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SUMMARY 
 

Item 1: Title 

a) Use the title to convey the essential information on the challenge mission. 
 

Artificial Intelligence and Radiologists at Prostate Cancer Detection in MRI 

 

b) Preferable, provide a short acronym of the challenge (if any). 
 

PI-CAI (Prostate Imaging - Cancer AI) 

 

Item 2: Abstract 

Provide a summary of the challenge purpose. This should include a general introduction in the topic 

from both a biomedical as well as from a technical point of view and clearly state the envisioned 

technical and/or biomedical impact of the challenge. 
 
 

Prostate cancer (PCa) is one of the most prevalent cancers in men worldwide. One million men receive a 

diagnosis and 300,000 die from clinically significant PCa (csPCa) (defined as ISUP ≥ 2), each year, worldwide. 

Multiparametric magnetic resonance imaging (mpMRI) is playing an increasingly important role in the early 

diagnosis of prostate cancer, and has been recommended by the European Association of Urology (EAU), 

prior to biopsies (Mottet et al., 2021). However, current guidelines for reading prostate mpMRI (i.e. PI-RADS v2.1) 

follow a semi-quantitative assessment that mandates substantial expertise for proper usage. This can lead to 

low inter-reader agreement (<50%), sub-optimal interpretation and overdiagnosis (Rosenkrantz et al., 2016, 

Smith et al., 2019, Westphalen et al., 2020).  

 

Unlike the mpMRI protocol, biparametric MRI (bpMRI) does not include dynamic contrast-enhanced imaging 

(DCE)  —thereby reducing costs, eliminating any risk of adverse effects from the use of contrast agents, and 

shortening examination times (Turkbey et al., 2019). Thus, despite providing less diagnostic information than 

mpMRI (de Rooij et al., 2020), bpMRI is more suitable within the scope of high-volume, population-based 

screening (Eklund et al., 2021).  

 

Modern artificial intelligence (AI) algorithms have paved the way for powerful computer-aided detection and 

diagnosis (CAD) systems that rival human performance in medical image analysis (Esteva et al., 2017, 

McKinney et al., 2020). Clinical trials are the gold standard for assessing new medications and interventions in 

a controlled and comparative manner, and the equivalent for developing AI algorithms are international 

competitions or “grand challenges”. Grand challenges can address the lack of trust, scientific evidence and 

adequate validation among AI solutions (Leeuwen et al., 2021), by providing the means to compare algorithms 

against each other using common training and testing data. Present-day public benchmark of csPCa 

detection/diagnosis is the ProstateX challenge (Armato et al., 2018) from 2016-2017, which uses a testing set 

of 140 mpMRI exams to evaluate and compare AI algorithms. However, its small sample size and weak 

evaluation format (with publicly available, as opposed to truly “unseen” testing images), limits the ability to 

reliably draw out definitive conclusions. 

 

The PI-CAI challenge is an all-new grand challenge that aims to validate the diagnostic performance of 

artificial intelligence and radiologists at csPCa detection/diagnosis in MRI, with histopathology and follow-up 

(≥ 3 years) as the reference standard, in a retrospective setting. The study hypothesizes that state-of-the-art AI 

algorithms, trained using thousands of patient exams, are non-inferior to radiologists reading bpMRI. As 

secondary end-points, it investigates the optimal AI model for csPCa detection/diagnosis, and the effects of 

DCE imaging and reader experience on diagnostic accuracy and inter-reader variability. However, the study 

neither validates the utility of AI as an assistive tool for concurrent reading in a prospective setting, nor does it 

evaluate the role of AI predictions in biopsy management and decision-making tasks.  

 

https://pubmed.ncbi.nlm.nih.gov/27150257/
https://uroweb.org/guideline/prostate-cancer/
https://www.europeanurology.com/article/S0302-2838(19)30180-0/fulltext
https://doi.org/10.1148/radiol.2016152542
https://doi.org/10.1002/jmri.26555
https://doi.org/10.1148/radiol.2020190646
https://www.sciencedirect.com/science/article/pii/S0302283819301800
https://www.europeanurology.com/article/S0302-2838(20)30330-4/fulltext
https://www.nejm.org/doi/10.1056/NEJMoa2100852
https://www.nature.com/articles/nature21056
https://www.nature.com/articles/s41586-019-1799-6
https://link.springer.com/article/10.1007/s00330-021-07892-z
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6228312/pdf/JMI-005-044501.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6228312/
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Key aspects of the PI-CAI study design have been established in conjunction with an international scientific 

advisory board of 16 experts in prostate AI, radiology and urology —to unify and standardize present-day 

guidelines, and to ensure meaningful validation of prostate AI towards clinical translation (Reinke et al., 2021).  

 
Item 3: Keywords 

List the primary keywords that characterize the challenge. 
 

prostate cancer; artificial intelligence; magnetic resonance imaging; radiologists; computer-aided detection 

and diagnosis 

 

CHALLENGE ORGANIZATION 
 

Item 4: Organizers 

a) Provide information on the organizing team (names and affiliations). 
 

Anindo Saha1, Jasper J. Twilt1, Joeran S. Bosma1, Bram van Ginneken1,2, Derya Yakar3, Mattijs Elschot4,5, 

Jeroen Veltman6, Jurgen Fütterer1, Maarten de Rooij1, Henkjan Huisman1,4 

1 Department of Medical Imaging, Radboud University Medical Center, The Netherlands 
2 Fraunhofer Institute for Digital Medicine MEVIS, Germany 

3 Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, The Netherlands 

4 Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Norway 

5 Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Norway 

6 Department of Radiology, Ziekenhuis Groep Twente, The Netherlands 

 

b) Provide information on the primary contact person. 
 

Anindo Saha: anindya.shaha@radboudumc.nl, Joeran S. Bosma: joeran.bosma@radboudumc.nl 

Jasper J. Twilt: jasper.twilt@radboudumc.nl 

 

Item 5: Lifecycle type 

Define the intended submission cycle of the challenge. Include information on whether/how the 

challenge will be continued after the challenge has taken place. 

Examples: 

● One-time event with fixed submission deadline 

● Open call 

● Repeated event with annual fixed submission deadline 
 

After completion of the 2022 edition of the PI-CAI challenge, while the Open Development Phase – Validation 

and Tuning leaderboard will remain live for continuous submissions, interested teams can only make submissions 

to the Open Development Phase – Testing leaderboard upon request (with supporting documents, e.g. 

institutional e-mail address, associated publication, etc.). This step is necessary to preserve the integrity of the 

hidden testing cohort (by avoiding overfitting). It also ensures traceability and verification of all post-challenge 

solutions that claim to match/outperform prior submissions on the testing dataset. Closed Testing Phase – Final 

Ranking leaderboard will be closed, as it only represents the ranking of AI algorithms which were also trained 

on the private training datasets. PI-CAI will not be a one-time event. Future iterations may explore the effects 

of additional information (e.g. using full prostate mpMRI, instead of bpMRI sequences only) and more rigorous 

testing (e.g. larger number of external testing data centers) on AI performance and generalization. 

 

Item 6: Challenge venue and platform 

a) Report the event (e.g. conference) that is associated with the challenge (if any). 
 

This challenge is not associated with any conference.  

b) Report the platform (e.g. grand-challenge.org) used to run the challenge. 
https://grand-challenge.org/ 

https://www.sciencedirect.com/science/article/pii/S2405456921001607
https://www.diagnijmegen.nl/people/anindo-saha/
https://nl.linkedin.com/in/jasper-twilt-619aa2205
https://www.diagnijmegen.nl/people/joeran-bosma/
https://www.diagnijmegen.nl/people/bram-van-ginneken/
https://www.umcg.nl/-/d-yakar
https://www.ntnu.edu/employees/mattijs.elschot
https://www.zgt.nl/aandoening-en-behandeling/medisch-specialisten/veltman-j/
https://www.radboudumc.nl/en/people/jurgen-futterer
https://www.radboudumc.nl/en/people/maarten-de-rooij
https://www.diagnijmegen.nl/people/henkjan-huisman/
https://www.diagnijmegen.nl/people/anindo-saha/
mailto:anindya.shaha@radboudumc.nl
mailto:Joeran%20S.%20Bosma
mailto:joeran.bosma@radboudumc.nl
mailto:Jasper%20J.%20Twilt
mailto:jasper.twilt@radboudumc.nl
https://pi-cai.grand-challenge.org/evaluation/open-development-phase/leaderboard/
https://pi-cai.grand-challenge.org/evaluation/open-development-phase/leaderboard/
https://pi-cai.grand-challenge.org/evaluation/challenge/leaderboard/
https://pi-cai.grand-challenge.org/evaluation/closed-testing-phase-final-ranking/leaderboard/
https://pi-cai.grand-challenge.org/evaluation/closed-testing-phase-final-ranking/leaderboard/
https://grand-challenge.org/
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c) Provide the URL for the challenge website (if any). 
 

https://pi-cai.grand-challenge.org/ 

 

Item 7: Participation policies 

a) Define the allowed user interaction of the algorithms assessed (e.g. only (semi-) automatic 

methods allowed). 
 

⎯ This challenge only supports the submission of fully automated methods in Docker containers. It is not 

possible to submit semi-automated or interactive methods. 
 

⎯ All Docker containers submitted to the challenge will be executed in an offline setting (i.e. they will not 

have access to the internet, and cannot download/upload any resources). All necessary resources (e.g. 

pre-trained AI model weights) must be encapsulated in the submitted containers apriori. 

 
 

b) Define the policy on the usage of training data. The data used to train algorithms may, for 

example, be restricted to the data provided by the challenge or to publicly available data 

including (open) pre-trained nets. 
 

⎯ Use of pre-trained AI models on computer vision and/or medical imaging datasets (e.g. ImageNet, 

Medical Segmentation Decathlon), and use of any other dataset besides the PI-CAI training datasets, is 

allowed, only as long as such data and/or models are published under a permissive license (within 3 months 

of the Open Development Phase deadline), and participants clearly state their source and use-case, in 

each submission. 
 

 
c) Define the participation policy for members of the organizers' institutes. For example, members 

of the organizers' institutes may participate in the challenge but are not eligible for awards. 
 

⎯ Members of all sponsoring or organizing entities (i.e. Radboud University Medical Center, Ziekenhuis Groep 

Twente, University Medical Center Groningen, Norwegian University of Science and Technology) can freely 

participate in the challenge, but are not eligible for the final ranking in the Closed Testing Phase or any of 

the prizes. 

 
 

d) Define the award policy. In particular, provide details with respect to challenge prizes. 
 

⎯ Teams that are responsible for developing the top-performing 3 AI algorithms will receive cash prizes and/or 

Amazon Web Services (AWS) credits (exact details pending ongoing discussions with sponsors). 
 

⎯ All prizes are non-transferrable. 
 

⎯ Members of all winning teams must have their true names and affiliations [university, institute or company 

(if any); country] displayed accurately on verified Grand-Challenge profiles, to be eligible for prizes. 

 

e) Define the policy for result announcement. 

Examples: 

● Top three performing methods will be announced publicly. 

● Participating teams can choose whether the performance results will be made public. 
 

⎯ At the end of the Open Development Phase, all AI algorithm submissions and their respective performance 

will be announced publicly via its leaderboard.  
 

⎯ At the end of Closed Testing Phase, the top-performing 5 AI algorithms (including the winner of the PI-CAI 

challenge) and their respective performance will be announced publicly via its leaderboard.  

https://pi-cai.grand-challenge.org/
https://image-net.org/
https://decathlon-10.grand-challenge.org/
https://pi-cai.grand-challenge.org/AIPR/
https://www.diagnijmegen.nl/
https://www.zgt.nl/
https://www.zgt.nl/
https://www.umcg.nl/
https://www.ntnu.edu/
https://pi-cai.grand-challenge.org/AIPR/
https://aws.amazon.com/awscredits/
https://grand-challenge.org/documentation/verification/
https://pi-cai.grand-challenge.org/AIPR/
https://pi-cai.grand-challenge.org/evaluation/challenge/leaderboard/
https://pi-cai.grand-challenge.org/AIPR/
https://pi-cai.grand-challenge.org/evaluation/closed-testing-phase-final-ranking/leaderboard/
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f) Define the publication policy. In particular, provide details on ... 

● … who of the participating teams/the participating teams’ members qualifies as author 

● … whether the participating teams may publish their own results separately, and (if so) 

● … whether an embargo time is defined (so that challenge organizers can publish a 

challenge paper first). 

 
⎯ Upto 3 members from each team, that is responsible for one of the top-performing 5 AI algorithms, will be 

invited to join the PI-CAI challenge paper, as a consortium author.  

 

⎯ Participants of the PI-CAI challenge, as well as non-participating researchers using the PI-CAI public 

training dataset, can publish their own results any time, separately. They do not have to adhere to any 

embargo period. While doing so, they are requested to cite this document (BIAS preregistration form for 

the PI-CAI challenge), which will be published on Zenodo with a corresponding DOI. Once a study protocol 

and/or a challenge paper has been published, they are requested to refer to those publication(s) instead.   

 

Item 8: Submission method 

a) Describe the method used for result submission. Preferably, provide a link to the submission 

instructions. 

      Examples: 

● Docker container on the Synapse platform. Link to submission instructions: <URL> 

● Algorithm output was sent to organizers via e-mail. Submission instructions were sent by 

e-mail. 
 

The PI-CAI challenge takes place in two phases: 
 

⎯ Open Development Phase (Duration: 6 months) 

Anyone can participate in this phase of the challenge. Interested teams must join the PI-CAI challenge 

at https://pi-cai.grand-challenge.org. Afterwards, they will be provided access to download the public 

training dataset, and in turn, they can start developing and training AI models using their private or public 

compute resources (e.g. Google Colaboratory, Kaggle). Each team can submit a single trained algorithm 

(in a Docker container) for evaluation every week (similar to the AIROGS, MIDOG2021 and CoNIC2022 

challenges). During evaluation, algorithms are executed on the grand-challenge.org platform, their 

performance is estimated on the hidden validation and tuning cohort, and team rankings are updated 

accordingly on a live, public leaderboard. Facilitating validation in such a manner, ensures that any image 

used for evaluation remains truly unseen, and that AI predictions cannot be tampered with. At the end of 

this phase, each team can choose to submit a single AI algorithm (presumably their top-performing model, 

but not necessarily their last submission) for evaluation on the hidden testing cohort. Based on their 

performance on this cohort, all-new rankings will be drawn. 

 

⎯ Closed Testing Phase (Duration: 2 months) 

Teams with the top 5 AI algorithms of PI-CAI will be invited to participate in this phase of the challenge. 

Participants must prepare Docker containers of their AI algorithms that allow training, and subsequently, 

inference using the trained weights (similar to the STOIC2021 and NODE21 challenges). Organizers will 

retrain these models with large-scale data (public + private training datasets), using their institutional 

compute resources. Once training is complete, performance will be re-evaluated on the hidden testing 

cohort (with rigorous statistical analyses), and the winners of the PI-CAI challenge will be announced. 

 

Instructions for submitting AI models encapsulated in Docker containers to the Grand Challenge platform: 

https://grand-challenge.org/documentation/creating-an-algorithm-container/ 
 

Source code for training a baseline vanilla U-Net (Ronneberger et al., 2015), nnU-Net (Isensee et al., 2021) or 

nnDetection (Baumgartner et al., 2021) algorithm, and encapsulating it in a Docker container for submission to 

the PI-CAI challenge: https://github.com/DIAGNijmegen/picai_baseline 

 

 

https://pi-cai.grand-challenge.org/AIPR/
https://pi-cai.grand-challenge.org/
https://pi-cai.grand-challenge.org/DATA/
https://pi-cai.grand-challenge.org/DATA/
https://research.google.com/colaboratory/
https://www.kaggle.com/
https://grand-challenge.org/documentation/algorithms/
https://grand-challenge.org/documentation/algorithms/
https://airogs.grand-challenge.org/
https://midog2021.grand-challenge.org/
https://conic-challenge.grand-challenge.org/
https://pi-cai.grand-challenge.org/DATA/
https://pi-cai.grand-challenge.org/evaluation/open-development-phase/leaderboard/
https://pi-cai.grand-challenge.org/DATA/
https://pi-cai.grand-challenge.org/evaluation/challenge/leaderboard/
https://pi-cai.grand-challenge.org/AIPR/
https://stoic2021.grand-challenge.org/
https://node21.grand-challenge.org/
https://pi-cai.grand-challenge.org/DATA/
https://pi-cai.grand-challenge.org/evaluation/closed-testing-phase-final-ranking/leaderboard/
https://pi-cai.grand-challenge.org/evaluation/closed-testing-phase-final-ranking/leaderboard/
https://grand-challenge.org/documentation/creating-an-algorithm-container/
https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28
https://doi.org/10.1038/s41592-020-01008-z
https://link.springer.com/chapter/10.1007/978-3-030-87240-3_51
https://github.com/DIAGNijmegen/picai_baseline
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b) Provide information on the possibility for participating teams to evaluate their algorithms before 

submitting final results. For example, many challenges allow submission of multiple results, and only 

the last run is officially counted to compute challenge results. 

See answer to Item 8(a). 
 

 

Item 9: Challenge schedule 

Provide a timetable for the challenge. Preferably, this should include 

● the release date(s) of the training cases (if any) 

● the registration date/period 

● the release date(s) of the test cases and validation cases (if any) 

● the submission date(s) 

● associated workshop days (if any) 

● the release date(s) of the results 
 

Tentative timeline: 

⎯ 5 May 2022: Release of Public Training and Development Dataset 

⎯ 12 June 2022: Accepting AI Algorithms for Open Development Phase – Validation and Tuning 

⎯ 12 June 2022: Closing Submissions for Open Development Phase – Validation and Tuning 

⎯ 20 October 2022: Accepting AI Algorithms for Open Development Phase – Testing 

⎯ 30 October 2022: Closing Submissions for Open Development Phase – Testing 

⎯ 10 November 2022: Accepting AI Algorithms for Closed Testing Phase 

⎯ 30 November 2022: Closing Submissions for Closed Testing Phase 

⎯ 30 December 2022: Winners of the PI-CAI Challenge are Announced Publicly 

 

Item 10: Ethics approval 

Indicate whether ethics approval is necessary for the data. If yes, provide details on the 

ethics approval, preferably institutional review board, location, date and number of the 

ethics approval (if applicable). Add the URL or a reference to the document of the ethics 

approval. 

The institutional review boards of Radboud University Medical Center (RUMC), Ziekenhuis Groep Twente (ZGT), 

University Medical Center Groningen (UMCG) and Norwegian University of Science and Technology (NTNU) 

have waived the need for informed patient consent, for the retrospective scientific use of anonymized clinical 

data in this study. 

 

MISSION OF THE CHALLENGE 

Item 14: Field(s) of application 

State the main field(s) of application that the participating algorithms target. 

Examples: 

● Diagnosis 

● Education 

● Intervention assistance 

● Intervention follow-up 

● Intervention planning 

● Prognosis 

● Research 

● Screening 

● Training 

● Cross-phase 
 

Main fields of application: diagnosis, research, risk stratification. 

https://pi-cai.grand-challenge.org/DATA/
https://pi-cai.grand-challenge.org/evaluation/open-development-phase/leaderboard/
https://pi-cai.grand-challenge.org/evaluation/open-development-phase/leaderboard/
https://pi-cai.grand-challenge.org/evaluation/challenge/leaderboard/
https://pi-cai.grand-challenge.org/evaluation/challenge/leaderboard/
https://pi-cai.grand-challenge.org/AIPR/
https://pi-cai.grand-challenge.org/AIPR/
https://www.diagnijmegen.nl/
https://www.zgt.nl/
https://www.umcg.nl/
https://www.ntnu.edu/
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Item 15: Task category(ies)  

State the task category(ies).  

Examples: 

● Classification 

● Detection 

● Localization 

● Modeling 

● Prediction 

● Reconstruction 

● Registration 

● Retrieval 

● Segmentation 

● Tracking 

 
Task categories: classification, detection, localization, prediction. 

 

Item 16: Cohorts 

We distinguish between the target cohort and the challenge cohort. For example, a challenge 

could be designed around the task of medical instrument tracking in robotic kidney surgery. While 

the challenge could be based on ex vivo data obtained from a laparoscopic training environment 

with porcine organs (challenge cohort), the final biomedical application (i.e. robotic kidney 

surgery) would be targeted on real patients with certain characteristics defined by inclusion criteria 

such as restrictions regarding gender or age (target cohort). 

 

a) Describe the target cohort, i.e. the subjects/objects from whom/which the data would be 

acquired in the final biomedical application. 

 

b) Describe the challenge cohort, i.e. the subject(s)/object(s) from whom/which the challenge 

data was acquired. 
 

Target and challenge cohorts of PI-CAI are very similar. Both of them represent the same patient population: 

men suspected of harboring csPCa, with elevated levels  of prostate-specific antigen (≥ 3 ng/mL) or abnormal 

findings on digital rectal exam, and without a history of treatment or any prior positive histopathology (ISUP ≥ 

2) findings. Hidden testing and validation cohorts of the challenge include a similar distribution of PI-RADS and 

ISUP lesions as the one observed in the multi-center, consecutive 4M cohort (van der Leest et al., 2019). 

Nonetheless, deviations in the challenge cohorts with respect to the target cohort do exist, due to the following 

factors: 

⎯ By sampling one study per patient, we increase the diversity of benign and malignant findings in the hidden 

testing and validation cohorts. However, in clinical practice or the target cohort, multiple studies from the 

same patient can be encountered. 
 

⎯ Excluding cases from the training datasets and the hidden testing and validation cohorts, that cannot be 

annotated due to incomplete imaging, poor scan quality or artifacts (e.g. due to hip prostheses), MRI-

invisible lesions and ambiguous diagnostic reports.  
 

⎯ Enriching the pool of 400 testing cases used for the reader study, with additional positives (with respect to 

clinical routine or the target cohort), in order to improve the statistical power. 
 

⎯ Excluding positive MRI (PI-RADS 3-5) cases without any corresponding histopathology reports in the training 

datasets, whose ground-truth for the presence/absence of csPCa, cannot be definitively established (note, 

we use follow-up information for such cases in the hidden validation and testing cohorts). 

 

⎯ Absence of patient scans in the training datasets, and the hidden validation and testing cohorts, acquired 

using MRI vendors besides Siemens Healthineers and Philips Medical Systems (e.g. GE Healthcare, Canon 

Medical Systems). 

 

https://pubmed.ncbi.nlm.nih.gov/27150257/
https://www.europeanurology.com/article/S0302-2838(19)30180-0/fulltext
https://pubmed.ncbi.nlm.nih.gov/27150257/
https://www.sciencedirect.com/science/article/pii/S0302283818308807?via%3Dihub
https://www.europeanurology.com/article/S0302-2838(19)30180-0/fulltext
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⎯ Using a biopsy cohort exclusively (i.e. no negative MRI cases without histopathology) from one of the four 

data centers (University Medical Center Groningen), for the training datasets, and the hidden validation 

and testing cohorts. 
 

Item 17: Imaging modality(ies) 

Specify the imaging technique(s) applied in the challenge. 

Biparametric prostate MRI:  Axial, sagittal and coronal T2-weighted imaging (T2W); axial high b-value (≥ 1000 

s/mm2) diffusion-weighted imaging (DWI); axial apparent diffusion coefficient maps (ADC). All cases used for 

the reader study will also include dynamic contrast-enhanced (DCE) sequences. Note, DCE sequences will 

only be used to evaluate PI-RADS v2.1 in the PI-CAI: Reader Study. DCE sequences are not available for AI 

model testing or development during any stage of the challenge. Furthermore, sagittal and coronal T2W 

sequences are not available for all cases in the training datasets. 

Item 18: Context information 

Provide additional information given along with the images. The information may correspond ... 

a) … directly to the image data (e.g. tumor volume). 

 
Context information related to the imaging data, made available for each case: 

⎯ ISUP or Gleason Grade Group per csPCa lesion, for all patient cases in the training datasets. 
 

⎯ MRI scanner vendor (e.g. Siemens Healthineers), MRI scanner model (e.g. Skyra), and the diffusion b-value 

of the DWI scan for all patient cases in the hidden testing and validation cohorts, and all patient cases in 

the training datasets. 
 

⎯ Prostate volume (unit: mL), if reported in the corresponding radiology report, for all patient cases in the 

hidden testing and validation cohorts, and all patient cases in the training datasets. 
 

⎯ Prostate volume (unit: mL), as calculated by a publicly-available nnU-Net model trained for whole-gland 

segmentation, for all patient cases in the hidden testing and validation cohorts, and all patient cases in 

the training datasets. 

 

b) … to the patient in general (e.g. gender, medical history). 

 
Clinical information related to the patient in general, made available for each case: 

⎯ Prostate-specific antigen (PSA) level (unit: ng/mL), if reported in the corresponding radiology report, for all 

patient cases in the hidden testing and validation cohorts, and all patient cases in the training datasets. 
 

⎯ Prostate-specific antigen density (PSAd) (unit: ng/mL), if reported in the corresponding radiology report, for 

all patient cases in the hidden testing and validation cohorts, and all patient cases in the training datasets. 
 

⎯ Patient age (unit: years), for all patient cases in the hidden testing and validation cohorts, and all patient 

cases in the training datasets. 
 

 

Item 19: Target entity(ies) 

a) Describe the data origin, i.e. the region(s)/part(s) of subject(s)/object(s) from whom/which the 

image data would be acquired in the final biomedical application (e.g. brain shown in computed 

tomography (CT) data, abdomen shown in laparoscopic video data, operating room shown in 

video data, thorax shown in fluoroscopy video). If necessary, differentiate between target and 

challenge cohort. 
 

Abdomen of male patient, shown in prostate MRI scans. 

 

b) Describe the algorithm target, i.e. the structure(s) / subject(s) / object(s) / component(s) that the 

participating algorithms have been designed to focus on (e.g. tumor in the brain, tip of a medical 

instrument, nurse in an operating theater, catheter in a fluoroscopy scan). If necessary, differentiate 

between target and challenge cohort. 
 

Clinically significant cancerous lesions afflicting the prostate gland. 

https://pubmed.ncbi.nlm.nih.gov/27150257/
https://grand-challenge.org/algorithms/prostate-segmentation/
https://grand-challenge.org/algorithms/prostate-segmentation/
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Item 20: Assessment aim(s) 

Identify the property(ies) of the algorithms to be optimized to perform well in the challenge. If 

multiple properties are assessed, prioritize them (if appropriate). The properties should then be 

reflected in the metrics applied (parameter 26), and the priorities should be reflected in the ranking 

when combining multiple metrics that assess different properties. 

● Example 1: Find liver segmentation algorithm for CT images that processes CT images of a 

certain size in less than a minute on a certain hardware with an error that reflects inter- rater 

variability of experts. 

● Example 2: Find lung tumor detection algorithm with high sensitivity and specificity for 

mammography images. 

Corresponding metrics are listed below (parameter 26).  
 

The goal of prostate AI developed in the PI-CAI challenge is similar to that of PI-RADS —which operates on a 

lesion-level basis (detections with a likelihood or PI-RADS score per lesion), and where the patient-level 

diagnosis is mainly determined by the findings associated with the index lesion. In other words, the properties 

to be optimized for AI algorithms in this challenge are: lesion-level detection of csPCa in bpMRI; and patient-

level diagnosis (or classification) of csPCa in bpMRI (using the predicted detections, as illustrated in Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 (top) Lesion-level csPCa detection (modeled by 'AI'): For a given patient case, using the bpMRI 

exam, predict a 3D detection map of non-overlapping, non-connected csPCa lesions (with the same 

dimensions and resolution as the T2W image). For each predicted lesion, all voxels must comprise a  

single floating point value between 0-1, representing that lesion’s likelihood of harboring csPCa.  

(bottom) Patient-level csPCa diagnosis (modeled by 'f(x)'): For a given patient case, using the predicted 

csPCa lesion detection map, compute a single floating point value between 0-1, representing that  

patient’s overall likelihood of harboring csPCa. For instance, f(x) can simply be a function that takes  

the maximum of the csPCa lesion detection map, or it can be a more complex heuristic  

(defined by the AI developer). 

 

 

https://www.europeanurology.com/article/S0302-2838(19)30180-0/fulltext
https://www.europeanurology.com/article/S0302-2838(19)30180-0/fulltext
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CHALLENGE DATA SETS 

Item 21: Data source(s) 

a) Specify the device(s) used to acquire the challenge data. This includes details on the device(s) 

used to acquire the imaging data (e.g. manufacturer) as well as information on additional devices 

used for performance assessment (e.g. tracking system used in a surgical setting). 
 

All image acquisitions were obtained using Siemens Healthineers or Philips Medical Systems-based 1.5T or 3T MRI 

scanners with surface coils. 
 

b) Describe relevant details on the imaging process/data acquisition for each acquisition device 

(e.g. image acquisition protocol(s)). 
 

Multiparametric prostate MRI protocol, as detailed in Engels et. al, 2020. 

 

c) Specify the center(s)/institute(s) in which the data was acquired and/or the data providing 

platform/source (e.g. previous challenge). If this information is not provided (e.g. for anonymization 

reasons), specify why. 

This retrospective study includes prostate MRI exams, acquired between 2012–2021, at three Dutch centers 

(Radboud University Medical Center (RUMC), Ziekenhuis Groep Twente (ZGT), University Medical Center 

Groningen (UMCG)), and one Norwegian center (Norwegian University of Science and Technology (NTNU)). 

Data provided from RUMC, also included 328 studies from the ProstateX challenge.   

 

d) Describe relevant characteristics (e.g. level of expertise) of the subjects (e.g. surgeon)/objects 

(e.g. robot) involved in the data acquisition process (if any). 

All imaging acquisitions were performed by trained MRI radiographers at RUMC, UMCG, ZGT and NTNU. 

 

Item 22: Training and test case characteristics 

a) State what is meant by one case in this challenge. A case encompasses all data that is 

processed to produce one result that is compared to the corresponding reference result (i.e. the 

desired algorithm output). 

Examples: 

● Training and test cases both represent a CT image of a human brain. Training cases have a 

weak annotation (tumor present or not and tumor volume (if any)) while the test cases are 

annotated with the tumor contour (if any). 
 

● A case refers to all information that is available for one particular patient in a specific study. 

This information always includes the image information as specified in data source(s) 

(parameter 21) and may include context information (parameter 18). Both training and test 

cases are annotated with survival (binary) 5 years after (first) image was taken. 
 

Training and test cases both represent prostate bpMRI scans of the abdomen in male patients. All training, 

validation and testing cases carry expert-derived image-level binary annotations for the presence/absence of 

csPCa. All validation/testing cases and 86% (1295/1500) of public training cases also carry expert-derived voxel-

level lesion delineations of csPCa. All training cases also carry AI-derived voxel-level lesion delineations of csPCa 

(Bosma et al., 2022). We leave it upto the participants to formulate the most effective training strategy for their 

AI algorithms using some or all of this information.    

A case refers to all information that is available for one particular patient in a specific study. This information 

always includes the image information as specified in data source(s) (see answers to Item 21) and may include 

context information (see answers to Item 18). Both training and test cases are annotated in accordance with 

the reference standard detailed in Item 23. 

 

https://www.sciencedirect.com/science/article/pii/S0302283819307419?via%3Dihub
https://www.diagnijmegen.nl/
https://www.zgt.nl/
https://www.umcg.nl/
https://www.umcg.nl/
https://www.ntnu.edu/
prostatex%20challenges
https://arxiv.org/abs/2112.05151
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b) State the total number of training, validation and test cases. 
 

In total, the PI-CAI dataset consists of four data splits with the following use-cases:  
 

⎯ Public Training and Development Dataset (1500 cases) 

Used by all participants and researchers, to train and develop AI models during the Open Development 

Phase. All data is made available under a non-commercial CC BY-NC 4.0 license. Includes 329 training 

and testing cases from the ProstateX challenge. 

 

Imaging data is released via: zenodo.org/record/6624726 (DOI: 10.5281/zenodo.6624726) 

Annotations are released and maintained via: github.com/DIAGNijmegen/picai_labels 

 

⎯ Private Training Dataset (7500-9500 cases) 

Used exclusively by the organizers to retrain the top-ranking 5 AI algorithms, with large-scale data, during 

the Closed Testing Phase. 

 

⎯ Hidden Validation and Tuning Cohort (100 cases) 

Used to facilitate a live, public leaderboard that enables model selection and tuning, during the Open 

Development Phase. 

 

⎯ Hidden Testing Cohort (1000 cases) 

Used to benchmark AI, radiologists, and test all hypotheses at the end of the Closed Testing Phase. Includes 

internal testing data (unseen cases from seen centers {RUMC, ZGT, UMCG}) and external testing data 

(unseen cases from an unseen center {NTNU}). A subset of 400 cases from this cohort is used to facilitate 

the PI-CAI: Reader Study. 

 

 

c) Explain why a total number of cases and the specific proportion of training, validation and test 

cases was chosen. 

A total of 1100 cases (1000 testing, 100 validation) is used for evaluation, considering both practicality (numbers 

of cases in our multi-center cohort, for which it would be feasible to acquire at least 3 years of follow-up data) 

and viability (minimum number of cases need for a reliable AI performance benchmark at present-time and 

through the coming years). All remaining 9000-11,000 cases in the cohort are used to create the training datasets 

(1500 public, 7500-9500 private). 

 

d) Mention further important characteristics of the training, validation and test cases (e.g. class 

distribution in classification tasks chosen according to real-world distribution vs. equal class 

distribution) and justify the choice. 

 
To meaningfully validate AI for prostate MRI towards clinical translation, it is essential to analyze performance 

across the complete patient population encountered in clinical routine. For instance, while radical 

prostatectomy (RP) can provide the most comprehensive tissue specimen to facilitate accurate histopathology 

grading, a cohort of solely RP patients is heavily biased –deviating substantially from the distribution of patients 

encountered during clinical routine (where the vast majority of men carry benign tissue or low-grade PCa). In 

other words, a clinically representative validation or testing cohort must also include patients without cancer 

and with negative MRI, and those who have undergone systematic and/or targeted biopsies (Schelb et al., 

2019). Various combinations of RP, biopsy and/or negative MRI-based testing cohorts have been investigated 

across multiple recent studies on automated csPCa diagnosis (Schelb et al., 2019, Mehta et al., 2021, 

Bhattacharya et al., 2021, Hosseinzadeh et al., 2021, Winkel et al., 2021, Saha et al., 2021, Netzer et al., 2021), 

and such a combination was used for the ProstateX challenge as well. Similarly, the hidden testing and 

validation cohorts of PI-CAI were curated to resemble the real-world distribution of men suspected of harboring 

csPCa, as closely as possible, while retaining a strong reference standard for the presence/absence of csPCa.  

 

The 4M cohort (van der Leest et al., 2019) was used as a point of reference, for the observed patient and lesion-

level distributions of csPCa prevalence in a multi-center, consecutive cohort. Exact characteristics and 

enrichment of the case mixture per split (Pinsky et al., 2012), including the distribution of PI-RADS and ISUP lesions 

for the PI-CAI datasets, have been considered and recorded. However, this information remains blinded for the 

hidden validation and testing cohorts, till the study is officially complete. For the private training dataset, these 

https://pi-cai.grand-challenge.org/AIPR/
https://pi-cai.grand-challenge.org/AIPR/
https://creativecommons.org/licenses/by-nc/4.0/
https://prostatex.grand-challenge.org/
https://zenodo.org/record/6624726
https://github.com/DIAGNijmegen/picai_labels
https://pi-cai.grand-challenge.org/AIPR/
https://pi-cai.grand-challenge.org/AIPR/
https://pi-cai.grand-challenge.org/AIPR/
https://pi-cai.grand-challenge.org/AIPR/
https://pi-cai.grand-challenge.org/RS/
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/radical-prostatectomy
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/radical-prostatectomy
https://pubs.rsna.org/doi/full/10.1148/radiol.2019190938
https://pubs.rsna.org/doi/full/10.1148/radiol.2019190938
https://pubs.rsna.org/doi/10.1148/radiol.2019192012
https://doi.org/10.1016/j.media.2021.102153
https://doi.org/10.1016/j.media.2021.102288
https://link.springer.com/article/10.1007/s00330-021-08320-y
https://pubmed.ncbi.nlm.nih.gov/33787537/
https://www.sciencedirect.com/science/article/pii/S1361841521002012?via%3Dihub
https://journals.lww.com/investigativeradiology/Fulltext/2021/12000/Fully_Automatic_Deep_Learning_in_Bi_institutional.3.aspx
https://pubmed.ncbi.nlm.nih.gov/30840739/
https://www.sciencedirect.com/science/article/pii/S0302283818308807?via%3Dihub
https://pubmed.ncbi.nlm.nih.gov/22095795/
https://www.europeanurology.com/article/S0302-2838(19)30180-0/fulltext
https://pubmed.ncbi.nlm.nih.gov/27150257/
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numbers will be released at a later date (before the start of the Closed Testing Phase) pending their full curation. 

For the public training dataset, these numbers are listed in Table 1. 

 

Table 1 | Data splits for the training datasets, and the hidden validation and testing cohorts. 

Data Source 

Public Training and 

Development Set 
Private Training Set 

Hidden Validation 

and Tuning Cohort 
Hidden Testing Cohort 

Total 
RUMC, ZGT, UMCG  

 The Netherlands 

RUMC, ZGT, UMCG  

The Netherlands 

RUMC, ZGT, UMCG  

The Netherlands 

RUMC, ZGT, UMCG, NTNU  

The Netherlands, Norway 

No. of Sites 11 11 5 6 11 

No. of MRI Scanners 5 S, 2 P 6 S, 3 P † 6 S, 3 P † 6 S, 3 P † 6 S, 3 P † 

No. of Patients 1476 8800 † 100 1000 11,376 † 

No. of Cases 1500 9000 † 100 1000 11,600 † 

— Benign or Indolent PCa  1075 { To-Be-Announced }  { Blinded }  { Blinded } –  

— csPCa (ISUP ≥ 2) 425 { To-Be-Announced }  { Blinded }  { Blinded } – 

Median Age (years) 66 {IQR: 61–70} { To-Be-Announced }  { Blinded }  { Blinded } – 

Median PSA (ng/mL) 8.5 {IQR: 6–13} { To-Be-Announced }  { Blinded }  { Blinded } – 

Median Prostate Volume (mL) 57 {IQR: 40–80} { To-Be-Announced }  { Blinded }  { Blinded } – 

No. of Positive MRI Lesions 1087 { To-Be-Announced }  { Blinded }  { Blinded } – 

— PI-RADS 3     246 (23%) { To-Be-Announced }  { Blinded }  { Blinded } – 

— PI-RADS 4 438 (40%) { To-Be-Announced }  { Blinded }  { Blinded } – 

— PI-RADS 5 403 (37%) { To-Be-Announced }  { Blinded }  { Blinded } – 

No. of ISUP-Based Lesions 776 { To-Be-Announced }  { Blinded }  { Blinded } – 

— ISUP 1 311 (40%) { To-Be-Announced }  { Blinded }  { Blinded } – 

— ISUP 2     260 (34%) { To-Be-Announced }  { Blinded }  { Blinded } – 

— ISUP 3 109 (14%) { To-Be-Announced }  { Blinded }  { Blinded } – 

— ISUP 4 41 (5%) { To-Be-Announced }  { Blinded }  { Blinded } – 

— ISUP 5 55 (7%) { To-Be-Announced }  { Blinded }  { Blinded } – 

RUMC: Radboud University Medical Center; ZGT: Ziekenhuisgroep Twente; UMCG: University Medical Center Groningen; NTNU: Norwegian 

University of Science and Technology; S: Siemens Healthineers MRI scanner {Skyra 3T, TrioTim 3T, Prisma 3T, Aera 1.5T, Avanto 1.5T, Espree 1.5T}; 

P: Philips Medical Systems MRI scanner {Ingenia 3T, Achieva 1.5T, Intera 1.5T}  

† Tentative numbers. 

 
 

 

Item 23: Annotation characteristics 

a) Describe the method for determining the reference annotation, i.e. the desired algorithm output. 

Provide the information separately for the training, validation and test cases if necessary. Possible 

methods include manual image annotation, in silico ground truth generation and annotation by 

automatic methods. 

 
Hidden Testing and Validation Cohort Annotations 

For accurate validation of AI and human-reader performance, and in turn, to substantiate any conclusions 

derived from PI-CAI, a strong reference standard for csPCa is crucial. The PI-CAI reference standard aims to 

utilize the best possible evidence to define the ground-truth for every case in the validation and testing cohorts, 

i.e. histologically-confirmed (ISUP ≥ 2) positives, and histologically- (ISUP ≤ 1) or MRI- (PI-RADS ≤ 2) confirmed 

negatives, with follow-up (≥ 3 years), as detailed below and summarize in Figure 2. 

  

⎯ Patients with negative MRI (i.e. benign or carrying PI-RADS 1–2 lesions) generally do not undergo biopsies or 

RP and lack histologically-confirmed evidence for the absence of csPCa. It is likely that they do not harbor 

csPCa, but a small percentage (<1% at RUMC; Venderink et al., 2019) can still be missed. To alleviate this, 

upto 40% of the validation and testing cohorts are composed of multi-center patient data from the 4M cohort 

(van der Leest et al., 2019), where all patients with negative MRI had received systematic biopsies and 

subsequent grading was supervised by an expert uropathologist (> 25 years of experience). In other words, 

by using data from the 4M cohort, we are able to acquire histopathology evidence for a large fraction of 

the patient population, that is encountered, but typically not histologically-confirmed during clinical routine. 
 

⎯ Biopsies alone can still be prone to undersampling csPCa, especially in the case of smaller lesions (Srivastava 

et al., 2019). Hence, all negative cases (negative MRI and/or histopathology) in the validation and testing 

cohorts are confirmed with follow-up data (e.g. using the national Dutch Pathology Registry (PALGA) for 

centers based in The Netherlands). Negative patient exams found to be positive (via MRI or histopathology) 

in ≥ 3 years of follow-up, were inspected with an expert radiologist for retrospective signs of potentially missed 

csPCa. If the presence of csPCa can be definitively confirmed, they are included as positive cases; otherwise, 

https://pi-cai.grand-challenge.org/AIPR/
https://pubmed.ncbi.nlm.nih.gov/27150257/
https://pubmed.ncbi.nlm.nih.gov/27150257/
https://www.europeanurology.com/article/S0302-2838(19)30180-0/fulltext
https://www.europeanurology.com/article/S0302-2838(19)30180-0/fulltext
https://pubmed.ncbi.nlm.nih.gov/31237388/
https://www.sciencedirect.com/science/article/pii/S0302283818308807?via%3Dihub
https://www.nature.com/articles/s41568-019-0142-8
https://www.nature.com/articles/s41568-019-0142-8
https://www.palga.nl/en/public-database.html
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they are excluded. Negative patient exams with 100% csPCa diagnosis-free survival (DFS) after at least 3 

years, are included. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  Typical workflow used to establish the ground-truth for each lesion in the hidden validation and 

testing cohorts. If systematic biopsies (SysBx) were performed in addition to MRI-targeted biopsies (MRBx), 

then SysBx findings are only used to upgrade the ISUP score not downgrade. If RP is performed, its 

corresponding findings supersede that of any prior histopathology/radiology findings. Cases for which 

pathology findings cannot be localized on MRI (e.g. MRI-invisible lesions, SysBx diagnostic reports  

with ambiguous or missing location information) are excluded. 

 
Training Dataset Annotations 

Patient cases used for the training datasets of PI-CAI are annotated with the same reference standard as used 

for the ProstateX challenge, i.e. histologically-confirmed (ISUP ≥ 2) positives, and histologically- (ISUP ≤ 1) or MRI- 

(PI-RADS ≤ 2) confirmed negatives, without follow-up. 
 
 

Annotators 

For all cases, voxel-level csPCa lesion annotations are delineated and/or patient-level csPCa outcomes are 

recorded, by one of 10 trained investigators or 1 radiology resident, under supervision of one of 3 expert 

radiologists, at RUMC, UMCG or NTNU. For all training cases, automated AI-derived delineations of  csPCa lesions 

(Bosma et al., 2022) have also been made available. 

 

b) Provide the instructions given to the annotators (if any) prior to the annotation. This may include 

description of a training phase with the software. Provide the information separately for the training, 

validation and test cases if necessary. Preferably, provide a link to the annotation protocol. 
 

Each annotation is derived using MRI scans, diagnostic reports (radiology, pathology) and whole-mount 

prostatectomy specimen (if applicable). Lesion delineations are created using ITK-SNAP v3.80. Due to the 

standardized precautionary measures (e.g. minimal temporal difference between acquisitions, administration 

of antispasmodic agents to reduce bowel motility, use of rectal catheter to minimize distension) taken in the 

imaging protocol (Engels et al., 2020), we typically observe negligible patient motion across different MRI 

sequences. Nonetheless, any patient exam in the validation or testing cohorts, with substantial misalignment 

between its sequences, is manually registered (rigid transformation; with six degrees of freedom for 3D translation 

and rotation) using ITK-SNAP v3.80, before their annotations are made. 

 

c) Provide details on the subject(s)/algorithm(s) that annotated the cases (e.g. information on level 

of expertise such as number of years of professional experience, medically-trained or not). Provide 

the information separately for the training, validation and test cases if necessary. 

See answer to Item 23(a). 

 

 

d) Describe the method(s) used to merge multiple annotations for one case (if any). Provide the 

information separately for the training, validation and test cases if necessary. 
 

—

ys x

x 

(+SysBx) 

—

—

+ 

+ 

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/systematic-biopsy
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Multiple annotations were not encountered for any validation or testing cases. Multiple annotations (AI, human 

expert) for the same training cases were not merged, but rather provided as-is to all participants.  

e) In an analogous manner, describe and quantify other relevant sources of error. 
 

Contours of all csPCa lesion delineations are susceptible to annotation errors, due to the following factors:  

⎯ Exact spatial extent of csPCa lesions cannot be clearly estimated on MRI, sometimes even while using whole-

mount histopathology as reference.  
 

⎯ Inter-reader variability among annotators. 

 
Note, that we primarily investigate image-level classification and lesion-level detection (using a lenient hit 

criterion, as detailed in Item 26(a)) performance in the PI-CAI challenge. We do not evaluate segmentation or 

the exact spatiant extent of csPCa, predicted by radiologists or AI. Thus, annotation uncertainty along lesion 

boundaries, due to the factors listed above, have negligible impact (if any) on the outcomes of this study. 

 

ASSESSMENT METHODS 

Item 26: Metric(s) 

a) Define the metric(s) to assess a property of an algorithm. These metrics should reflect the desired 

algorithm properties described in assessment aim(s) (parameter 20). State which metric(s) were used 

to compute the ranking(s) (if any). 

● Example 1: Dice Similarity Coefficient (DSC) and run-time 

● Example 2: Area under curve (AUC) 

 
Source code to compute all performance metrics discussed in Item 26: Metrics, Item 27: Ranking Method and 

Item 28: Statistical Analyses, have been provided at: https://github.com/DIAGNijmegen/picai_eval 

 

Primary Performance Metrics 

Key performance metrics used to evaluate AI and radiologists, have been summarized in Figure 3.  
 

 

 

 

 

 

 
 

 

 
Figure 3.  Summary of key performance metrics used to evaluate AI and radiologists in PI-CAI. Overall ranking score is only 

used to evaluate different AI algorithms w.r.t each other and facilitate the validation and testing leaderboards. When 

comparing AI performance to that of radiologists at specific operating points, AI is thresholded to match the sensitivity, 

specificity, precision or recall of radiologists’ PI-RADS operating points (as recommended in  

Penzkofer et al., 2022, Padhani et al., 2019, Schelb et al., 2019). 

 
Secondary Performance Metrics 

Intersection over Union (IoU) is used for spatial congruence analysis of AI detections (but not for validation or 

testing, given that IoU cannot accurately evaluate detection or diagnosis performance (Reinke et al., 2020)). 

Similarly, Free-Response Receiver Operating Characteristic (FROC) curves are also used for secondary analysis 

of AI detection performance (as recommended in Penzkofer et al., 2022).  

 

Comparison to Radiologists 

Each of the top-ranking AI algorithms will be compared against radiologists from the reader study, in multiple 

ways (as shown in Figure 4). Additionally, AI will be compared against the radiologists who prospectively 

Overall Ranking Score 
(AUROC + AP) / 2 

 

Area Under ROC (AUROC) 
(Global Performance) 

Average Precision (AP) 
(Global Performance) 

 
 

Sensitivity, Specificity 
(Operating Points) 

Patient-Level Diagnosis Performance via  
Receiver Operating Characteristic (ROC) Curves  

Lesion-Level Detection Performance via  
Precision-Recall (PR) Curves  

Precision, Recall 
(Operating Points) 
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performed the actual clinical read for each patient case in the hidden testing cohort, using the historical findings 

noted in their radiology reports. 

 
 

 

 

 
 

 

Figure 4.  Radiologists from the reader study can be stratified into multiple possible configurations on the basis of  

experience, operating point and imaging modality (e.g. a panel of expert radiologists reading bpMRI at an operating 

point of PI-RADS ≥ 3). Considering these factors, each AI model will be compared against 18 possible configurations 

of radiologists at patient diagnosis, and 12 possible configurations of radiologists at lesion detection.  

For each comparison, we primarily use the performance metrics listed in Figure 3. 
 

 
Hit Criterion 

A “hit criterion” is a condition that must be satisfied for each predicted lesion to count as a hit or true positive. 

For csPCa detection in recent prostate-AI literature, hit criteria have been typically fulfilled on the basis of 

localizing predictions to a specific region (as defined by sector maps), by achieving a minimum degree of 

prediction-ground truth overlap, or by localizing predictions within a maximum distance from the ground-truth.  

 

For the 3D detections predicted by AI, we opt for a hit criterion based on object overlap: 

 

⎯ True Positives 

For a predicted csPCa lesion detection to be counted as a true positive, it must share a minimum overlap of 

0.10 IoU in 3D with the ground-truth annotation. Such a threshold value, is in agreement with other lesion 

detection studies from literature (Duran et al. 2022, Baumgartner et al., 2021, Saha et al., 2021, Hosseinzadeh 

et al., 2021, McKinney et al., 2020, Jaeger et al., 2019).  

 

⎯ False Positives 

Predictions with no/insufficient overlap count towards false positives, irregardless of their size or location. 
 

⎯ Edge Cases 

When there are multiple predicted lesions with sufficient overlap (≥ 0.10 IoU), only the prediction with the 

largest overlap is counted, while all other overlapping predictions are discarded. Predictions with sufficient 

overlap that are subsequently discarded in such a manner, do not count towards false positives to account 

for split-merge scenarios.  

 

For the point-coordinate annotations predicted by radiologists, we opt for a hit criterion based on distance: 
 

⎯ True Positives  

For a predicted csPCa lesion coordinate to be counted as a true positive, it must reside inside or within ≤ 5 

mm of the csPCa annotation boundary (as done in Cao et al., 2019). Such a margin is considered to account 

for smaller csPCa lesions, where the ground-truth annotation spans 1-2 slices, and radiologists’ point 

predictions can register a miss from marginal deviations (despite correct cognitive localization). 
 

⎯ False Positives 

Predictions that are not inside or within ≤ 5 mm of the csPCa annotation boundary, count towards false 

positives. 
 

⎯ Edge Cases 

In the case of multiple point-coordinate annotations inside or within ≤ 5 mm, only the closests prediction is 

counted. Predictions within the minimum distance that are subsequently discarded in such a manner, do not 

count towards false positives to account for split-merge scenarios.  

 
 

Radiologists 

Experience Operating Point Imaging Modality 

All Overall (applicable for diagnosis only) bpMRI 

Basic or Experienced PI-RADS ≥ 3 mpMRI (PI-RADS v2.1) 

Experts PI-RADS ≥ 4  

AI 

https://www.europeanurology.com/article/S0302-2838(19)30180-0/fulltext
https://www.sciencedirect.com/science/article/pii/S1361841521003923?dgcid=rss_sd_all#bib0007
https://arxiv.org/abs/2106.00817
https://www.sciencedirect.com/science/article/pii/S1361841521002012?via%3Dihub
https://link.springer.com/article/10.1007/s00330-021-08320-y
https://link.springer.com/article/10.1007/s00330-021-08320-y
https://www.nature.com/articles/s41586-019-1799-6
https://ml4health.github.io/2019/pdf/232_ml4h_preprint.pdf
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b) Justify why the metric(s) was/were chosen, preferably with reference to the biomedical 

application. 
 

See answers to Item 20 and Item 26(a). 

 
 

Item 27: Ranking method(s) 

a) Describe the method used to compute a performance rank for all submitted algorithms based on 

the generated metric results on the test cases. Typically the text will describe how results obtained 

per case and metric are aggregated to arrive at a final score/ranking. 

See answers to Item 20 and Item 26(a). 

 

b) Describe the method(s) used to manage submissions with missing results on test cases. 
 

Submissions with missing results will be disqualified, and not presented on any leaderboard. 

 

c) Justify why the described ranking scheme(s) was/were used. 
 

For patient pathway planning, both patient-level risk stratification and lesion-level detection are instrumental. 

The two are linked, and equally important for the diagnostic process. Therefore, we opted for equal weighting 

between AUROC and AP (see Figure 3).   

 

Item 28: Statistical analyses 

a) Provide details for the statistical methods used in the scope of the challenge analysis. This may 

include 

● description of the missing data handling, 

● details about the assessment of variability of rankings, 

● description of any method used to assess whether the data met the assumptions, 

required for the particular statistical approach, or 

● indication of any software product that was used for all data analysis methods. 

 
Statistical tests are performed in the final arc of the PI-CAI challenge, i.e. after selecting the top-ranking 5 AI 

algorithms, and estimating the performance of all radiologists from the reader study. Each test is facilitated using 

AI and/or radiologists’ predictions on the hidden testing cohort. More details and the source code for the exact 

implementation of the statistical tests reported in this study: https://github.com/DIAGNijmegen/picai_eval 

 

Each AI algorithm is trained on the same training dataset and evaluated on the same testing dataset, multiple 

times (5-10x), and all of these independently trained instances are used in each statistical test. By doing so, we 

account for the performance variance resulting from the stochastic optimization of machine/deep learning 

models (due to which, the same AI architecture, trained on the same data, for the same number of training 

steps, typically can exhibit different performance each time (Bosma et al., 2022)). Our goal is to avoid basing 

any conclusions off of one arbitrary training run (which may prove “lucky” or “unlucky” for a given AI algorithm), 

and to promote reproducibility. Thus, we statistically evaluate the overall AI algorithm, and not just a single 

trained instance of that algorithm. 
 

By sampling one case per patient for the hidden testing and validation cohorts, we can increase the diversity 

of malignant and benign findings. But this shifts the cohort distribution from what is typically observed in clinical 

routine: where multiple studies from the same patient can be encountered in 1000 consecutive cases. Similarly, 

enriching the case mixture with additional positives can facilitate meaningful analysis, when there is a limited 

number of testing cases and clinically significant disease with low prevalence (McKinney et al., 2020, Pinsky et 

al., 2012). But once again, it shifts the distribution from what is typically observed in clinical routine. Hence, inverse 

probability weighting (Mansournia et al., 2016) is incorporated in each statistical test, to minimize such bias 

stemming from preferential patient sampling techniques and the use of non-consecutive cohorts. 

 
In total, four types of comparisons are statistically evaluated. First two comparisons address the primary 

hypotheses of the PI-CAI challenge, i.e. the stand-alone performance of state-of-the-art AI algorithms, w.r.t. that 

https://github.com/DIAGNijmegen/picai_eval
https://arxiv.org/abs/2112.05151
https://www.nature.com/articles/s41586-019-1799-6
https://pubmed.ncbi.nlm.nih.gov/22095795/
https://pubmed.ncbi.nlm.nih.gov/22095795/
https://pubmed.ncbi.nlm.nih.gov/26773001/
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of radiologists:  

 

⎯ AI vs Radiologists from Clinical Routine 
 

Comparison: Between each of the top-ranking 5 AI algorithms, and the historical reads made by radiologists 

during clinical routine. 
 

Statistical Question: What is the probability that a given trained AI algorithm outperforms radiologists from 

clinical routine, when the AI algorithm is trained on the complete public + private training datasets, and 

evaluated on all 1000 cases from the hidden testing cohort, while accounting for the performance variance 

stemming from different cases and the AI algorithm’s training method?  
 

Statistical Test: Paired bootstrapping (as applied in Ruamviboonsuk et al., 2022, McKinney et al., 2020, 

Rodriguez-Ruiz et al., 2019), using predictions from a given operating point. Here, the operating point is that 

of radiologists (PI-RADS ≥ 3 or PI-RADS ≥ 4) from clinical routine, and trained AI algorithms are thresholded at 

matched sensitivity/specificity (for patient diagnosis) or recall/precision (for lesion detection). In each of 1M 

replications, ∼ 𝒰(0, N) cases are sampled with replacement, and used to calculate the test statistic. Iterations 

that sample only one class are rejected. Test statistic is the rank of historical reads made by radiologists, with 

respect to the predictions made by trained AI algorithms, where the rank is determined by the conjugate 

performance metric. 
 
 

⎯ AI vs Radiologists from Reader Study 
 

Comparison: Between each of the top-ranking 5 AI algorithms, and a given panel of radiologists from the 

reader study (refer to Figure 4 for all possible panel configurations). 
 

Statistical Question: What is the probability that a given AI algorithm outperforms the average reader from a 

given panel of radiologists, when the AI algorithm is trained on the complete public + private training 

datasets and evaluated on 400 cases from the hidden testing cohort, while accounting for the performance 

variance stemming from different readers, different cases and the AI algorithm’s training method? 

 

Statistical Tests: Multi-reader multi-case (MRMC) analysis (as applied in McKinney et al., 2020, Rodriguez-Ruiz 

et al., 2019, Bejnordi et al., 2017) using the publicly available iMRMC v4.0.3 software (Division of Imaging, 

Diagnostics, and Software Reliability, FDA/CDRH/OSEL) (Gallas et al., 2009), and permutation tests (as 

applied in Ruamviboonsuk et al., 2022, Bulten et al., 2022, McKinney et al., 2020).  
 

Using MRMC analysis, a non-inferiority test (with a non-inferiority margin of 0.05) is used to compare overall 

patient-level diagnosis performance (using patient-level predictions from AI, and patient-level suspicion 

scores from radiologists). For radiologists, average AUROC is computed using the diagonal average (which 

is area preserving (Chen et al., 2014)). Non-inferiority is concluded if the AUROC difference between AI and 

readers is greater than 0 and the lower bound of the 95% confidence interval is greater than the non-

inferiority margin (Rodriguez-Ruiz et al., 2019). By utilizing MRMC analysis of variance, results can be 

generalized to new readers, new non-diseased cases and new diseased cases. 
 

Permutation tests are used to statistically compare lesion-level detection and patient-level diagnosis 

performance at PI-RADS operating points. Here, in each of 1M replications, performance metrics (reader 

performance w.r.t. AI performance at reader’s operating point) for the hidden testing cohort are shuffled 

across methods (AI, radiologists) and their instances (independently trained samples of AI algorithm, different 

readers).  

 
 

Next two comparisons address the secondary endpoints of this study, i.e. determining the best overall AI 

algorithm for csPCa detection and diagnosis in bpMRI (and in turn, the winner of PI-CAI grand challenge), and 

investigating the effects of DCE imaging, reader experience and imaging modality on the diagnostic accuracy 

of radiologists: 
 

⎯ AI vs AI 
 

Comparison: Between every pair of AI algorithms among the top-ranking 5 AI algorithms. 
 

Statistical Question: What is the probability that one AI algorithm outperforms another, when both are trained 

on the complete public + private training datasets, and evaluated on all 1000 cases from the hidden testing 

cohort, while accounting for the performance variance stemming from different cases and each AI 

algorithm’s training method? 

https://www.thelancet.com/journals/landig/article/PIIS2589-7500(22)00017-6/fulltext
https://www.nature.com/articles/s41586-019-1799-6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748773/
https://www.europeanurology.com/article/S0302-2838(19)30180-0/fulltext
https://www.europeanurology.com/article/S0302-2838(19)30180-0/fulltext
https://www.nature.com/articles/s41586-019-1799-6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748773/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748773/
https://jamanetwork.com/journals/jama/fullarticle/2665774
https://github.com/DIDSR/iMRMC
https://github.com/DIDSR/iMRMC
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Statistical Test: Permutation tests (as applied in Ruamviboonsuk et al., 2022, Bulten et al., 2022, McKinney et 

al., 2020), where in each of 1M replications, performance metrics (ranking score, AP or AUROC) for the 

hidden testing cohort are shuffled across methods (different AI algorithms) and their instances 

(independently trained samples of each method). 
 

 

⎯ Radiologists vs Radiologists from Reader Study 
 

Comparison: Between different panels of radiologists from the reader study (refer to Figure 4 for all possible 

panel configurations). 
 

Statistical Question: What is the probability that an average radiologist from a given panel of radiologists, 

outperforms an average radiologist from another, while accounting for the performance variance stemming 

from different readers and different cases? 
 

Statistical Tests: Multi-reader multi-case (MRMC) analysis (as applied in McKinney et al., 2020, Rodriguez-Ruiz 

et al., 2019, Bejnordi et al., 2017) using the publicly available iMRMC v4.0.3 software (Division of Imaging, 

Diagnostics, and Software Reliability, FDA/CDRH/OSEL) (Gallas et al., 2009), and permutation tests (as 

applied in Ruamviboonsuk et al., 2022, Bulten et al., 2022, McKinney et al., 2020).  
 

Using MRMC analysis, a non-inferiority test (with a non-inferiority margin of 0.05) is used to compare overall 

patient-level diagnosis performance (using patient-level suspicion scores from radiologists). Average AUROC 

is computed using the diagonal average (which is area preserving (Chen et al., 2014)). Non-inferiority is 

concluded if the AUROC difference between the two separate panels of readers is greater than 0 and the 

lower bound of the 95% confidence interval is greater than the non-inferiority margin (Rodriguez-Ruiz et al., 

2019). By utilizing MRMC analysis of variance, results can be generalized to new readers, new non-diseased 

cases and new diseased cases. 
 

Permutation tests are used to statistically compare lesion-level detection and patient-level diagnosis 

performance at PI-RADS operating points. Here, in each of 1M replications, performance metrics (agreement 

with histopathology/follow-up reference standard, at PI-RADS operating points) for the hidden testing cohort 

are shuffled across methods (different panels of radiologists) and their instances (different readers).  
 

 
Power Analysis 

A prospective or a priori power analysis is performed to estimate the required sample size and optimal study 

design for the PI-CAI: Reader Study —such that it is able to substantiate the results of a non-inferiority test 

between AI and radiologists at patient-level diagnosis of csPCa (see answers to Item 28). While the power 

analysis is performed using the iMRMC sizing module, it is important to note that this software reserves power 

analysis only for superiority tests. Non-inferiority tests (as intended for the PI-CAI challenge) typically require larger 

sample sizes than superiority studies, to achieve the same statistical power (Vavken et al., 2011). Therefore, the 

implications of the following power analysis (which assumes a superiority test) are limited. 

 

The iMRMC sizing module uses the F-test from Hillis et al., 2011, where statistical power is calculated by utilizing 

MRMC components of variance for a given number of cases, its class distribution, the number of readers and 

the effect size. We compute the same, in accordance with the workflow of Gallas et al., 2019a, and as reported 

in the VIPER study (Supplementary Materials, Gallas et al., 2019b). 

 

Since the performance of AI models submitted to the PI-CAI challenge, and radiologists enlisted for the reader 

study, are not known apriori, we use 15 independently trained instances of our institutional state-of-the-art AI for 

csPCa detection in bpMRI (Bosma et al., 2022), an expert consensus of radiologists and an external cohort of 

300 cases (96 cases with csPCa; 204 cases with indolent PCa or benign tissue) from the 4M study (van der Leest 

et al., 2019), as pilot data. The AI algorithm has an average AUROC of 0.898 (95% CI: 0.862, 0.934). Permutations 

of case-level PI-RADS scores from the expert consensus is used to simulate a distribution of 45 readers. Their PI-

RADS scores are subsequently used to sample ROC curves and calculate reader AUROCs accordingly. For the 

PI-CAI challenge, these are estimated from the patient-level suspicion scores (see answers to Item 29), which 

allow for more accurate ROC sampling using a larger number of operating points. Average reader AUROC is 

0.812 (95% CI: 0.778, 0.846), which is in concordance with the reported heterogeneity of prostate MRI 

assessments in literature (Westphalen et al., 2020, Smith et al., 2019, Rosenkrantz et al., 2016, Garcia-Reyes et al., 

2015).  

 

Within iMRMC, different split-plots, class enrichment strategies and total cohort sizes are simulated by changing 

https://www.thelancet.com/journals/landig/article/PIIS2589-7500(22)00017-6/fulltext
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the number of normal cases, diseased cases, split groups and readers. Table 2 presents the power estimations 

and total standard errors for a superiority or non-equivalence test using the aforementioned pilot data, with a 

significance level of 0.05, effect size of 0.05, and various possible study designs (all of which, limit the number of 

cases read by each reader to 100). For reference, in our intended non-inferiority test between the stand-alone 

csPCa diagnosis performance of AI w.r.t. radiologists, we target a power of at least 0.80 (with a non-inferiority 

margin of 0.05). 

 

 

 

Within 20-60 readers, 200-400 cases and 60-70% positives in the case mixture, results indicate that a greater 

power is achieved primarily from an increase in the total cohort size and the number of readers, while smaller 

increases in power are observed for a higher enrichment of positive cases in the case mixture. Furthermore, a 

larger number of split groups seemingly have relatively low impact on the total standard error and power (similar 

to the observations reported in Gallas et al., 2019, Chen et al., 2018). Outcomes of this power analysis were used 

to inform the proposed reader study design (see answers to Item 29). 
 

 

b) Justify why the described statistical method(s) was/were used. 
 

See Item 28(a). 
 
 

 

Item 29: Further analyses 

Present further analyses to be performed (if applicable), e.g. related to 

● combining algorithms via ensembling, 

● inter-algorithm variability, 

● common problems/biases of the submitted methods, or 

● ranking variability 
 

Reader Study: Tasks and Interface 

Parallel to the AI study, the objective of the reader study is evaluate the performance of the average or typical 

prostate radiologist at patient-level diagnosis and lesion-level detection of csPCa. However, in contrast to the 

AI study, the reader study is conducted using both bpMRI (enabling head-to-head comparisons against AI 

trained on bpMRI), and mpMRI (enabling comparisons between AI and current clinical practice, i.e. PI-RADS 

v2.1), using a two-stage annotation workflow (as illustrated in Figure 5): 

⎯ Reading bpMRI 

Radiologists receive the same information as AI (i.e. prostate bpMRI exams and their clinical variables). They 

identify and set a point-coordinate inside each suspected csPCa lesion (if present; with a maximum of 4 

lesions annotations permitted per case), and a corresponding PI-RADS score (ranging from 3–5) for its 

severity. They also provide an overall patient-level likelihood score for the presence of csPCa between 0–

100, with incremental steps of 1 (similar to Winkel et al. 2021, Jacobs et al., 2021, McKinney et al., 2020, 

Table 2 | Power estimation for possible study designs (w.r.t. number cases, class enrichment, number of readers). 

Total Cases (𝑁𝐶) 
Percentage of Negatives 

(𝑁0) : Positives (𝑁1) 

Number of 

Readers (𝑁𝑅) 

Number of 

Split Groups 

(𝑁𝐺) 

Cases / Reader  

(𝑁𝐶/𝑁𝑅) 

Total Standard 

Error (S.E.) 
Power 

200 70 : 30 20 2 100 0.0229 0.59 

200 70 : 30 40 2 100 0.0206 0.68 

200 70 : 30 60 2 100 0.0198 0.71 

200 60 : 40 20 2 100 0.0217 0.63 

200 60 : 40 40 2 100 0.0194 0.73 

200 60 : 40 60 2 100 0.0186 0.77 

400 70 : 30 20 4 100 0.0191 0.75 

400 70 : 30 40 4 100 0.0162 0.87 

400 70 : 30 60 4 100 0.0152 0.91 

400 60 : 40 20 4 100 0.0182 0.78 

400 60 : 40 40 4 100 0.0159 0.90 

400 60 : 40 60 4 100 0.0143 0.94 
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https://pubmed.ncbi.nlm.nih.gov/33787537/
https://pubs.rsna.org/doi/10.1148/ryai.2021210027
https://www.nature.com/articles/s41586-019-1799-6
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Rodriguez-Ruiz et al., 2019). Such a score allows us to estimate the level of suspicion for healthy cases and 

those with PI-RADS 1–2 lesions, where no lesion-level annotations will be made. Additionally, it also allows us 

compare radiologists’ overall diagnostic performance against that of AI using a larger range of operating 

points (instead of the four PI-RADS points that can be assumed, by considering the index lesion per case for 

patient-level diagnosis). Once completed, their answers are saved and cannot be revisited any further. 

⎯ Reading mpMRI 

Immediately afterwards, radiologists are provided access to the full mpMRI (including the DCE sequence) 

from the same study. In other words, they can review the patient exam in compliance with PI-RADS v2.1. 

They can update their marks (point-coordinate annotation and PI-RADS score per lesion, if any) in light of the 

additional information, or keep them as they were. As radiologists cannot revisit any case, bpMRI assessments 

cannot be adjusted with knowledge obtained from mpMRI. 

 

 

Figure 5.  Reading interface and two-stage annotation workflow aimed at facilitating bpMRI and mpMRI assessments, 

sequentially. At the end of each bpMRI assessment, answers are copied over as the starting point for the mpMRI assessment 

of the same case. Hence, readers are only required to make changes (if needed) during the mpMRI assessment. They are 

not required to remember their previous scores or re-evaluate the complete exam from scratch (an alternative 

methodology, that would ideally require a washout period). 

 

Reader Study: Study Design 

The PI-CAI: Reader Study is hosted on grandchallenge.org/reader-studies (which supports prostate MRI viewers 

and annotation workflows) using a subset of 400 cases (40%) from the hidden testing cohort. Primary costs of the 

study are reader time and effort. As reading all 400 cases is too labor-intensive, we opt for a split-plot design 

(Obuchowski et al., 2009, Obuchowski et al., 2012, Chen et al., 2018). By doing so, we preserve a sample size of 

400 cases, while the individual workload is reduced to a maximum of 100 cases (as illustrated in Figure 6). Prior 

to the start of this study, readers are provided a detailed guide on the annotation workflow, including all tools 

made available on the platform (e.g. navigation, zooming, windowing, measuring scale). They are also 

provided access to a practice session with 6 example cases (from the ProstateX challenge), to get familiarized 

with both the reading interface and the expected workflow. Afterwards, each reader uses their grand-

challenge.org account to access their instance of the reader study (with all 100 allotted cases). Cases are made 

available sequentially and cannot be revisited post-assessment. Readers are expected to complete their 

assessments in 3-5 months. 

Figure 6.  Tentative study design for the distribution of 

readers and cases in a 4x4 split-plot configuration. All 

60 readers and 400 cases are divided into 4 blocks, in 

a stratified manner, that takes reader and case 

distributions into account to minimize any potential 

differences between separate blocks. Each block of 

readers reads their own set of cases. As this study 

design is reader-dependent, it is susceptible to 

changes based on the final outcomes of reader 

recruitment. 
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Reader Study: Registered Radiologists 

We include any clinician who reads and reports prostate MRI in clinical practice, and is aware of  the PI-RADS 

v2.1 guidelines. Readers among all experience levels have been nominated or invited to participate in the 

reader study. Reader experience is categorized according to the 2020 ESUR/ESUI consensus statements, and by 

their years of experience in reading and reporting prostate MRI. Prior to performance analysis, the names of all 

readers are pseudonymized, such that any individual performance cannot be traced back to its respective 

identity by anyone, but key researchers leading the PI-CAI challenge. As of 6th April 2022, in total, 63 readers 

have registered for the reader study (as summarized in Figure 7). 

 

Figure 7.  Distribution of 63 radiologists participating in the PI-CAI: Reader Study, representing 42 centers across  

18 countries. Reader experience varies between 1 and 23 years (median 8 years), where 78% (49) of readers  

can be categorized as “expert” based on ESUR/ESUI guidelines (de Rooij et al., 2020). 

 

 

Scientific Advisory Board 

For validation of AI and human-reader performance, a strong reference standard for the presence/absence of 

csPCa and guidelines for bias-free evaluation are crucial. To substantiate any conclusions derived from PI-CAI 

22, these factors must be discussed and agreed upon by multidisciplinary experts in this domain –especially 

owing to the high inter-reader variability associated with prostate MRI and the present-day challenges of 

organizing high-quality grand challenges. Hence, these aspects of the challenge will be established in 

conjunction with the Scientific Advisory Board of PI-CAI 22, which comprises the following 16 international experts 

across prostate radiology, urology and AI: 
Radiology 

 

Anwar R. Padhani, Paul Strickland Scanner Centre, Mount Vernon Cancer Centre (UK) 

David Bonekamp, Division of Radiology, German Cancer Research Center (Germany)  

Geert Villeirs, Department of Radiology and Nuclear Medicine, Ghent University Hospital (Belgium) 

Jelle Barentsz, Department of Medical Imaging, Radboudumc (The Netherlands)  

Olivier Rouviere, Department of Urinary and Vascular Imaging, Hospices Civils de Lyon (France) 

Valeria Panebianco, Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I (Italy) 

 

Artificial Intelligence  
 

Henkjan Huisman, Diagnostic Image Analysis Group, Radboudumc (The Netherlands) 
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