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Section 1

Introduction
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Introduction

• Linguistic data are sparse, so the graphs
are usually sparse, too
• Modern Natural Language Processing

(NLP) is based on embeddings and
representation learning
• We would like to reduce the

dimensionality, but keep the important
graph properties



0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0


Core Idea: Embed the Graphs Wisely
We can incorporate the relationships between objects in our machine
learning pipelines.
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Motivation

Remember this distributional thesaurus?

java

lisp

pascal

cobol

delphi

eiffel
erlang

c

python

fortran

ruby

soap

beer

cocoa

lemonade

espresso

tea

cappuccino

malt

coffee

palm

Source: Ustalov et al. (2019)

• Can we measure the
similarity between
“tea” and “lisp”?
• Can we employ the node

relationships as features?
• Yes.
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Successful Applications

Graph embeddings help in addressing very challenging NLP problems:
• question answering (Bordes et al., 2014)
• semantic role labeling (Marcheggiani et al., 2017)
• text-to-entity mapping (Kartsaklis et al., 2018)
• text classification (Yao et al., 2019)
• fact-checking (Zhong et al., 2020)
• explanation regeneration (Li et al., 2020)

Beyond these applications, graph embeddings are generally useful for
• node classification, recommendation, and link prediction
• feature extraction
• visualization (not every approach performs a proper layout)
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Problem Formulation

• There are node embeddings,
edge embeddings, and the
whole graph embeddings; we
will focus on node embeddings
• Given a graph G = (V,E) and a

number of dimensions d≪ |V |,
we map G into a d-dimensional
space, in which the certain graph
property is preserved as much as
possible (Cai et al., 2018)
• Usually, we would like to

minimize some loss function
using gradient-based
optimization (Goodfellow et al.,
2016)

Input Graph

streambank bank building

riverbank

streamside bank building

Output Embedding

2
streambank

1
bank

5
building

3riverbank

4
streamside

6
bank building
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Section 2

Unsupervised Embeddings
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Unsupervised Embeddings

• Unsupervised node embeddings build
representations preserving generic
graph properties
• We will focus on two different graph

embedding methods: Laplacian
Eigenmaps and DeepWalk
• There are a lot of other methods, see

Cai et al. (2018) and Goyal et al. (2018)

Source: Finnsson (2017)
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Laplacian Eigenmaps (Spectral Embeddings)

• Laplacian Eigenmaps is a spectral
approach for embedding
high-dimensional data
(Belkin et al., 2003)
• Compute a normalized Laplacian of the

graph and run (approximate) eigenvalue
decomposition to obtain the node
embeddings; similar to spectral
clustering (Ng et al., 2002)
• Preserved graph properties are pairwise

node similarities Source: Amos (2011)
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Laplacian Eigenmaps: Algorithm

Input: graph G = (V,E), adjacency matrix A, degree matrix D,
dimensions d≪ |V |

Output: embedding u⃗ ∈ Rd,∀u ∈ V

1: Lnorm ← D− 1
2 (D −A)D− 1

2

2: UΛU−1 ← ein(Lnorm) ▷ Assume the eigenvalues are descending
3: U ′ ← (Uik)1≤i≤|V |,1≤j≤d

k=|V |−1−j

▷ Drop the smallest eigenvalue

4: return u⃗i → U ′
i for all 1 ≤ i ≤ |V |
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Laplacian Eigenmaps: Example

streambank

bankbuildingriverbank

streamside

bank building U ′ =



.06 0

−.31 .71

−.45 0

−.31 −.71
.55 0

55 0



Ñ This is an example using the graph from Ustalov et al. (2019, Figure 2)
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Laplacian Eigenmaps: Discussion

Pros:
+ Sound method that preserves local information optimally
+ Very simple to implement

Cons:
− Slow, the worst-case running time is O(|E|d2)
− Preserves only first-order proximity
− Graph should have only one connected component

Implementation:
� https:

//scikit-learn.org/stable/modules/generated/
sklearn.manifold.spectral_embedding.html
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Word2Vec Recap

• Mikolov et al. (2013) proposed Word2Vec, an efficient technique for
learning distributional representations of words
• For each pair of word w and its context c in the fixed window, the

Skip-Gram method performs negative sampling of k ∈ N contexts
from a distribution PD and computes the objective (Levy et al., 2014):

log σ(w⃗ · c⃗) + k · EcN∼PD
[log σ(−w⃗ · c⃗N )]

• Example representations:−−→
Paris−−−−−→France +

−−−−→
Russia ≈ −−−−−→Moscow−−−→

apple−−−−−→apples ≈ −→car−−−→cars
• Popular variations are CBOW (Mikolov et al., 2013; İrsoy et al., 2021),

GloVe (Pennington et al., 2014), fastText (Bojanowski et al., 2017), etc.
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DeepWalk

• DeepWalk uses truncated random walks
to learn latent representations by
treating walks as the equivalent of
natural language sentences (Perozzi
et al., 2014)
• The input graph is flattened into a

“corpus” of fixed-size node sequences;
this corpus is used to train a Word2Vec
model (Mikolov et al., 2013)

Source: Pexels (2016)
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DeepWalk: Algorithm

Input: graph G = (V,E), dimensions d≪ |V |, window size w ∈ N,
walks per node γ ∈ N, walk length t ∈ N, learning rate α > 0

Output: embedding u⃗ ∈ Rd,∀u ∈ V
1: Φ← random(R|V |×d) ▷ Initialize from a uniform distribution
2: for i← 0. . .γ do
3: for all u ∈ V in random order do
4: Wu ← walk(G, u, t) ▷ Random walk of length t from u
5: Φ← Skip-Gram(Wu, w, α,Φ) ▷ Update the parameters
6: return u⃗i → Φi for all 1 ≤ i ≤ |V |
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DeepWalk: Example

streambank bank building

riverbank

streamside bank building

bank
streambank
riverbank
streamside

buildingbank building

Ñ This is an example using the graph from Ustalov et al. (2019, Figure 2)
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DeepWalk: Discussion

Pros:
+ Very simple and works very well in practice
+ Fast, the number of parameters is O(d|V |)

Cons:
− Does not preserve community structure
− Does not preserve structural equivalence between nodes
− Edge weights are ignored (more on this a bit later)

Implementation:
� https://github.com/phanein/deepwalk

� https://snap.stanford.edu/node2vec/

� http://rdf2vec.org/
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Word2Vec as Implicit Matrix Factorization

Levy et al. (2014) showed that Skip-Gram is an implicit factorization of a
pointwise mutual information (PMI) word-context matrix.
• Given the word w ∈ V and its context c, we count the number of

words in context:

PMI(w, c) = log
#(w, c) · |D|
#(w) ·#(c)

• We obtain a shifted PMI matrix by shifting the PMI by a constant offset:

SPPMIk(w, c) = max(PMI(w, c)− log k, 0)

• A truncated singular value decomposition MSPPMIk = UdΣdV
⊤
d

for the rank d (Hansen, 1987) allows obtaining the embeddings
Φ = Ud

√
Σd (here Vd is a matrix and not a subset of V )
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“Embed All the Things!”

Wu et al. (2018) proposed a general-purpose embedding model StarSpace:∑
(a,b)∈E+

∑
b−∈E−

max(0, µ− sim(a, b) + sim(a, b−))︸ ︷︷ ︸
margin ranking loss,µ ∈ R

• Positive pairs E+ are task-dependent and provided as the input
• Negative pairs E− are obtained by choosing

k ∈ N negative pairs randomly
• Similarity function sim is either a dot product or cosine
• StarSpace is a convenient strong baseline for many tasks involving

embedding entities comprised of discrete features:
https://github.com/facebookresearch/StarSpace
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Unsupervised Embeddings: Wrap-Up

• Unsupervised node embeddings capture
meaningful representations that can be
concatenated or fine-tuned for
downstream applications
• Edge weights can be handled by

performing graph traversal with BFS
and DFS (Grover et al., 2016) or biased
walks (Kartsaklis et al., 2018; Ristoski
et al., 2018)
• Textual features of graph nodes can be

incorporated into embeddings (Yang
et al., 2015) Source: rawpixel (2017)
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Section 3

Graph Neural Networks
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Graph Neural Networks

• Building embeddings is not the ultimate
goal: they are used in applications and
there are useful features of the nodes
• Graph Neural Networks (GNNs) use the

node features and relationships to learn
node or graph representations
• We will focus on the two most common

GNN models, GCN and GAT, but there
are many others, see Wu et al. (2022)

Source: McGuire (2015)
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Neural Networks Recap

• We will consider a neural network (NN)
as a sequence of non-linear
transformations of the input data X
called layers; the output of each layer is
the input for the next one
• Parameters are estimated using

backpropagation, see more in
Goodfellow et al. (2016, Chapter 6)
• For convenience, we will omit the bias

terms, so the output of each layer is
H = σ(XW ), where weights W are
trainable parameters and σ is an
activation function, such as tanh,ReLU,
etc.

input
layer

hidden
layer

output
layer

A simple neural network

Source: Wiso (2008)
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Graph Neural Networks

• We can think of rows of X ∈ R|V |×n as
graph nodes, and we can think of its
columns as n-dimensional node
features, n ∈ N
• GNNs aim at including node

relationships in the model; so given the
number of embedding dimensions
d ∈ N, we will denote the next GNN
layer as H ′ ∈ R|V |×d

• We will denote the embedding of node
u ∈ V as h⃗′u ∈ Rd

input
layer

hidden
layer

output
layer

A simple neural network

Source: Wiso (2008)
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Graph Convolutional Network

Kipf et al. (2017) proposed a Graph Convolutional Network (GCN), a simple
and theoretically-motivated layer-wise propagation rule for NNs.

• Instead of propagating σ(XW ),
we insert information about
node relationships Â, so the
propagation rule becomes
H ′ = σ(ÂHW )

• To avoid numerical instability,
we perform a renormalization
trick with adjacency matrix:
Ã = A+ I and
D̃ii =

∑
1≤j≤|V | Ãij , so

Â = D̃− 1
2 ÃD̃− 1

2

H ′ = Z = ÂXW

C

input layer

X1

X2

X3

X4

F

output layer

Z1

Z2

Z3

Z4

hidden

layers

Y1

Y4

1

Source: Kipf et al. (2017)
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Graph Convolutional Network: Estimation

As a semi-supervised method, GCN relies on labeled nodes VL ⊆ V ,
and can be trained using the cross-entropy loss:

−
∑

ul∈VL

F∑
f=1

Ylf logZlf ,

where Ylf =

{
1, if ul ∈ VL belongs to class f ,
0, otherwise

• Note that F ≪ |V | is the target number of dimensions d
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Graph Convolutional Network: Example

streambank

2

bank

1

building

5

riverbank3

streamside

4

bank building

6

bankstreambankriverbankstreamsidebuildingbank building


−.13 −.87
.89 −.85
.96 −.85
.90 −.85
−.98 −.80
−.98 −.80



Ñ This is an example using the graph from Ustalov et al. (2019, Figure 2)
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Graph Convolutional Network: Discussion

Pros:
+ Sound method that approximates localized spectral filters on graphs
+ Fast, the running time is linear in the number of edges

Cons:
− Prone to over-smoothing (Chen et al., 2020)
− Exact algorithm requires the complete Â,

but sampling could help (Hamilton et al., 2017)

Implementations:
� https://github.com/tkipf/gcn

� https://github.com/tkipf/pygcn

There are variations of GCN, such as TextGCN (Yao et al., 2019), that learn
predictive word and document embeddings for text classification.
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Graph Attention Network

Veličković et al. (2018) proposed Graph Attention Network (GAT) that
leverages self-attention layers to learn neighbor importances αij for all
ui ∈ V and uj ∈ V .

GAT computes K ∈ N attentions per layer and then concatenates them:

h⃗′i = ∥Kk=1
σ

 ∑
vj∈Vvi

α
(k)
ij W (k)h⃗j


At the final (prediction) layer, averaging is performed:

h⃗′i = σ

 1

K

K∑
k=1

∑
vj∈Vv

α
(k)
ij W (k)h⃗j


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Graph Attention Network: Attention

Self-attention on the nodes is parameterized by the vector a⃗ ∈ R2d.

We compute attention coefficients eij ∈ R only for the adjacent nodes and
use a modified definition of them (Brody et al., 2022):

eij = LeakyReLU
(
a⃗⊤W [h⃗i ∥ h⃗j ]

)
To allow attention scores to be compared across different nodes, GAT
computes the k-th normalized score α

(k)
ij :

α
(k)
ij =

exp(eij)∑
ul∈Vi

exp(eil)

Many implementations perform addition instead of concatenation in eij ,
so a⃗ ∈ Rd, and in our examples, we will use this configuration.
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Graph Attention Network: Example

a⃗ = (.15, .84)⊤

α =



0 .40 .32 .39 .38 .40
.20 0 .34 0 0 0
.12 .60 0 .61 0 0
.17 0 .34 0 0 0
.15 0 0 0 0 .60
.37 0 0 0 .62 0



bank

streambank
riverbank

streamside

building

bank building


−.05 .07

−.80 −.68
−.72 −.41
−.80 −.67
.49 −.07
.71 −.68


Ñ This is an example using the graph from Ustalov et al. (2019, Figure 2)
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Graph Attention Network: Discussion

Pros:
+ Simple enough and work reasonably well in most benchmarks
+ Estimates edge importances (α values)

Cons:
− Still prone to over-smoothing
− More sophisticated methods have been created since then

Implementations:
� https://github.com/PetarV-/GAT

� https:
//github.com/tech-srl/how_attentive_are_gats

A very well-written detailed annotated walkthrough is available at
https://nn.labml.ai/graphs/gatv2/.
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Graph Neural Networks: Wrap-Up

• Node embeddings can be
efficiently estimated for the
specific task
• These representations can be

learned and extracted from the
neural networks
• Semi-supervised

representations do not require
the complete data annotation
• Even a single layer of a GNN

improves quality in practice
(we will look at case studies)

Source: FreePhotosART (2016)
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Section 4

Case Studies
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Case Studies

• Embedding a Distributional
Thesaurus (Jana et al., 2018)
• Mapping Text to Knowledge

Graphs (Kartsaklis et al., 2018)
• Semantic Role Labeling

(Marcheggiani et al., 2017)
• Explanation Regeneration

(Jansen et al., 2020)
Source: Simone ph (2017)
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Embedding DTs

• Jana et al. (2018) used embeddings of
nodes in a distributional thesaurus (DT)
as additional features for building
better word representations

Source: Buissinne (2016)
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Embedding DTs: Approach

1 Build a distributional thesaurus
(Biemann et al., 2013)

2 Learn node embeddings
(DeepWalk, node2vec, etc.)

3 Concatenate node embeddings
with GloVe word embeddings
(Pennington et al., 2014)

4 Perform a principal component
analysis (PCA)

java

lisp

pascal

cobol

delphi

eiffel
erlang

c

python

fortran

ruby

soap

beer

cocoa

lemonade

espresso

tea

cappuccino

malt

coffee

palm

Source: Ustalov et al. (2019)
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Embedding DTs: Results

• According to Spearman’s ρ,
concatenation (CC) of GloVe
vectors with the DeepWalk
embeddings improved the
results on multiple datasets
• Note that PCA also improved

upon CC despite the loss of
information after dimensionality
reduction from 300 + 128 to 300

Dataset GloVe CC PCA
WSSim 0.799 0.838 0.839
SimL-N 0.427 0.443 0.468
RG-65 0.791 0.816 0.879
MC-30 0.799 0.860 0.890
WSR 0.637 0.676 0.645
M771 0.707 0.708 0.707
M287 0.800 0.781 0.807
MEN-N 0.819 0.792 0.799
WS-353 0.706 0.751 0.740

Source: Jana et al. (2018)
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Text-to-Entity Mapping

• Kartsaklis et al. (2018) proposed
a technique for enriching the
entity vectors with textual
information
• Textual information is obtained

from BabelNet (Navigli et al.,
2012) and other sources

Text	
  
data	
  

MSE	
  

Sentence	
  
space	
   KB	
  space	
  

Random	
  	
  
walks	
  

Skipgram	
  

Textual	
  
features	
  

Source: Kartsaklis et al. (2018)
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Text-to-Entity Mapping: Approach

1 Learn node embeddings with
DeepWalk (Perozzi et al., 2014)

2 Build LSTM (Hochreiter et al.,
1997) with multi-sense aspect
(aka MS-LSTM)

3 Minimize the mean squared
error (MSE) between the sense
vector and the target entity
vector

AT
TE
N
TI
O
N
	
  

+	
  

+	
  

M
SE
	
  

Pain	
  

in	
  

joints	
  

KB	
  vector	
  for	
  
“arthri;s”	
  

2-­‐layer	
  
LSTM	
  

Source: Kartsaklis et al. (2018)

Code and Data: https://bitbucket.org/dimkart/ms-lstm
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Text-to-Entity Mapping: Example

table1 formulation, uncommonly, rauwolfia, cardiology, hypo-
dermic, malleability, points, optic, dendrite, rubiaceae,
nonparametric, meninges, deviation, anesthetics

table2 tableware, meal, expectation, heartily, kitchen, hum, eat-
ing, forestay, suitors, croupier, companionship, restaurant,
dishes, candles, cup, tea

table3 reassigned, projective, ultracentrifuge, polemoniaceous,
thyronine, assumptions, lymphocyte, atomic, difficulties,
intracellular, virgil, elementary, cartesian

Source: Kartsaklis et al. (2018)
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Text-to-Entity Mapping: Results

• On the SMOMED CT dataset the text-to-entity mapping outperforms
Word2Vec-based baselines
• On reverse dictionary and node classification tasks it shows results

comparable to the state-of-the-art techniques (Kartsaklis et al., 2018)

Model Target Accuracy

Baseline
W2V-GoogleNews 0.19
W2V-PubMed 0.12

MS-LSTM
DeepWalk 0.26
Enhanced 0.84

Source: Kartsaklis et al. (2018)
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GCNs for SRL

• Semantic Role Labeling (SRL)
assigns to the words in the
sentence the labels
corresponding to their semantic
role
• Marcheggiani et al. (2017) is the

first paper that demonstrates
the effectiveness of GCNs for
NLP in the SRL setup

Sequa          makes          and           repairs             jet          engines.

SBJ COORD

OBJ

CONJ NMOD

ROOT

A1

A1
A1

A0

A0

make.01 repair.01 engine.01

Source: Marcheggiani et al. (2017)
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GCNs for SRL: Syntactic Dependency Trees

• Syntactic dependency trees are
directed, so the layer is
h
(k+1)
v = σ

(∑
u∈Vv

g
(k)
vu (V

(k)
dir(u,v)h

(k)
u + b

(k)
L(u,v))

)
• For each edge-node pair

there is a scalar gate:
g
(k)
uv = σ

(
h
(k)
u · v̂(k)dir(u,v) + b̂

(k)
L(u,v)

)
Lane                               disputed                         those                             estimates
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Source: Marcheggiani et al. (2017)
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GCNs for SRL: Approach

1 Fetch word embeddings
2 Stack several BiLSTM layers (Hochreiter

et al., 1997)
3 Stack several GCN layers (Kipf et al.,

2017)
4 Add a softmax classifier

Code and Data: https://github.com/
diegma/neural-dep-srl

A1
Classifier

k layers 
BiLSTM

Lane   disputed   those   estimates

�

dobj

nmodnsubj

j layers 
GCN

word
representation

Source: Marcheggiani et al. (2017)
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GCNs for SRL: Results

• GCN for SRL outperformed other
approaches on both English and
Chinese on the CoNLL-2009 dataset
• LSTMs without GCNs outperform GCNs

without LSTMs, while their combination
dramatically improves the precision
• Even a single GCN layer increases the

LSTM-based model accuracy

A1
Classifier

k layers 
BiLSTM

Lane   disputed   those   estimates

�

dobj

nmodnsubj

j layers 
GCN

word
representation

Source: Marcheggiani et al. (2017)
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Explanation Regeneration

• In the Explanation Regeneration
task, given an elementary
science question with an answer
to it, one has to rank
explanations of this answer
(Jansen et al., 2020)
• The best-performing system at

the TextGraphs-14 shared task
combined language models and
graph neural networks (Li et al.,
2020)

An animal has six legs .

What is it most likely to be ?

[*B] a fly

[GR] a fly is a kind of insect [KINDOF]

[CE] an insect has six legs [PROP - THINGS]

[GR] an insect is a kind of animal [KINDOF]

Source: Jansen et al. (2020)
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Explanation Regeneration: Approach

1 Retrieve the relevant
explanations for the questions
using ERNIE 2.0 (Sun et al.,
2020)

2 Re-rank the retrieved sentences
using ERNIE 2.0

3 Aggregate them using the
GraphSAGE-like approach
(Hamilton et al., 2017)
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Source: Li et al. (2020)

Code and Data: https://github.com/PaddlePaddle/PGL/tree/
static_stable/examples/erniesage

Dr. Dmitry Ustalov Graph Embeddings for NLP August 17, 2022 49 / 55

https://github.com/PaddlePaddle/PGL/tree/static_stable/examples/erniesage
https://github.com/PaddlePaddle/PGL/tree/static_stable/examples/erniesage


Explanation Regeneration: Example

? A student placed an ice cube on a plate in the sun.
Ten minutes later, only water was on the plate.
Which process caused the ice cube to change to water?
(A) condensation (B) evaporation (C) freezing (D) melting

Rank Gold Fact (Table Row)
1 ⋆ melting is a kind of process
2 thawing is similar to melting
3 melting is a kind of phase change
4 melting is when solids are heated above their melting point
5 amount of water in a body of water increases by (storms ; rain

; ice melting)
6 an ice cube is a kind of object
7 ⋆ an ice cube is a kind of solid
8 freezing point is similar to melting point
9 melting point is a property of a (substance ; material)

10 glaciers melting has a negative impact on the glaicial environ-
ment

...

Source: Jansen et al. (2020)
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Explanation Regeneration: Results

• According to Mean Average
Precision (MAP), all the systems
have dramatically improved over
the tf-idf baseline
• Other systems used BERT, LSTM,

integer linear programming, but
the best system, BPGL, combined
texts and graphs (Li et al., 2020)

Model MAP
tf-idf 0.23
AG 0.37
RDAI 0.55
CSX 0.50
LIIR 0.57
BPGL 0.60

Source: Jansen et al. (2020)
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Section 5

Conclusion
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Conclusion

• Node embeddings allow incorporating
relationships between nodes in a machine
learning pipeline
• These techniques improve quality and are

available in unsupervised, semi-supervised, and
fully supervised setups
• Not covered here: knowledge graph

embeddings (Ji et al., 2022), interpretability
(Şenel et al., 2018), relationships with
BERT-like models (Devlin et al., 2019),
expressiveness (Xu et al., 2019) Source: bamenny (2016)
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Implementations

• PyTorch Geometric (PyG)
(Fey et al., 2019)
• PGL (Ma et al., 2019)
• DGL (Wang et al., 2019)
• GraphGym (You et al., 2020)
• Karate Club (Rozemberczki et al., 2020)

The list is non-exhaustive.

Source: Alexas Fotos (2017)
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Thank You!

Questions?

Contacts
Dr. Dmitry Ustalov
§ https://github.com/dustalov
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