
Parallel Algorithm for Reduction of
Data Processing Time in Big Data

Item Type info:eu-repo/semantics/article

Authors Silva, Jesús; Hernández Palma, Hugo; Niebles Nú�z, William;
Ovallos-Gazabon, David; Varela, Noel

DOI 10.1088/1742-6596/1432/1/012095

Publisher Institute of Physics Publishing

Journal Journal of Physics: Conference Series

Rights info:eu-repo/semantics/openAccess; Attribution-
NonCommercial-ShareAlike 4.0 International

Download date 17/06/2022 14:01:54

Item License http://creativecommons.org/licenses/by-nc-sa/4.0/

Link to Item http://hdl.handle.net/10757/652134

http://dx.doi.org/10.1088/1742-6596/1432/1/012095
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://hdl.handle.net/10757/652134

Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Parallel Algorithm for Reduction of Data Processing Time in Big Data
To cite this article: Jesús Silva et al 2020 J. Phys.: Conf. Ser. 1432 012095

View the article online for updates and enhancements.

This content was downloaded from IP address 190.237.162.252 on 01/07/2020 at 17:48

https://doi.org/10.1088/1742-6596/1432/1/012095
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuzuxQRi-r-3edbk_CA2ajBIDkSMUX4rL03JM3fdgkENQKj9gaG6q659wDhtqAcYGIQFg95r9mMQtfRFZddtvIElZhxG3SRPqD64qmGR4pgHgaGt12JcY7JvLWfFN7JlLI67j83KaviD6ekuIDG1PRljKuWVBtkw16r0bAvE4ANL_BkQ8TUPoq6cOtf5-7qqc76w7X3y1btDi2TP9qFtXb5mS-iba8nYCUKH8hUoWFQdcv2Ehbk&sig=Cg0ArKJSzGFJ31m-_QSV&adurl=http://iopscience.org/books

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ICE4CT 2019

Journal of Physics: Conference Series 1432 (2020) 012095

IOP Publishing

doi:10.1088/1742-6596/1432/1/012095

1

Parallel Algorithm for Reduction of Data Processing Time in

Big Data

Jesús Silva1, Hugo Hernández Palma2, William Niebles Núñez3, David Ovallos-Gazabon4

and Noel Varela5

1Universidad Peruana de Ciencias Aplicadas, Lima, Perú.
2 Universidad del Atlántico, Puerto Colombia, Atlántico, Colombia.
3Universidad de Sucre, Sincelejo, Sucre, Colombia.
4Universidad Simón Bolívar, Barranquilla, Atlántico, Colombia
5Universidad de la Costa, Barranquilla, Atlántico, Colombia.

1Email: jesussilvaUPC@gmail.com

Abstract. Technological advances have allowed to collect and store large volumes of data over

the years. Besides, it is significant that today's applications have high performance and can

analyze these large datasets effectively. Today, it remains a challenge for data mining to make

its algorithms and applications equally efficient in the need of increasing data size and

dimensionality [1]. To achieve this goal, many applications rely on parallelism, because it is an

area that allows the reduction of cost depending on the execution time of the algorithms because

it takes advantage of the characteristics of current computer architectures to run several processes

concurrently [2]. This paper proposes a parallel version of the FuzzyPred algorithm based on the

amount of data that can be processed within each of the processing threads, synchronously and

independently.

1. Introduction

FuzzyPred is a data mining method that allows the extraction of fuzzy predicates in normal conjunctive

and disjunctive form [3] [4]. This method is modeled as a problem of combinatorial optimization

because the space of solutions to travel can become very large. The algorithm in charge of evaluating

the quality of each predicate has a polynomial temporal complexity of O (t*k*v), where t is number of

records, k is number of clauses, and v is number of variables) in the worst case. Each generated solution

(or predicate) is sequentially evaluated in each of the database records. Considering the above, and due

to the fact that the dimensions and the number of variables of the current databases increase in size every

day, it is possible to obtain high response times in this process by using FuzzyPred [5].

Because parallel computing must be exploited to solve data mining problems, this paper presents a

parallel version of FuzzyPred with the purpose of reducing runtime. The fundamental objective of the

applied design is to perform a parallel processing focused on the database size, where the hardware

potentials that exist today can be used in a flexible way. In the studies, experiments are performed to

compare the sequential version with the parallel version of FuzzyPred, in different performance metrics

(particularly acceleration and efficiency).

mailto:jesussilvaUPC@gmail.com

ICE4CT 2019

Journal of Physics: Conference Series 1432 (2020) 012095

IOP Publishing

doi:10.1088/1742-6596/1432/1/012095

2

2. Materials and Methods

2.1 Parallel Algorithm Design

Today, many problems require companies to process large amounts of data and make the response time

efficient in their applications. In this sense, the computer efficiency depends directly on the time required

to execute a basic instruction and the number of instructions that can be executed at the same period of

time [6]. Thus, parallel programming is an area of computing that takes advantage of hardware resources

to improve algorithm execution times.

In parallel programming, there are two types of parallelism [7]: control parallelism (functional

decomposition) or data parallelism (domain decomposition). The domain decomposition or data

parallelism, as it is also known, consists of a sequence of instructions applied to different data. The data

is divided into parts and the parts are assigned to different processors. Each processor works only with

the part of the data that is assigned and the processors may need to communicate to exchange the data.

Data parallelism allows maintaining a single control flow and following the Single Multiple Data

Program (SMTP) model [8].

In functional decomposition or task parallelism (also dynamic task distribution), the problem is

divided into a large number of smaller parts (many more parts than available processors) and the sub-

tasks are assigned to available processors. As soon as a processor completes a sub-task, it performs

another sub-task until all of them are finished. The task parallelism is applied on a master and slave

paradigm. The master process assigns the tasks to the slave processes, collecting the results produced

and assigning remaining sub-tasks [9]. In recent years, due to the increase in the scale of parallelism that

is necessary in some situations, the term Big Data has come to be coined, with its consequent conceptual

and technological framework [10].

A sequential algorithm essentially follows a sequence of steps to solve a problem using a single

processor. Similarly, a parallel algorithm follows and solves the sequence of steps using multiple

processors. Parallel algorithms are designed in such a way that several of these steps can be solved

concurrently. It is essential, in order to obtain any benefit from the use of parallel computers, to have a

good algorithm design [11].

In practice, it is not trivial to perform this design, so a set of steps (some or all of which may be

included) are followed for the design of a parallel algorithm, which are discussed below [12]:

1. Identify the parts of the algorithm that are most costly and can be executed concurrently.

2. Map the parts that can be executed concurrently within multiple parallel processes.

3. Distribute input, output and intermediate data in the program.

4. Allow data access to multiple processors.

5. Synchronize multi-level processes in the execution of the parallel program.

2.2 FuzzyPred

FuzzyPred is a data mining method that proposes fuzzy predicates in a normal conjunctive and

disjunctive way as a way of representing knowledge. This method solves a descriptive task where the

types of relationships are unknown, and looks for patterns that describe the data and their relationships.

This method is modeled as a combinatorial optimization problem because the space of solutions through

which it can transit can become immense [13] [14].

2.3 Analysis of the main FuzzyPred processes

In order to optimize the execution time of FuzzyPred, a study was carried out about the main processes

which need, from a computational point of view, more features as they have more workload and take

longer to execute. Due to their characteristics, the identified processes were: the evaluation of each

predicate and the post-processing stage of the results.

The predicates evaluation process interacts with the entire data system. In this process, the key is to

consider the size of these systems. It is important for this process to emphasize that, as a consequence

of all the accumulation of information that is currently available, databases can become immense, so

parallelizing this process is a fundamental issue for the proper functioning of FuzzyPred, as long as it

runs on a computer that has several threads [15].

ICE4CT 2019

Journal of Physics: Conference Series 1432 (2020) 012095

IOP Publishing

doi:10.1088/1742-6596/1432/1/012095

3

The post-processing stage, on the other hand, has as its main objective to offer a more readable set

of predicates for the user's comprehension and is formed by four main methods: eliminating repeated

predicates, eliminating equal clauses, decreasing variables and eliminating obvious predicates. These

functions interact with all the results obtained by FuzzyPred, and need to process the structure of each

predicate, and compare, in most of the cases, with the remaining predicates in the set. One of the

challenges of data mining today is the large number of solutions that can be provided by each of the

algorithms [16]. In the specific case of FuzzyPred, the number of predicates obtained can be very large,

even when the databases are not so large, since the space of solutions that can be covered is enormous

because the number of variables of the problem increases, the latter being a significant element since

the study deals with linguistic labels and not with the real attributes of the databases.

In the case of the post-processing stage, a functional parallelization model is not applied since these

functions are dependent on each other. They were created with a definitive and inviolable order since

the output values of one function represent the input values of the next one [17].

To analyze each of these processes, their algorithmic complexity was taken into account. Algorithmic

complexity [18] represents the amount of time resources needed by an algorithm to solve a problem and

therefore allows the efficiency of that algorithm to be determined. The criteria to be used to assess

algorithmic complexity do not provide absolute measures but measures of the problem size.

In the evaluation process there are nested cycles, the analysis of each one will be carried out from

inside out. The first step of the algorithm is to evaluate each variable in each of the clauses, this process

has a complexity of O (1) for each variable, so for the whole set it would be a complexity O (v), where

v represents the number of variables of a clause. The second process is to evaluate each clause of a

predicate. For this process, it considers whether the predicate is in FNC or FND and the complexity is

O (k) * (O (v) + O (v)) = O (k) * max (O (v), O (v)) = O (k * v) where k represents the number of

clauses. The third process is to evaluate the predicate for each record of the database. For this cycle, it

also considers the structure of the predicate and the order is O (t) * (O (k *v) + O (k)) = O (t) * max (O

(k *v), O (k)) = O (t * k * v) where t represents the number of records in the database (Taymi, 2010).

The execution time of a sequence of instructions is equal to the sum of their individual execution times,

which is equivalent to the maximum order. In FuzzyPred, it is: max (O (t *k *v), O (t)) = O (t *k *v).

This execution time can be considerable since the factors that influence it can also take great values.

This is why the following section is based on the proposed parallelization of this algorithm specifically

in the process of evaluating fuzzy predicates [19] [20].

3. Parallel design proposal in FuzzyPred as a solution to high data dimensionality

For the parallelization design of FuzzyPred specifically in the evaluation process, the of data parallelism

paradigm is applied, basically to the database to be used in the mining process.

In this design, the evaluation of the predicate was carried out in each part of the data system

independently and simultaneously. To do this, a set of steps is followed, which are discussed below:

1. At the beginning, the number of threads of the computer's processor is known. The Java Parallel

library performs this process in a scalable way.

2. Subsequently, groups are created depending on the number of threads contained in the architecture

where the algorithm is executed.

3. Consequently, the created groups, the threads of execution are assigned in a dynamic way looking

for that all the threads have the same amount of work.

4. Finally, a barrier was used to carry out the evaluation applying the universal quantifier, since it

needs to know all the truth values of the predicate in each of the records of the database.

4. Results

This section presents the validation of the proposed solution. For this purpose, performance metrics are

applied to parallel algorithms and a series of comparative tests are developed. The objective of this

section is to verify that the execution time of the parallel algorithm decreases with respect to its

sequential version.

For the experiments, several databases were considered, with different characteristics (shown in

Table 1). These databases are from the real environment and were taken from the UC Irvine Machine

ICE4CT 2019

Journal of Physics: Conference Series 1432 (2020) 012095

IOP Publishing

doi:10.1088/1742-6596/1432/1/012095

4

Learning Repository, which offers the researchers a wide range of data collected from different areas.

The chosen databases have different sizes with the purpose of valuing this characteristic.

Table 1. Description of the databases used in the experimentation

Names # Records # Attributes

(R/N/E/)

Linguistic Labels

Quacke 2965 3 (3/1/0) 8 (8/0/0)

Stulong 2014 7 (7/0/0) 16 (16/0/0)

Bolts 60 10 (2/5/3) 18 (18/0/0)

The algorithm was tested in Java under the Eclipse development environment, compiled with JDK

1.7. To analyze the behavior of the parallel algorithm, three scenarios were designed with different

objectives. The aim of the first scenario is to compare the sequential version with the parallel version of

FuzzyPred. Thus, both versions were run on the same computer with the same hardware performance

and under the same input configuration of FuzzyPred (same algorithm input parameters and in the same

database). These parameters are presented in Table 2.

Table 2. Scenario 1 Configuration Parameters

FuzzyPred

Parameter

fuzzy logic operator=zadeh, connective=random, value scale=0-14,

runs=50, iterations per run=10000, target=truth value, metaheuristic

algorithm=random search, database=Quacke.

PC

Characteristics

Intel Core i3 -2100 CPU 4 Gb de RAM

As shown in Table 4, the runtime (in minutes) of FuzzyPred was taken in both versions (sequential

and parallel). It is important to consider that although databases do not have a large number of records

(which represents a negative factor since the parallel proposal may not show improvement), the parallel

execution time improves the sequential execution time by 10%, demonstrating an improvement for this

last version.

The results achieved in this experiment are as follows:

Table 3. Sequential vs Parallel Version Run Times

Quality Metrics Value

Execution time Sequential time 84 min

Parallel time 77 min

Speed-up 1.20

Efficiency 0.14

The aim of the second scenario is to compare the parallel version of FuzzyPred against several

computers with different characteristics and to know its behavior in different hardware environments.

Table 4 shows the configuration parameters of FuzzyPred and Table 5 shows the characteristics of each

of the computers on which the experiments are run.

Table 4. Scenario 2 Configuration Parameters

FuzzyPred

Parameters

fuzzy logic operator=zadeh, connective=random, value scale=0- 14, runs=50,

iterations per run=10000, objective=truth value, metaheuristic

algorithm=random search, database=Quacke.

ICE4CT 2019

Journal of Physics: Conference Series 1432 (2020) 012095

IOP Publishing

doi:10.1088/1742-6596/1432/1/012095

5

Table 5. Characteristics of the hardware applied in scenario 2

Hardware

Memory

Number of processors Type Quantity (Mb)

Intel Core 2 Duo E7300 2 nuclei DDR2 2369

Intel (R) Core TM 2 Quad Q9300 4 nuclei DDR2 5874

Intel Core i7 920 8 nuclei DDR 3 2036

Subsequently, Table 6 shows the results achieved in each of the hardware architectures with respect

to parallel runtime, sequential runtime, and values for acceleration and efficiency metrics.

Table 6. Results obtained from the parallel version in different hardware.

Hardware Sequential T. Parallel T. Acceleration Efficiency

Intel Core 2 Duo 130 min 85 min 1.21 0.77

Intel (R) Core TM 2 Quad Q 9300 961min 58 min 1.47 0.52

Intel Core i7 920 69 min 39 min 1.75 0.35

The results in scenario 2, reflected in Figure 1 regarding the execution time show that the best values

are found in Intel Core i7 architecture, due to the fact that it is the one with the best computing

performance. However, Figure 2 shows the results in each of the measures considered in this study,

where it can be observed that acceleration increases as it improves the characteristics of the hardware,

contrary to efficiency, which decreases because the design is capable of exploiting the characteristics of

the hardware.

Figure 1. Sequential and parallel runtime behavior for various hardware architectures. The parallel

time is in red, and the sequential time is in green.

ICE4CT 2019

Journal of Physics: Conference Series 1432 (2020) 012095

IOP Publishing

doi:10.1088/1742-6596/1432/1/012095

6

Figure 2. Acceleration and efficiency results taken for various hardware architectures. Efficiency in

red and acceleration in green.

For the third scenario, the execution times of FuzzyPred in its parallel version were compared with

the number of records in the database. The objective of this scenario is to know how much the execution

time improves depending on the size of the databases. The configuration parameters are in Table 7 and

the results of this scenario are shown in Table 8.

Table 7. Scenario 3 configuration parameters.

FuzzyPred

Parameters

fuzzy logic operator=zadeh, connective=random, value scale=0-14, runs=50, iterations

per run=10000, target=truth value, algorithm

metaheuristic=random search, database=Quacke.

PC

Characteristics

Intel Core i3 -2100 CPU 4 Gb de RAM

It is possible to argue that the FuzzyPred runtime is longer for Quacke because the database is much

larger (contains more records), as shown in Table 8. In addition, the size of the data is a relevant factor

in the algorithm runtime. It is important to note that the correspondence between data size and execution

time is proportional as the time decreases according to the size of the database. Acceleration and

efficiency metrics are inversely proportional measures, as shown in Figure 3.

Table 8. Execution times obtained for different databases.

Database Execution time Database Execution time

Quacke 89 min 59 min 3589

Stulong 80 min 51 min 2458

Bolts 71 min 19 min 39

ICE4CT 2019

Journal of Physics: Conference Series 1432 (2020) 012095

IOP Publishing

doi:10.1088/1742-6596/1432/1/012095

7

Figure 3. Results of parallel runtime versus multiple databases (number of records)

5. Conclusions

This study presents a data parallelism design implemented in the Java Parallel library. The proposed

parallel design manages to reduce the runtime of the sequential version. The model is based on dividing

the amount of data depending on the number of processors in the hardware architecture. The

experimental results confirmed that the parallel version manages to reduce the sequential version by

10%. The experiments allow to verify that the results improve according to the hardware characteristics,

in a proportional way and that the algorithm is faster in smaller databases. Other tests with larger

databases and other types of hardware architectures are suggested.

References

[1] Chapman B, G. Jost and R Van der Pas. Using OpenMP: Portable Shared Memory Parallel

Programming Scientific and Engineering Computation. The MIT Press.Massachusetts Institutte

of Technology. ISBN 978-0- 262-53302-7. pp 349. 2008.

[2] Jain, Mugdha, and Chakradhar Verma. "Adapting k-means for Clustering in Big Data."

International Journal of Computer Applications 101.1 (2014): 19-24.

[3] Ceruto T, O. Lapeira, A. Rosete and R. ESPÍN.Discovery of fuzzy predicates in database.

Advances in Intelligent Systems Research (AISR Journal), vol. 51, No 1, pp. 45-54, ISSN 1951-

6851, Atlantis Press, 2013.

[4] Hariri S, and M. Parashar.Tools and Enviroments for Parallel and Distributed Computing. John

Wiley & Sons. ISBN 0-471-33288-7, pag 229, 2014.

[5] Fernandez A, S. Del Rio, V. Lopez, M. J. Del Jesus and F. Herrera. Big Data with Colud

Computing:an insight on the computing enviroment, Map Reduce and programming frameworks.

WIREs Data Mining and Knowledge Discovery.John Wiley and Sons, vol 4, pp 380-409, 2014.

[6] Viloria, A. "Commercial strategies providers pharmaceutical chains for logistics cost reduction."

Indian Journal of Science and Technology 8, no. 1 (2016).

[7] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer

Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science

And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371.

[8] Pas, R. An Overview of OpenMP 3.0. In., 2009.IWOMP. Tu Dresden (Alemania). Disponible en

http://iwomp.zih.tu-dresden.de/downloads/2.Overwiew_OpenMP.pdf.

ICE4CT 2019

Journal of Physics: Conference Series 1432 (2020) 012095

IOP Publishing

doi:10.1088/1742-6596/1432/1/012095

8

[9] N. Sapankevych y R. Sankar, “Time Series Prediction Using Support Vector Machines: A

Survey”, IEEE Computational Intelligence Magazine, vol. 4, núm. 2, pp. 24–38, may 2009.

[10] Reinders, J. Intel threading building blocks-outfitting C++ for multi-core processor parallelism.

OReilly Media. ISBN 978-1449390860, pp 336, 2007.

[11] Kaminsky, A. The Parallel Java 2 Library Parallel Programming in 100 % Java. Rochester

Institute of Technology, Department of Computer Science, Rochester, New York, EUA. 2015.

[12] F. Villada, N. Muñoz, y E. García, Aplicación de las Redes Neuronales al Pronóstico de Precios

en Mercado de Valores, Información tecnológica, vol. 23, núm. 4, pp. 11–20. 2012.

[13] Venugopal K, K.G. Srinivasa and L. M. Patnaik. Soft Computing for Data Mining Applications.

Springer Berlin Heidelberg: Springer-Verlag. ISBN 978-3-642-00192-5, pp 354, 2009.

[14] Brdar S., Culibrk D., Marinkovic B., Crnobarac J., Crnojevic V. Support Vector Machines with

Features Contribution Analysis for Agricultural Yield Prediction, Second International Workshop

on Sensing Technolo- gies in Agriculture, Forestry and Environment, 43-47, 2011

[15] Choudhury, A. and Jones, J. Crop yield prediction using time series models, Journal of Economics

and Economic Education Research., 15, 53-68, 2014.

[16] R. Putha, L. Quadrifoglio, and E. Zechman. Comparing ant colony optimization and genetic

algorithm approaches for solving traffic signal coordination under oversaturation conditions.

Computer‐ Aided Civil and Infrastructure Engineering, 27(1), 14-28, 2012.

[17] D. Teodorović, and M. Dell’Orco. Mitigating traffic congestion: solving the ride-matching

problem by bee colony optimization. Transportation Planning and Technology, 31(2), 135-152,

2008.

[18] A. L. Bazzan, and F. Klügl. A review on agent-based technology for traffic and transportation.

The Knowledge Engineering Review, 29(3), 375-403, 2014.

[19] Amelec, V., & Alexander, P. (2015). Improvements in the automatic distribution process of

finished product for pet food category in multinational company. Advanced Science Letters,

21(5), 1419-1421.

[20] Karatzoglou A., Smola A., Hornik K. and Zeileis A. kernlab - An S4 Package for Kernel Methods

in R. Journal of Statistical Software, 11(9), 1-20, 2004

