
CADV: A software visualization approach for code
annotations distribution

–
Supplementary Material

Phyllipe Limaa,c, Jorge Melegatid, Everaldo Gomese, Nathalya Stefhany
Pereirab, Eduardo Guerrad, Paulo Meirellese

aFederal University of Itajubá - IMC - UNIFEI
bNational Institute for Telecommunications – Inatel

cNational Institute for Space Research – INPE
dFree University of Bolzano-Bolzen – UniBZ
eFederal University of ABC – CMCC-UFABC

Abstract

This document contains the supplementary material for the manuscript:
CADV A software visualization approach for code annotations distribution

1. Sample Projects with the AVisualizer

To further demonstrate the AVisualizer tool, we present the visualization
for two open-source web applications. Figure 1 displays the System View for
Geostore1, an open-source Java enterprise application for storing, searching and
retrieving data. It has 34K lines of code on 277 classes from which 210 (75%)5

have annotations. On Figure 2 we have Guj2, a Brazilian Q&A forum about
programming. It has 59K lines of code distributed among 437 classes of which
52 (12%) are annotated.

⋆Fully documented templates are available in the elsarticle package on CTAN.
Email addresses: phyllipe@unifei.edu.br (Phyllipe Lima), jorge@jmelegati.com

(Jorge Melegati), everaldogjr@gmail.com (Everaldo Gomes),
nathalya.stefhany@gec.inatel.br (Nathalya Stefhany Pereira), eduardo.guerra@unibz.it
(Eduardo Guerra), paulo.meirelles@ufabc.edu.br (Paulo Meirelles)

1https://github.com/geosolutions-it/geostore
2https://github.com/caelum/guj.com.br

http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle
https://github.com/geosolutions-it/geostore
https://github.com/caelum/guj.com.br


Figure 1: System View for Geostore

Figure 2: System View for Guj

Table 1: Projects summary

Project Total Classes Annotated Classes Total LOC LOC (Annotated Class )
Guj 437 52 59811 2479
Geostore 277 210 34701 4494

2. Coding

As we mentioned in Section 6.3 in the paper, we performed a coding of10

the interview with developers, and the single open-ended questions from the
questionnaire with students. The goal was to perform a qualitative analysis

2



to support the results obtained from the quantitative analysis. We obtained
code that supported the perceived ease of use and perceived usefulness.
Furthermore, for each of these we extracted codes that sustained the strengths15

and weakness. We now present four example of how we performed the coding,
and how the codes were consolidated into the list present on Table 4 of the
paper.

2.1. Perceived Usefulness

An interviewee stated [translated from Portuguese]: “ [...] it is very sim-20

ple to detect potentially misplaced code annotations. If I spot a pink circle in
a package with only orange circles, I would say something is wrong. Why is a
javax.persistence code annotation alone in a package with only org.springframework
code annotations?”

We understood this was perceived as something useful to the user, in other25

words, a Perceived Usefulness Strength that we labeled PUS. To further label
this code, it was related to the color of schemas helping identifying potential
misplaced code annotatios, thus we obtained

• PUS-6: Color strategy helps identify potentially misplaced or in-
consistent annotation30

During the interview and questionnaire, every other answer that mentioned
that, somehow the colors were helping identifying misplaced annotations we
checked this code.

On the other hand, we also identified comments that was a weakness in
something that tool was providing. For instance, when we were discussing how35

to find “large annotations” or “annotations used excessively” one interviewee
stated: “I would check the size of the circle, but that does not mean much”.
Another interviewee stated: “[...] by the size of the circle. But the tool is not
adequate for that. It depends on other factors and design decisions. It may be
complete adequate for some classes to have more annotations than other”.40

We understood these quotes as something that may harm the usefulness
of the tool. So we labeled as in the category PUW (Perceived Usefulness
Weakness). Thus, these and other quotes generated the code:

• PUW-1: I can find large annotations, but this is not very useful
isolated.45

2.2. Perceived Ease

To obtain codes to support the “perceived ease of use” we identified, from
the interview and open-questions comments that either made the tool easy to
use (strengths) or difficult to use (weakness). For instance, when discussing if
the circle packing approach was suitable to see the hiearchy, one interviewee50

stated: “Yes, in theory it is very simple. The larger outlined circles are parents
of the smaller outlined outlined circles contained in them”.

This was measure as something that is “easy” for the user. So we labeled as
a PES (“Perceived Ease of Use Strenghts”).

The code we generated for this quote was:55

3



• PES-3: Easy to understand package hierarchy

We also noticed comments that highlighted that some points made the tool
difficult to use. For instance, when discussing the change of metric between
views, one interviewee stated: “I feel it is a somewhat difficult to do this change
of context in my mind [change Package View to Class View]. I know the header60

is there informing that we changed views and metric, its not a big stress, but it
could be easier”.

We classified this as: PEW (“Perceived Ease of Use Weakness”), and from
this quote we generated the code:

The code we generated for this quote was:65

• PEW-3: Confusion when switching metrics between views

2.3. Consolidation of the Codes

In the paper we have Table 4 that contains the list of the consolidated 24
codes/themes that were obtained. Where 12 are measuring the “ease of use”
and 12 are measuring the “usefulness”. When we first performed the coding70

we obtained a total of 57 codes. Accompanying the Supplemental Material we
have the “Interview-Data” spreadsheet, and the tab “Original List of Codes”
contains the complete list with the 57.

Afterwards, the first step was do identify weather these codes were measuring
“ease of use” or “usefulness” and if they are suggesting a “strengthness” or75

“weakeness”. We identified 28 codes for the first, and 29 for the latter. After
carefully analyzing these codes/themes, we were able to consolidate them into 24
codes (the ones on Table 4 of the paper). The tabs “Ease-Of-Use-Consolidated”
and “Usefulness-Consolidated” contains the complete list for both cases. It
also contains the final consolidated list, highlighting the originals and to the80

respective consolidated one. To clarify this process we present here two examples
of the consolidation of the codes.

• PUS-3: Useful to improve and visualize the architecture

The code PUS-3 was obtained by the consolidation of five other codes:

• Showing possible refactorings85

• Useful for finding parts of the code

• Useful for improving modularization

• Useful for reducing architectural erosion

• Useful to see system’s architecture

We understood they were related to ”visualize and improve” the system,90

hence we consolidate them into PUS-3.

• PEW-4: Understand the grouping in Class View

4



The code PEW-4 was obtained by the consolidation of two other codes:

• Confusing class view

• Differentiate class level annotation95

We understood they were related to a difficulty in understanding how the
Class View works, and consolidated them into code PEW-4.

3. Questionnaire

Table 2 contains the ten (10) questions related to the program comprehension
tasks we asked the students. Table 3 contains the eight (8) statements used to100

measure the ease of use.

Table 2: Program Comprehension Questionnaire.

ID Question Goal
Q1 What annotation schema is located in a single package? G1
Q2 What annotation schema is located in more packages ? (more distributed) G1
Q3 Which annotation schema contains the largest amount of annotations being used? G1
Q4 What class contains the highest number of javax.persistence annotations? G2/G4

Q5
What package contains classes being mapped to databases
(usage of javax.persistence)?

G3/G4

Q6
What package is mostly concerned with web controllers
(usage of org.springframework.web.bind.annotation)?

G2

Q7 How many packages contains unit testing class(es)? G2

Q8
What javax.persistence annotation has the highest
LOCAD (lines of code per annotation) value?

G2

Q9
In the class br.inpe.climaespacial.tsi.entity.model.TsiHDU (fully-qualified name),
what code element has more annotations configuring it?

G2

Q10
What annotation from the org.springframework.web.bind.annotation
schema contains more attributes/arguments (Annotation Attribute metric - AA)?

G3

5



Table 3: Perceived Ease of Use - Statements.

ID Statement

SE1
I can easily identify java packages with different
responsibilities using the AVisualizer tool

SE2
I can easily see how code annotations are distributed
in the system under analysis using the AVisualizer tool

SE3 Learning how to use the AVisualizer was easy to me

SE4
I can easily see how many annotation schemas are
being used inside a java class using the AVisualizer

SE5
I can easily see how many annotation schemas are
being used inside a java package using the AVisualizer

SE6
I can easily identify what java package I am currently
inspecting using the AVisualizer

SE7
I can easily identify the class I’m inspecting in the
AVisualizer tool

SE8
I can easily navigate to and from the packages and
classes being analyzed with the AVisualizer tool

6


	Sample Projects with the AVisualizer
	Coding
	Perceived Usefulness
	Perceived Ease
	Consolidation of the Codes

	Questionnaire

