for i-th class; the total number of instances is
n =

∑k
i=1

∑k
j=1Cij .

Instances for some classes might be missing,
so if ai = 0, Cii

ai
is replaced with bi

n , and if bi = 0, Cii
bi

is replaced with ai
n .

In the last example,
SBA = 1

2×2

(
90
90 + 90

100 + 0
10 + 10

100

)
= 0.5.
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Classification Curves

• A single number is not enough: it is
important to study the algorithm’s
sensitivity and specificity
• Receiver Operating Characteristics

(ROC) and Precision-Recall (PR) curves
allow examining these properties

, They can be applied as soon as the
method returns the probability,
confidence, or decision value, etc.

Source: rawpixel (2017)

Dr. Dmitry Ustalov Evaluation in NLP August 19, 2022 25 / 63



Receiver Operating Characteristics

Receiver Operating Characteristics (ROC) curve shows a trade-off between
true positive rate (recall) and false positive rate,FPR = FP

FP+TN .

1 Perform the classification
and obtain a score for each
response

2 Iterate over the scores and
plot FPR and TPR points

3 Compute the area under
curve (ROC-AUC) using the
trapezoidal rule

, ROC-AUC = 0.5 is a
random classifier baseline
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ROC-AUC = 0.458
ROC-AUC = 0.500

Consider using the more informative
precision-recall (PR) curve (Saito et al., 2015).
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Receiver Operating Characteristics: Example
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Ñ This is an example following Manning et al. (2008, Section 8.4)
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Classification Evaluation: Wrap-Up

• Always check for class imbalance
• Use the MCC, SBA, and ROC-AUC

measures to report quality
• Report a PR curve to evaluate the

precision and recall dynamics (we will
discuss it today later)
• Implementations: R, scikit-learn

(Pedregosa et al., 2011) for Python, etc.

Source: Free-Photos (2016)
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Section 3

Clustering Evaluation
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Clustering Evaluation

• Two classes of clustering evaluation
criteria: internal and external
• Internal criteria measure intra-cluster

similarity and inter-cluster similarity,
which do not necessarily correspond to
your task (Manning et al., 2008,
Chapter 16)
• External criteria compare the obtained

clustering with ground truth; see
discussion on measures in Yang et al.
(2013, Section 6.2) and Gösgens et al.
(2021a) Source: Buissinne (2016)
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Pairwise Evaluation

• A set of objects V can be transformed into a complete graph (V,E)
with |E| =

(|V |
2

)
undirected edges, and we can perform the same

operation for every cluster of V
• Union of cluster element pairs P ⊆ V 2 can be compared to the union

of gold cluster element pairs PG ⊆ V 2 using paired F-score
(Manandhar et al., 2010):

TP = |P ∪ PG|, FP = |P \ PG|, FN = |PG \ P |

Pr =
TP

TP+FP
, Re =

TP

TP+FN
, F1 = 2

Pr ·Re
Pr+Re

• This approach is interpretable and allows applying the classification
evaluation techniques
• It does not explicitly assess the quality of overlapping clusters

(larger are preferred)
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Adjusted Rand Index

• Rand (1971) proposed an index for clustering evaluation that is the
same as the accuracy measure Ac from the classification evaluation:

RI =
TP+TN

TP+TN+FP+FN

• Hubert et al. (1985) proposed a chance-corrected version,
Adjusted Rand Index:

ARI =

∑
ij

(nij

2

)
−
[∑

i

(
ni·
2

)∑
j

(n·j
2

)]
/
(
n
2

)
1
2

[∑
i

(
ni·
2

)
+
∑

j

(n·j
2

)]
−
[∑

i

(
ni·
2

)∑
j

(n·j
2

)]
/
(
n
2

) ,

where nij is a contingency table

Dr. Dmitry Ustalov Evaluation in NLP August 19, 2022 32 / 63



Purity

Purity is a measure of the extent to which clusters contain a single class,
which is useful for evaluating a partitioning C against the gold partitioning
CG (Manning et al., 2008):

PU =
1

|C|

|C|∑
i

max
j
|Ci ∩ Cj

G|

iPU =
1

|CG|

|CG|∑
j

max
i
|Ci ∩ Cj

G|

F1 = 2
PU · iPU
PU+ iPU
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Normalized Modified Purity

Kawahara et al. (2014) proposed normalized modified purity for soft
clustering that considers weighted overlaps δCi(Ci ∩ Cj

G):

nmPU =
1

|C|

|C|∑
i s.t. |Ci|>1

max
1≤j≤|CG|

δCi(Ci ∩ Cj
G)

niPU =
1

|CG|

|G|∑
j=1

max
1≤i≤|C|

δ
Cj

G
(Ci ∩ Cj

G)

F1 = 2
nmPU · niPU
nmPU+niPU
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Normalized Modified Purity: Example

Actual {bank : 1},
{riverbank : 1, streambank : 1, streamside : 1},
{building : 1, bank building : 1}

Predicted {bank : 0.5, riverbank : 1, streambank : 1, streamside : 1},
{bank : 0.5, building : 1, bank building : 1}

nmPU = 0.833

niPU = 1.000

F1 = 0.909

Ñ This is an example from Ustalov et al. (2019)
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Clustering Evaluation: Wrap-Up

• Evaluate hard clustering with
ARI and soft clustering with
nmPU/niPU
• More difficult tasks, such as

taxonomy evaluation, can be
reduced to clustering evaluation
(Velardi et al., 2013)
• Implementations: scikit-learn

(Pedregosa et al., 2011),
xmeasures (Lutov et al., 2019),
watset-java (Ustalov et al., 2019),
etc.

Source: Pexels (2016)
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Section 4

Ranked Evaluation
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Ranked Evaluation

• Assume we have retrieved top
k ∈ N results
• We want the most relevant

items to be on the top of this list
• Measures include binary (Pr@k,

MAP,MRR) and graded
(NDCG, pFound/ERR), etc.

Source: Amos (2011)
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Average Precision

Precision@k (Pr@k) is the fraction of relevant items in the k top retrieved
items for the given query:

Pr@k =

k∑
i=1

1i-th item is relevant

Average Precision (AP) is the non-interpolated area under the PR curve
(Buckley et al., 2000):

AP =
1

# of relevant items

k∑
i=1

Pr@i · 1i-th item is relevant

Mean Average Precision (MAP) is the average AP of all the queries Q:

MAP =
1

|Q|
∑
q∈Q

AP(q)
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Precision-Recall Curve

Precision-Recall (PR) curve shows a trade-off between precision and recall.

1 Perform the classification
and obtain a score for each
response

2 Compute precision and
recall at each level k as well
as average precision

3 Compare systems using an
11-point interpolated PR
curve

, Due to the interpolation,
PR-AUC might be too
optimistic; compute the
average precision (AP)
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Interpolated AP = 0.624

If one method dominates another on
ROC, it will dominate on PR, too
(Davis et al., 2006).
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Precision-Recall Curve: Example
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Ñ This is an example following Manning et al. (2008, Section 8.4)
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Normalized Discounted Cumulative Gain

Cumulative Gain (CG) in top k items is a sum of the relevance grades
reli ∈ N corresponding to every i-th retrieved item (Järvelin et al., 2002;
Wang et al., 2013):

CG =

k∑
i=1

reli

Discounted Cumulative Gain (DCG) is a CG divided by the logarithm of
each item’s position:

DCG = rel1+

k∑
i=2

reli
log2 i

Normalized Discounted Cumulative Gain (NDCG) is the fraction of the
obtained DCG in the “perfect”DCG:

NDCG =
DCG

ideal DCG
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Yandex’ pFound

pFound is a cascade probabilistic ranked evaluation measure that
simulates how a user looks at the search results.

The user looks at items sequentially in top-down order and stops if either
the relevant item is found or they gave up with probability pBreak.

pFound =

n∑
i=1

user looks
at i-th item︷ ︸︸ ︷
pLook[i] ·

i-th item
is relevant︷ ︸︸ ︷
pRel[i]

pLook[i] =

{
1, i = 1

pLook[i− 1] · (1− pRel[i− 1]) · (1− pBreak), i ̸= 1

pBreak = 0.15

Invented at Yandex and was the optimization goal back in 2007
(Segalovich, 2010); similar to the Expected Reciprocal Rank
(Chapelle et al., 2009, Section 7.2).
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Expected Reciprocal Rank

Mean Reciprocal Rank (MRR) is the mean rank position of the first
relevant item (rank) in all the queries Q (Voorhees, 1999):

MRR =
1

|Q|
∑
q∈Q

1

rankq

Expected Reciprocal Rank (ERR) is the expected reciprocal length of time
that the user will take to find a relevant document (Chapelle et al., 2009)

ERR =

n∑
r=1

1

r

(
r−1∏
i=1

(1−Ri) ·Rr

)

To translate relevance grades to the probability of relevance, we define
Rg : g → [0, 1],∀g ∈ {0, . . . , gmax} and then compute the score:

Rg =
2g − 1

2gmax
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Expected Reciprocal Rank: Algorithm

Input: relevance grades gr, 1 ≤ r ≤ n, mapping R : gr → [0, 1]
Output: expected reciprocal rank ERR

1: p← 1
2: ERR← 0
3: for r ← 1. . .n do
4: R← R(gr)
5: ERR← ERR+p · R

r
6: p← p · (1−R)
7: return ERR
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Explicit Reciprocal Rank: Example

d g R
4 0 0
5 0 0
9 2 0.375
2 0 0
1 3 0.875
8 0 0
10 1 0.125
6 0 0
7 0 0
3 1 0.125

gmax = 3

ERR = 0.237

Ñ This is an example following Manning et al. (2008, Section 8.4)
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Expected Reciprocal Rank: Discussion

Pros:
+ Sound method that takes into account user behaviour
+ Fast; running time is O(n)

Cons:
− Model assumptions need to be met
− Low discriminative power (Sakai, 2006)
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Ranked Evaluation: Wrap-Up

• Use MAP for binary relevance,
NDCG for graded relevance,
and pFound/ERR for graded
relevance with the user’s
behaviour
• Usually, one has to limit the

number of top-k documents, see
discussion in Wang et al. (2013)
• Implementations: scikit-learn

(Pedregosa et al., 2011),
RankEval (Lucchese et al., 2017)

Source: Dumlao (2017)
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Section 5

Significance and Reliability
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Significance and Reliability

• How to determine if the method is not
just good, but outperforms other
approaches?
• How to ensure the reliability of expert

or crowd responses?
• In this section we will discuss

computational techniques for statistical
significance testing and inter-rater
reliability analysis

Source: Merrill (2014)
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Statistical Testing

We state two hypotheses, null and alternative, and use a statistical test to
determine whether to reject the null hypothesis or not.

There has been an active discussion on the choice of statistical tests in IR
and NLP (Smucker et al., 2007; Dror et al., 2018):
• some tests assume normally-distributed data: Z-test, t-test
• some do not have enough statistical power: Wilcoxon signed-rank

test, sign test, etc.
• some were not feasible in the past: randomization test and bootstrap

Following the recommendations in Yeh (2000) and Smucker et al. (2007),
we will apply the randomization test (aka permutation test):
“no difference after shuffling”.
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Randomization Test: Algorithm

Input: vectors A⃗ and B⃗ such that |A⃗| = |B⃗|,
number of trials N ∈ N, quality criterion f : R|A⃗| → R

Output: two-tailed p-value
1: uncommon← {1 ≤ i ≤ |A⃗| : Ai ̸= Bi}
2: s← 0
3: for n← 1. . .N do
4: A⃗′, B⃗′ ← A⃗, B⃗ ▷ Copy A⃗ and B⃗
5: for all i ∈ uncommon do
6: if random({0, 1}) = 0 then ▷ Flip a coin
7: A′

i, B
′
i ← Bi, Ai ▷ Shuffle by swapping the values if tails

8: if |f(A⃗′)− f(B⃗′)| ≥ |f(A⃗)− f(B⃗)| then
9: s← s+1 ▷ Note that we evaluate the absolute difference

10: return
s

N
▷ This value can be compared to a significance level

This technique can be used with mean, F-score, and other quality
criteria (Yeh, 2000).
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Randomization Test: Example

Example from Padó (2006) with f = mean

A⃗ = (1, 2, 1, 2, 2,2, 0) mean(A⃗) ≈ 1.4286
B⃗ = (4, 5, 5, 4, 3,2, 1) mean(B⃗) ≈ 3.4286

The uncommon elements are {1, 2, 3, 4, 5, 7} and the difference in means
is |mean(A⃗)−mean(B⃗)| = 2.

Having performed N = 106 iterations, we obtain p ≈ 0.0313, which is,
given the significance level of 0.05, suggesting a statistically significant
difference.
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Statistical Testing: Discussion

• Always perform statistical
testing and report not only
statistical significance but also
the score distributions (Reimers
et al., 2017)
• The topic is huge and deserves a

dedicated course; see more in
the context of NLP in Dror et al.
(2018)

Source: Reimers et al. (2017)

Dr. Dmitry Ustalov Evaluation in NLP August 19, 2022 54 / 63



Inter-Rater Agreement

• How reliable is the annotation?
• In the example in 51.1% of

cases the raters agree with each
other, is it a good thing?
• A low value indicates issues

with task design and difficulty:
the answers might make no sense

w1 w2 w3 w4
t1 NN NN NN
t2 NN VBP VBP NN
t3 VBP VBP VBP NN
t4 VBP NN NN VBP
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Krippendorff’s α

Krippendorff’s α (2018) is a versatile inter-rater agreement measure that
takes into account the observed disagreement Do and the expected
disagreement De:

α = 1− Do

De

α is chance-corrected, handles missing values, and allows for arbitrary
distance functions (binary, nominal, interval, etc.)

In the nominal case of C classes,α is computed using a coincidence matrix
O ∈ R|C|×|C|:

nominalα = 1− (n− 1)
n−

∑
c∈C Occ

n2 −
∑

c∈C n2
c

,

where nc =
∑

k∈C Ock and n =
∑

c∈C nc.
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Krippendorff’s α: Algorithm

Input: m raters,N tasks, set of classes C , ▷ Missing values are (−)
data matrix U ∈ ({−} ∪ C)m×N

Output: 0 ≤ nominalα ≤ 1
1: Ock ← 0 for all c ∈ C, k ∈ C
2: for u ∈ 1. . .N do ▷ Each task
3: for all c, k ∈ P (U⊤

u , 2) do ▷ Each possible non-missing (c, k) pair
4: Ock ← Ock +

1
mu−1 ▷ mu is the number of raters in task u

5: nc ←
∑

k∈C Ock for all c ∈ C
6: n←

∑
c∈C nc

7: return 1− (n− 1)
n−

∑
c∈C Occ

n2 −
∑

c∈C n2
c
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Krippendorff’s α: Example

O =

(
4.33 3.67

3.67 3.33

)
nc =

(
8 7

)
n = 15

U⊤

w1 w2 w3 w4
t1 NN NN NN
t2 NN VBP VBP NN
t3 VBP VBP VBP NN
t4 VBP NN NN VBP

nominalα = 1− (n− 1)
n−

∑
c∈C Occ

n2 −
∑

c∈C n2
c

= 1− 14
15− ( 4.33 + 3.33 )

152 − ( 82 + 72 )

= 1− 102.76

112
≈ 0.083
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Krippendorff’s α: Discussion

• Interpretation by Krippendorff (2018):
α ≥ 0.800: reliable annotation
(reliability ⇏ correctness!)
0.667 ≤ α < 0.800: tentative
conclusions only
• Implementations: DKPro for Java (Meyer

et al., 2014), NLTK for Python (Bird et al.,
2017), irr for R, etc.
• Computing α is complex and slow;

resampling and bootstrap might be
useful on large datasets Source: rawpixel (2018)
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Significance and Reliability: Wrap-Up

• Trust, but verify: always evaluate and
report whether your results are
significant and your labels are reliable
• Significance can be evaluated using a

permutation test; see more in Smucker
et al. (2007) and Dror et al. (2018)
• Reliability can be evaluated using a

convenient single number,
Krippendorff’s α; see a good overview in
Artstein et al. (2008)

Source: Alexas Fotos (2017)
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Section 6

Conclusion
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Conclusion

• Machine Learning incurs massive maintenance
costs (Sculley et al., 2015), so the effect should
be carefully analyzed and evaluated
• Choose quality criteria wisely, compare the

results against those of others, and perform
statistical testing
• Sometimes the dataset is very large, so recall

can be only estimated on a smaller sample
• Not covered here: behavioural testing (Ribeiro

et al., 2020), taxonomy evaluation (Bordea
et al., 2016) and other evaluation tasks, and
much more Source: shbs (2017)
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Thank You!

Questions?

Contacts
Dr. Dmitry Ustalov
§ https://github.com/dustalov

# mailto:dmitry.ustalov@gmail.com
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