

System Security Modeller

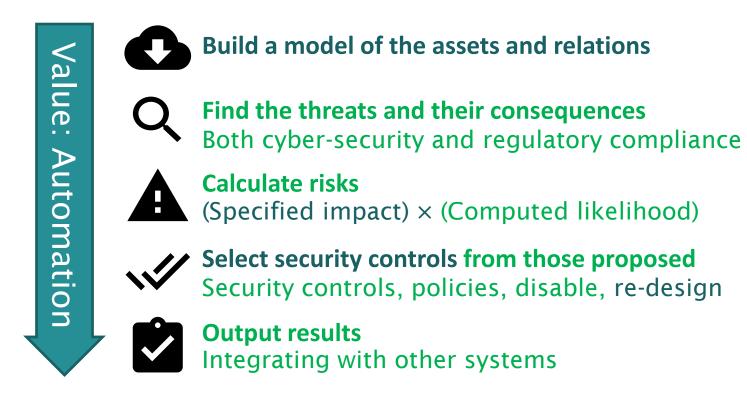
What it does. How it works.

May 2022

Stephen C Phillips, Steve Taylor, J Brian Pickering, Stefano Modafferi, Michael Boniface, Mike Surridge

Contact: S.C.Phillips@soton.ac.uk

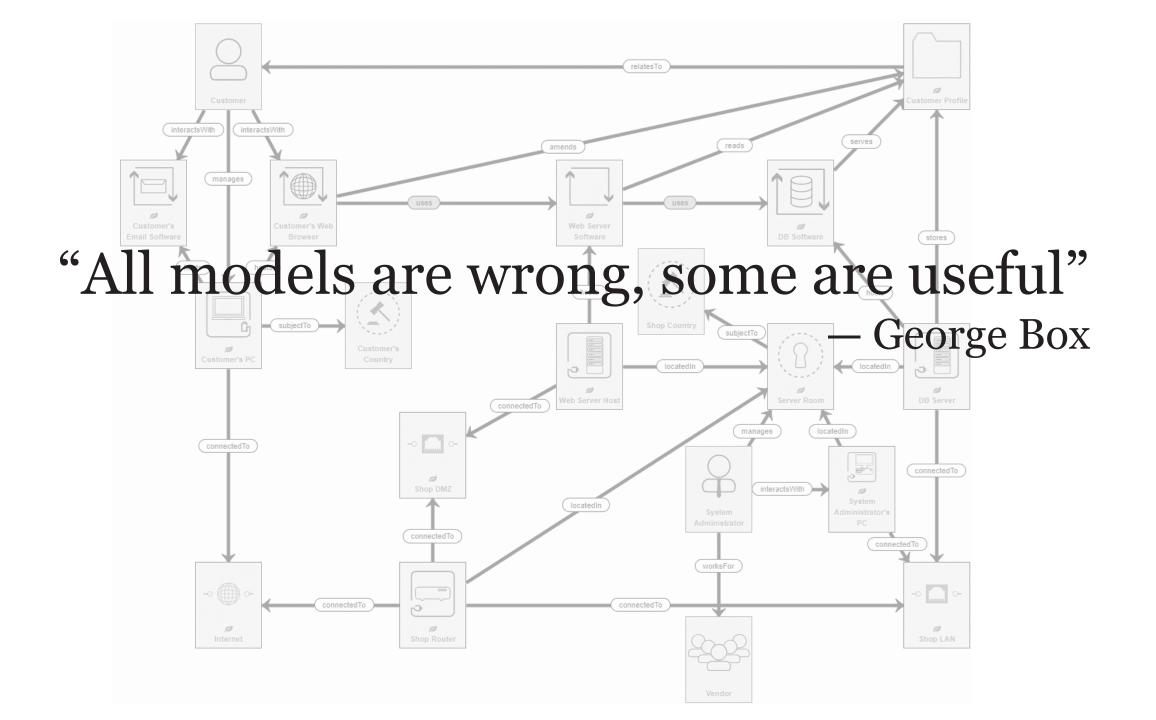
1

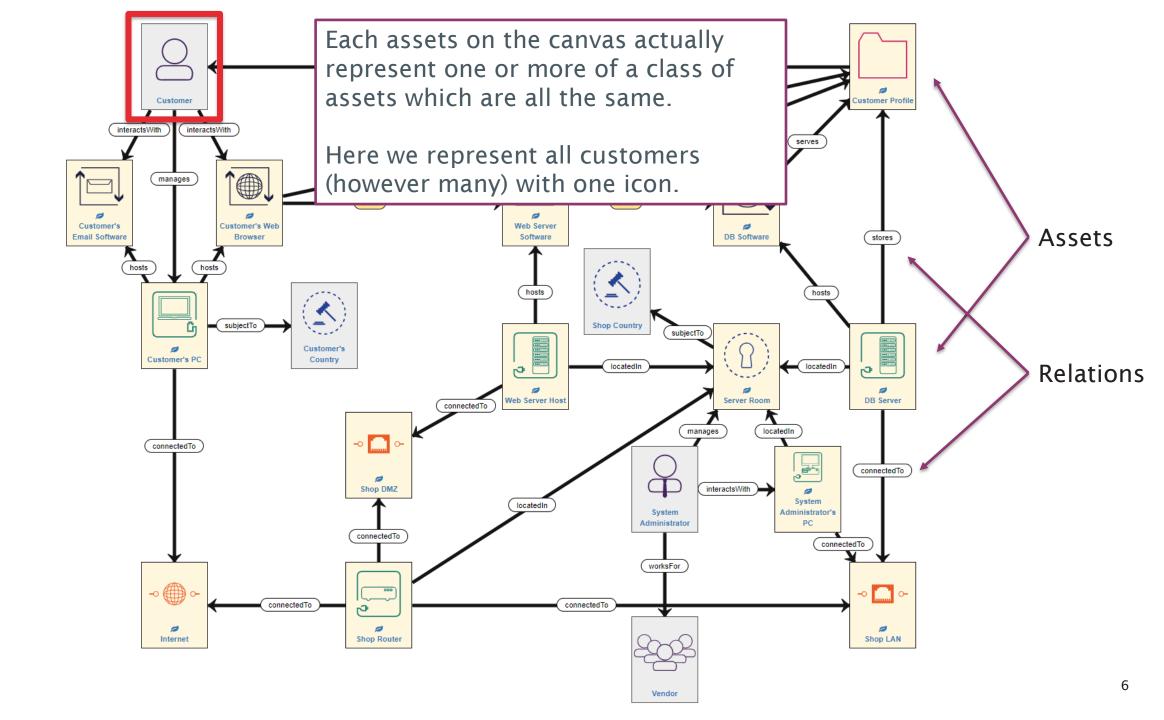

Copyright © University of Southampton, IT Innovation Centre, 2022

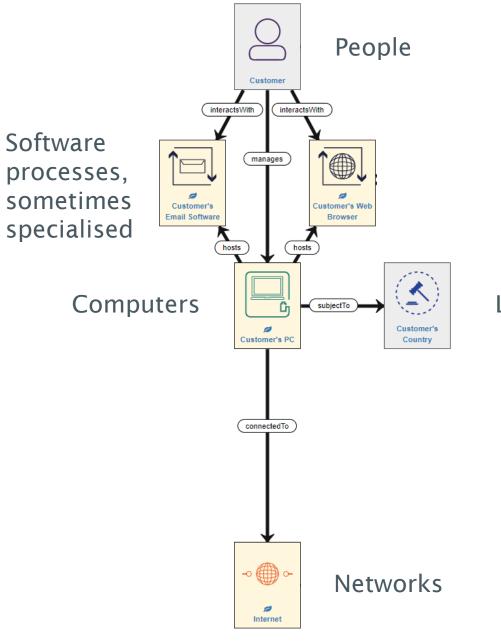
University of Southampton

Complex systems have a web of attack paths. Manual analysis is **hard**. Let's automate! Find the risks, communicate and deal with them.

The SSM automates much of a cyber-security risk assessment. As well as looking for cyber threats it will also check for compliance (e.g. GDPR). It follows the process of **ISO 27005** and thereby supports **ISO 27001** compliance.

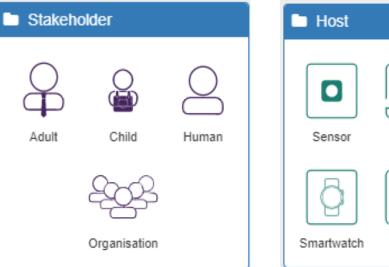


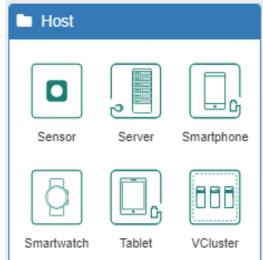


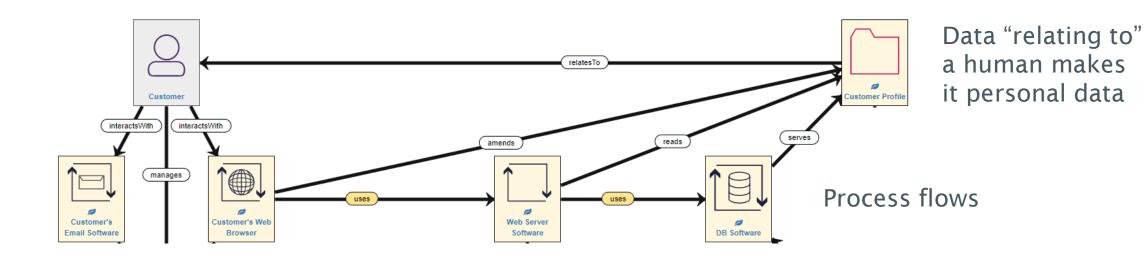

History

The current tool builds on software initially created in 2016 but builds on research dating back to 2008.

		600 ²	²⁰ / ₃	² 0 ₁₆	2013	205 205 205 205 205 205 205 205 205 205
	Semantic modelling of trustworthiness of airport processes					
OPTET	Understanding trust in socio-technical systems					
5G-ENSURE	Modelling trust in 5G networks					
ASSURED	Application to health data systems (NHS)					
SHIELD	Modelling risk of cross-border health exchange					
RestASSURED	Modelling risk in cloud systems					
EFPF	Application of SSM in federated factories					
ZDMP	Application of SSM in Industry 4.0					
ProTego	Development of operational risk assessment (healthcare)					
Data Market Services	Supporting risk assessments with e-learning course					
CyberASAP 1	Exploring commercialisation opportunities					
CyberASAP 2	Creating market analysis, value proposition, and demo					
FogProtect	Development of operational risk assessment (fog computing)					
CyberKit4SME	Simplifying the use of the SSM for use by SMEs					
SPYDERISK	Creating a proof of concept					
PRIAM	Modelling federation and data privacy					

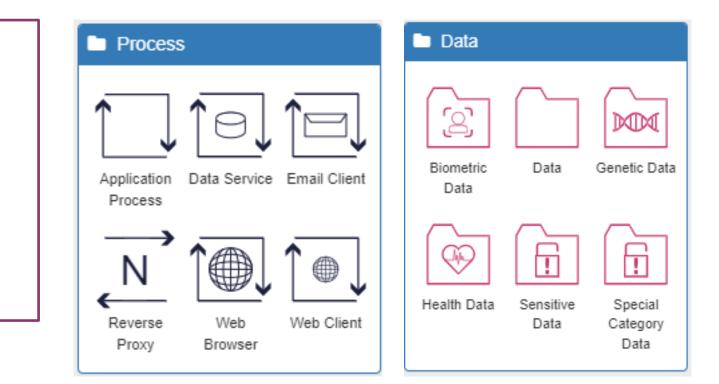





The SSM models socio-technical systems using many assets types along with detailed relationships. A detailed model gives a precise risk analysis.

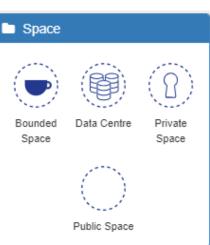
Humans and their interactions with information systems must be modelled as they are both a source of threats and are impacted by security controls and system failures.

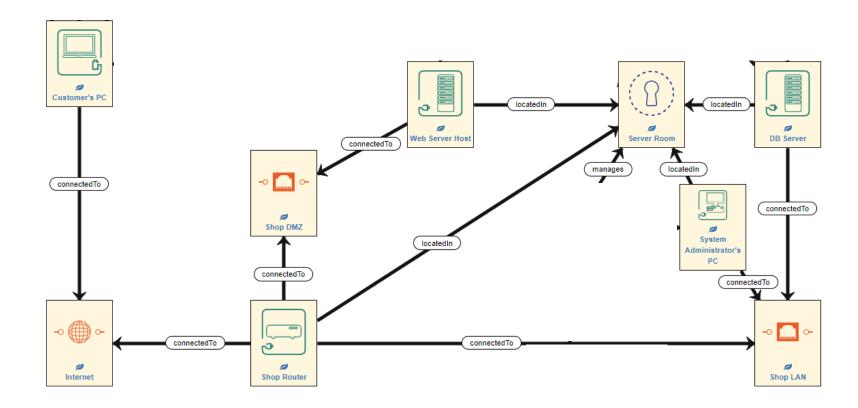
Legal jurisdictions



The model of data and software process is detailed.

From this the SSM can work out what processes data can access data in a system and therefore where it may be vulnerable.

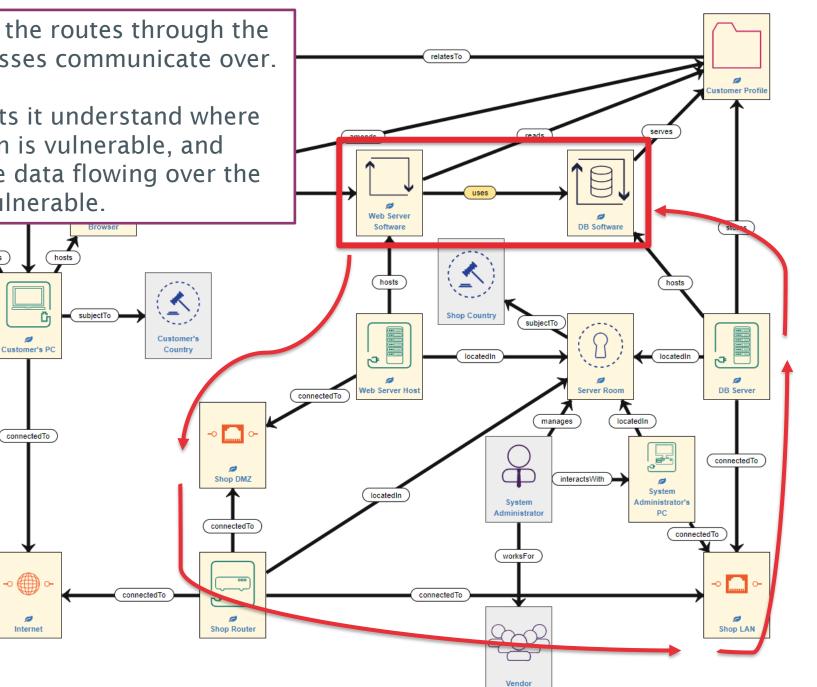

There are several specialised data types to take into account the sensitivity of the data and understand regulatory compliance.

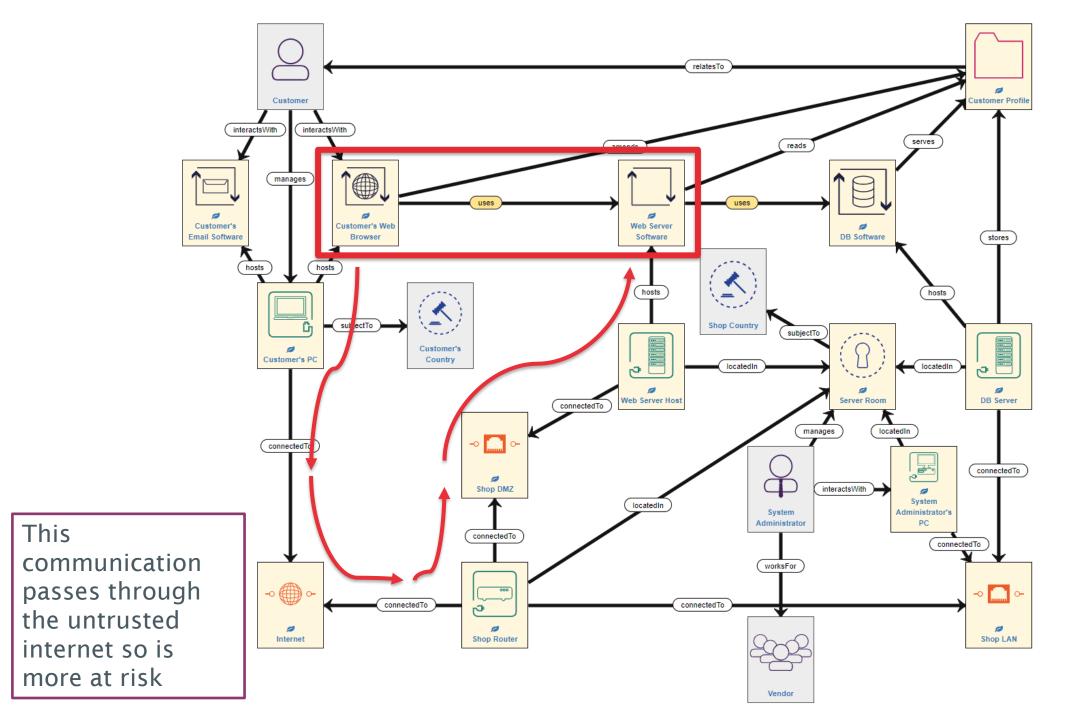


The physical layer of the model shows the hosts, network connectivity and physical locations of assets. Physical security and the proximity of assets are key to understanding risk.

Virtual hosts and networks are also modelled.

Network	Asset		
~ @ ~	((🗌))	((🗋))	
Internet	Private Cellular Network	Public Cellular Network	
[}	(((<u>1-1</u>)))	-• 🛄 •-	
VXLAN	Wi Fi LAN	Wired LAN	


The SSM works out the routes through the network that processes communicate over.


This information lets it understand where that communication is vulnerable, and therefore where the data flowing over the network paths is vulnerable.

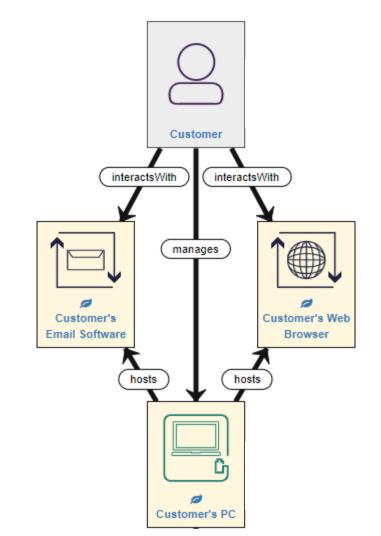
Ø

0

hosts

Threats to a System

"A threat has the **potential** to cause harm to assets such as information, processes and systems and therefore organizations. Threats may be of **natural** or **human** origin, and could be **accidental** or **deliberate**."


— ISO 27005

- Natural, accidental threats include:
 - Hardware failures
 - Software bugs
- Human threats include:
 - Deliberate: malicious attackers
 - Accidental: people making mistakes
- We need to mitigate the high risk threats: those with risky consequences.
- The SSM has a knowledgebase of generic, fine-grained threats along with appropriate security controls that mitigate the threats.

Threat Discovery

- The SSM analyses the system model to find patterns of assets, relations and security controls that indicate the presence of threats.
- The threat patterns may include the data flows, network paths, etc, that it finds in the model.
- The threats are generic: regular updates are not required.
- All threats are considered at once: there is no need to define the attacker or attack point.
- E.g. the pattern shown here of a person using email and a web browser on the same PC indicates that a phishing threat exists.

Threat Coverage

Access and Control Privileges

Situations where an untrustworthy agent with certain privileges can gain access to further privileges, related to resource access and control

Exploiting Vulnerable Software Situations where an attacker can cause execution of vulnerable code and thereby gain temporary use of privileges

Non-Malicious Threats

The effect of accidents and unintentional errors that could cause problems without provocation by malicious attackers

Insider Attacks Situations where a legitimate user or organisational stakeholder performs malicious actions

Exploitation of Stolen Devices Actions an attacker can take once physical theft has occurred

Other Malicious Attacks

Situations where a malicious attacker exploits a weakness other than a software vulnerability

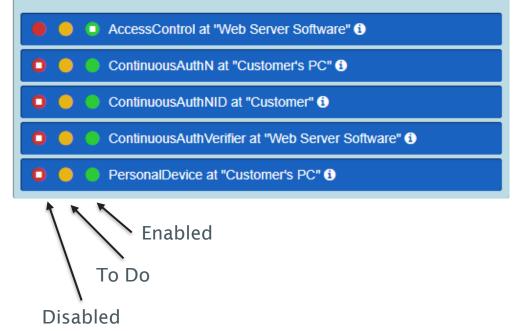
Compliance Threats Breaches of regulations, best practice guidelines, etc

Regulatory Compliance

- Non-compliance with regulation (e.g. GDPR) or best practice is modelled as a "threat".
- These compliance threats are special in that they do not have a likelihood (or consequent risk): the system is compliant or not compliant.
- Personal data is indicated by data sets having the link "related to" to humans.
- Various specialised data types are modelled which link to different GDPR articles.
- Jurisdictions can be modelled which means cross-border data transfer can be inferred.
- Controls to bring a system into compliance include specifying policies such as gaining user consent or other lawful basis.

Threat Consequences

- The SSM models the risk of the standard "CIA" consequences for data:
 - Loss of Confidentiality
 - Loss of Integrity
 - Loss of Availability
- It also models other aspects such as:
 - Loss of Authenticity (data being changed in order to mislead, implying loss of integrity)
- Other asset types also have appropriate properties, for instance:
 - Software processes: loss of availability, malware infection, being overloaded
 - Spaces: physical intrusion
 - Hosts (e.g. servers): loss of availability, loss of control, theft


Threat Treatments or Mitigations

- The SSM knowledgebase includes ways of mitigating the threats.
 - For some threats there is no mitigation.
 - For others there are several options.
- Each threat treatment has an "effectiveness": some are better than others.
- A threat treatment can require security controls to be places on multiple assets
 - E.g. Continuous client authentication requires controls at the website, the PC and involvement of the user themselves.

Example Threat Treatment

★ ClientContinuousAuthentication (Very High blocking effect)

Access to service "Web Server Software" is controlled by authenticating user "Customer" based on their registered usage characteristics captured by the device "Customer's PC".

Threat Treatment Coverage

Organisational measures Staff screening, training, policies	Physical Security <i>Physical locks &</i> <i>keys, chip & PIN,</i> <i>biometrics, ID</i> <i>checks</i>	Service Security TLS, AuthN, passwords, strong password, OTP, SMS codes, X.509, etc	Software Security Software testing, pen testing, patching, device certification	Data Security Encryption of data flows or stored copies; replicated storage
Network Security Network access control (encryption, network AuthN) and routing restrictions	Client Security Spam filtering, passwords	Device Security Controlling direct access to devices; preventing alteration of software on devices	Resource Management <i>Elastic hosting,</i> <i>process</i> <i>prioritisation</i>	User Intervention

System Environment and State

- The system model describes how the system is intended to operate, with no attacker or problem explicitly present.
- All the assets have various "trustworthiness" parameters which configure their behaviour in a variety of ways.
- With these parameters the SSM models:
 - The external environment that the system exists in
 - The inherent likelihood of assets failing in different ways
 - How threats propagate through the inter-connected assets of the system making failures more likely

Trustworthiness of Assets

"How likely it is that an asset will avoid, or resist being involved in, a threat"

— not in any standard!

?
Assumed Calculated
Low 🗸 Low
Very High 🗸 Very High
Very High 🗸 Very High
Very High 🗸 Very High
Very High 🗸 Very Low

Ability to spot e.g. a phishing attack

How free they are from bad intentions Low benevolence == "malicious"

Has up to date inputs to perform their role in the system

Trustworthiness of Assets

Free from software vulnerabilities that may be discovered by hackers

Free from bugs that would cause it to crash without provocation

Process

Trustworthiness of users who have the rights of this process on the host

Trustworthiness of Software Process						
Attribute at Asset	Assumed	Calculated				
Availability	Very High 🗸	Very Low				
Extrinsic Trustworthiness	Medium 🖌	Medium				
Health	Very High 🗸	Medium				
Intrinsic Trustworthiness	Very High 🗸	Very High				
Reliable	Very High 🗸	Low				
Timeliness	Very High 🗸	Very Low				
Trojan Trustworthiness	Very High 🗸	Medium				
User Trustworthiness	Very High 🗸	Medium				

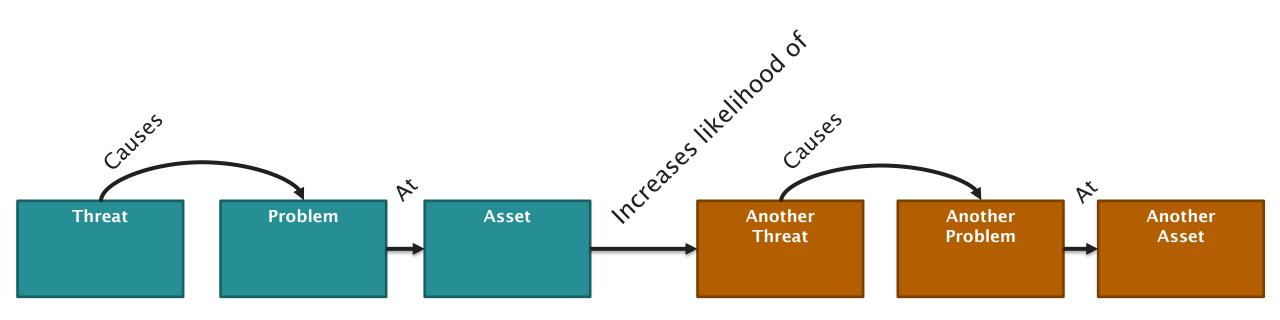
Risk, Impact, Likelihood

Calculated Likelihood						
		Very Low	Low	Medium	High	Very High
び Very Low Very Low Very Low		Very Low	Very Low	Low	Low	
Very Low V Low V		Very Low	Very Low	Low	Low	Medium
		Very Low	Low	Medium	High	High
Specified	High	Low	Medium	High	Very High	Very High
Sp	Very High	Low	Medium	High	Very High	Very High

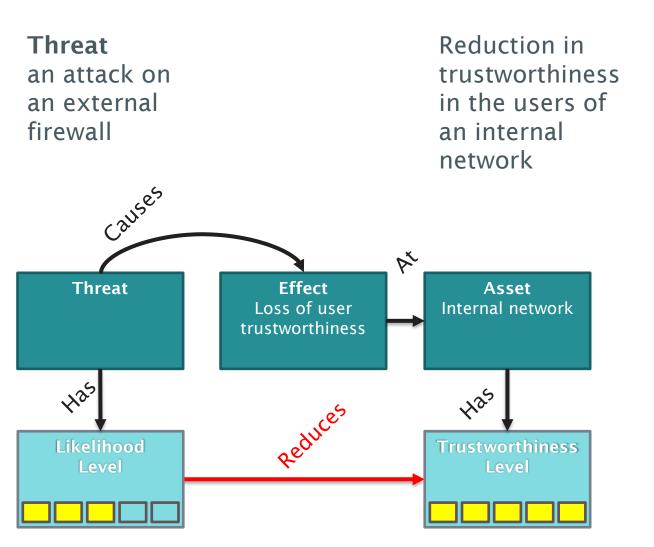
- Calculated risk = (specified business impact) × (calculated likelihood)
- The impact of an adverse effect varies according to the asset, but generally only needs to be set on the primary assets:
 - Loss of confidentiality of customer profile data \Rightarrow high impact
 - Loss of confidentiality of data on a public website \Rightarrow very low impact
- Likelihoods are calculated from the configured asset trustworthiness, the adverse effects of threats, and the presence of security controls.
- Sometimes we say A "causes" B: we mean A is the reason B is as likely as it is.

This is a unique and crucial feature of the SSM.

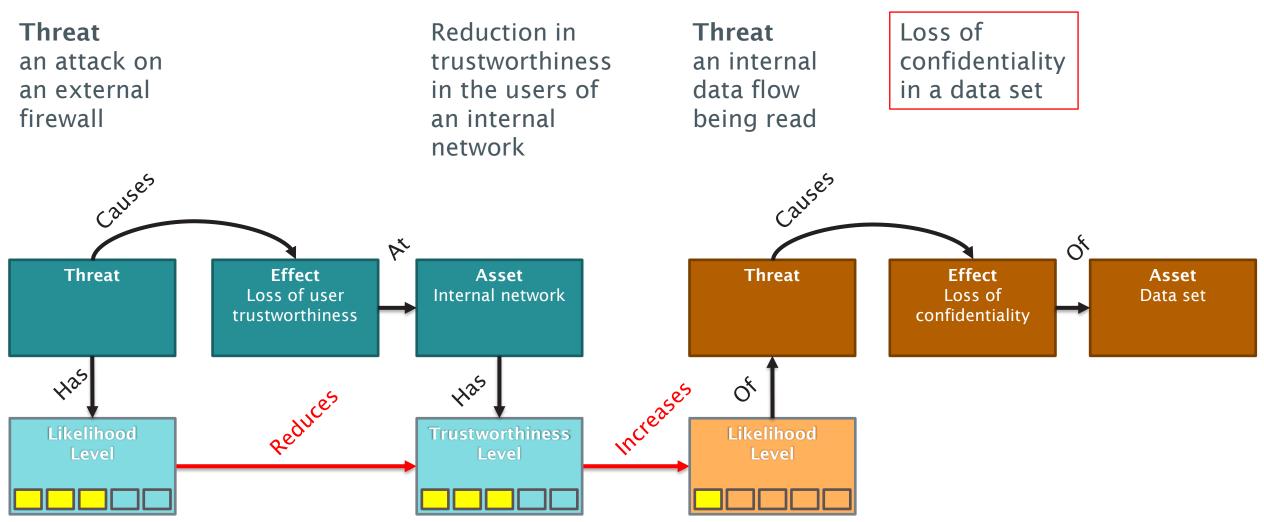
It models how the consequence of one threat makes other threats more likely.

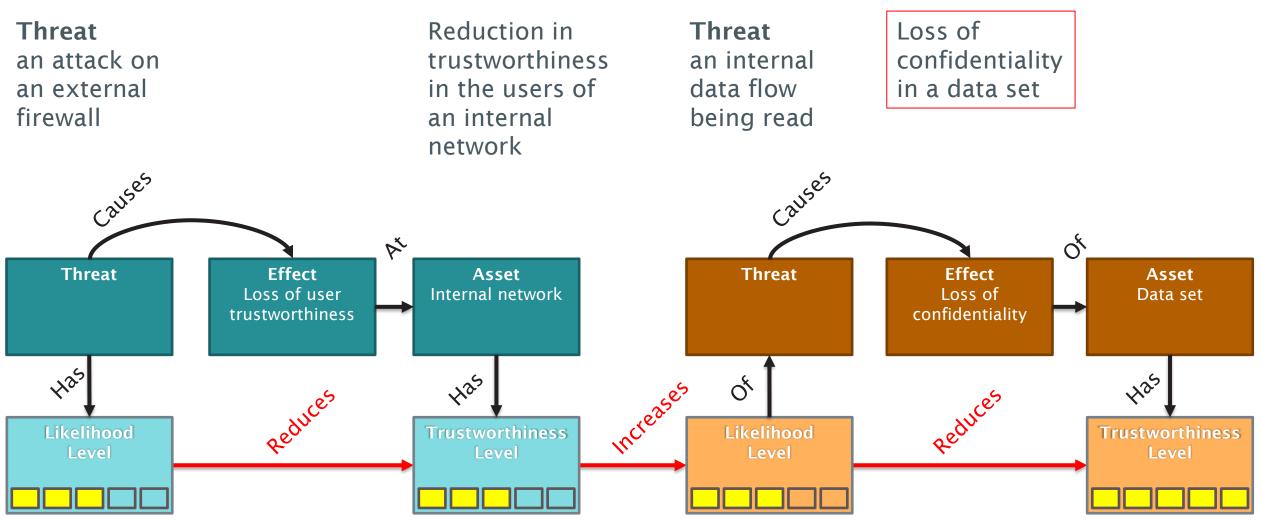

Lateral Movement

- It is rare that a malicious attack achieves its target in a single step.
- The SSM's model of threat propagation will find and simulate deliberate attack steps through a system.

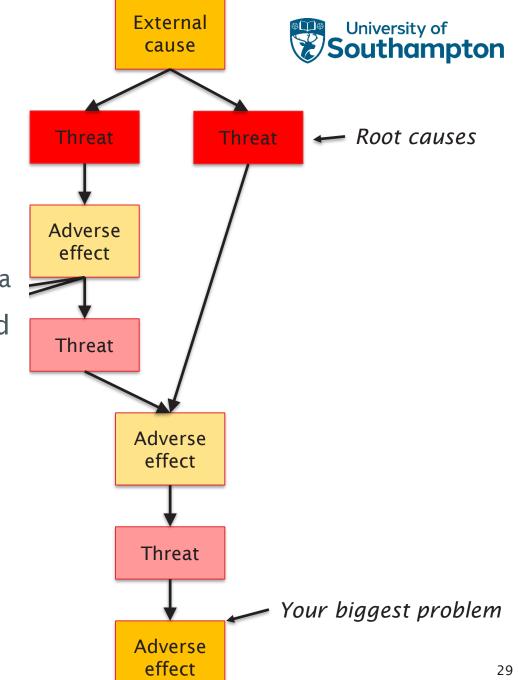

Secondary Threat Cascade

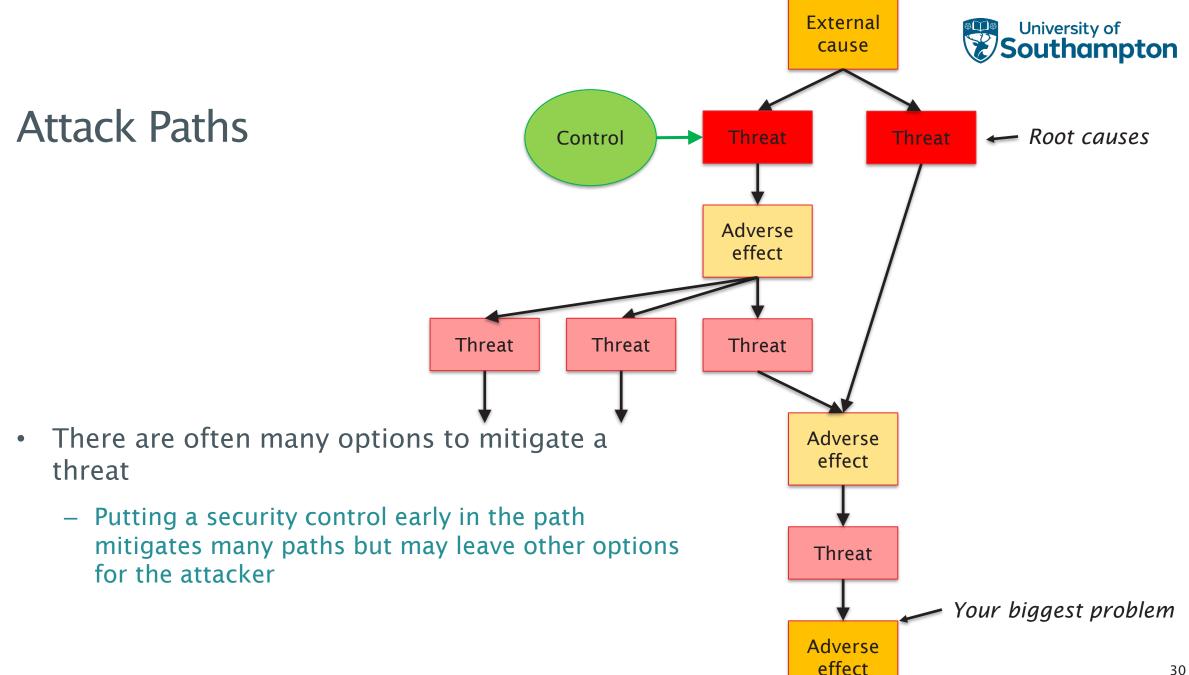
- The threat propagation method means automatic "secondary threats" are considered
 - E.g. if a server is disrupted and ceases to function then the SSM knows that any hosted data will also lose availability.
- This means that the user only needs to consider the impact of threats on the primary assets (e.g. the data, not the server).

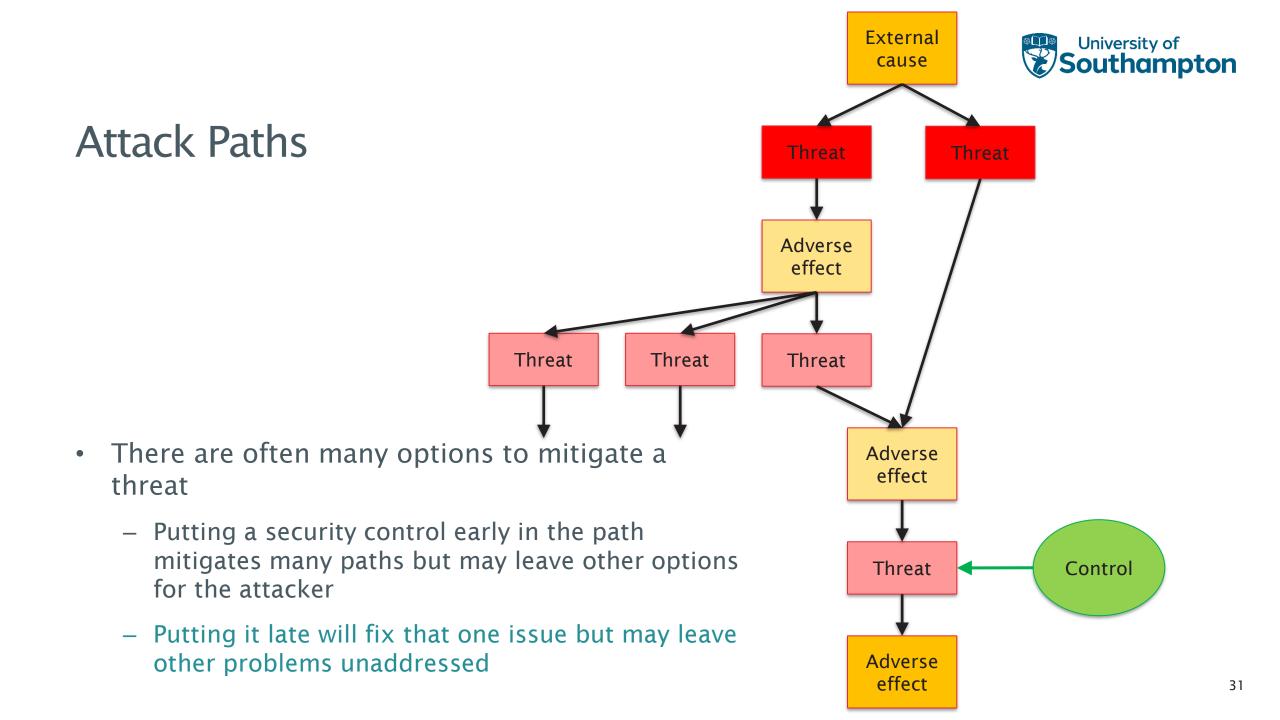




University of Southampton


Attack Paths


- The threat propagation model does not create a simple linear path.
- Threats and their effects combine and branch:
 - Threats can need more than one cause to be present/likely
 - The effect of a threat can cause more than one other threat
- Determining where best to put the security controls is therefore not easy.
- The SSM includes exploration tools to navigate the graph.


		•				
Effect Explorer			? 🗙			
LossOfConfiden	tiality at Customer F	Profile				
Disclosure of data (w	Threat Explorer			?		
or a state where prev Impact Likelih	Primary (Root Caus	e) Threat to [ClientSei Server Software)]	rviceRelationship	:(Customer's		
High High Root causes (0/2) Show filters Reset:	from "Customer's Web Browse "Customer's Web Browse force attack and used by a	password used by "Custome owser": this threat applies w r" uses a weak password wh an attacker to access "Web s	here a human user of hich can guessed or fo	client ound by brute		
Threat	Likelihood Risk High Very High					
Credential stuf used by "Custo Server Softwar Web Browser"	Detail Direct cause	sed by loss of trustworthines	ss in the following attri	→ •		
Phishing attack loading malicio Web Browser"			Assumed Low ¥	Calculated Low		
Direct causes (1/23)	Direct effects			¢-		
Show filters Reset	This threat directly cause	s the following effects on oth	her assets:			
Threat Compromised "Customer's W	Clientimpersonation	Asset [ClientServiceRelationship: (Customer's Web Browser)- (Web Server Software)]	Impact Likelihoo Very Low 🗸 High	od Risk		
Content in the f Profile" from "V sent from "Wel	Secondary effects			⇔ →		
"Customer's W						
Compromised Software" read Customer Pro Web Browser" Software" sent Browser" (a5ad	AccountLockingAtSer The number of login atter accounts locked when the attempts within a short r	vice (Very High blocking effe empts at service "Web Serve here are too many unsucces beriod.	er Software" is limited,			
Compromised	a 😑 🦲 Authentia	cationLimits at "Web Server	Software"			

Attack Paths

- The SSM's analysis shows the highest risk adverse effects: your biggest issues
 - E.g. loss of confidentiality in customer profile data
- As an analyst you want to know what has caused this risk (to be so likely) and therefore how to mitigate it
- There are often many options to mitigate a threat

Operating Modes

Security by Design

- Model the long term risk.
- Model a system before it is built and deployed.
- Model an existing system or proposed changes to it.
- Put in place recommended controls and procedures to secure it before problems arise.
- Do a "what if?" experiment.

Operational Risk Assessment

- Model the immediate risk.
- Based on knowledge of the current state of a live system.
- Configure software processes based on vulnerability scans, CVE database, etc.
- Receive recommendations suitable for immediate implementation.

Alternatives

	Whiteboard	securiCAD	ThreatModeler	IriusRisk	OWASP Threat Dragon	Microsoft Threat Modelling Tool	SSM
Semi-automated; Fast; Repeatable	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Hosts	\checkmark	\checkmark	×	×	×	×	\checkmark
Networks	\checkmark	\checkmark	×	×	×	×	\checkmark
Software processes	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark
Communication protocols	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	If necessary
Data	\checkmark	\checkmark	×	\checkmark	×	×	\checkmark
People	\checkmark	\checkmark	×	×	×	\checkmark	\checkmark
Physical spaces	\checkmark	\checkmark	×	×	×	×	\checkmark
Legal jurisdictions	\checkmark	×	×	×	×	×	\checkmark
Software functions	×	×	×	\checkmark	×	×	×
Business functions	\checkmark	×	×	×	×	×	×
Trust boundaries	\checkmark	×	×	\checkmark	\checkmark	\checkmark	×
Data flow	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	✓ (automatic)
Process flow	\checkmark	×	\checkmark	\checkmark	×	×	\checkmark
Asset relationships	\checkmark	Basic	Basic	×	Basic	Basic	\checkmark
Threat database	lf expert	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark
Control database	If expert	\checkmark	\checkmark	\checkmark	×	Comms only	\checkmark
Calculated Risk	If expert	Fixed	Fixed	\checkmark	×	×	✓ (ISO 27005)
Time to compromise	×	\checkmark	×	×	×	×	×
Attacks considered	Some	Single	?	All	×	All	All
Attack path	If expert	\checkmark	\checkmark	×	×	×	\checkmark
Report generation	Manual	Basic	\checkmark	\checkmark	×	Basic	Basic
Automated model building	×	AWS	×	Terraform	×	×	Research
Live status	×	×	×	×	×	×	Research
DevOps integration	×	×	\checkmark	×	×	×	×

Current and Future Directions

- Operational risk assessment
 - Integration with vulnerability scanners etc along with support in the UI
 - Integration with Security Incident Event Management systems
- Attack path analysis
 - Development of visualisations to help users understand cause and effect
- Threat treatment recommendations
 - Using attack path analysis to recommend good mitigation options

- Model discovery
 - Using network scanner and cloud API data to semi-automate the model building
- GDPR compliance
 - Extending and updating the existing model
- General user interface and performance improvements
- Intelligence sharing along supply chains

Selected References

- (2021) Regulatory Compliance Modelling Using Risk Management Techniques https://doi.org/10.1109/AlloT52608.2021.9454188
- (2021) Cybersecurity for SMEs: Introducing the Human Element into Socio-technical Cybersecurity Risk Assessment https://doi.org/10.5220/0010332902660274
- (2020) Systematic Risk Assessment of Cloud Computing Systems Using a Combined Model-based Approach https://doi.org/10.5220/0009342700530066
- (2019) Modelling compliance threats and security analysis of cross-border health data exchange https://doi.org/10.1007/978-3-030-32213-7_14
- (2018) Trust Modelling in 5G mobile networks https://doi.org/10.1145/3229616.3229621
- (2015) Trustworthy systems design using semantic risk modelling http://eprints.soton.ac.uk/id/eprint/383465
- (2013) A Novel Risk-based Approach for Online Community Management <u>http://eprints.soton.ac.uk/id/eprint/354147</u>
- (2013) Next generation community management: A proactive risk-based approach <u>http://eprints.soton.ac.uk/id/eprint/354148</u>

Summary

- The SSM automates much of an ISO 27005 risk assessment of socio-technical systems
 - People, places, networks, computers, data
 - Reliably, repeatedly, comprehensively
- The risk assessment takes into account the propagation of threats and their effects through the system
 - This technique is unique and crucial
- A wide range of threats are modelled, both cyber-security and compliance
- Physical, technical and policy-based security controls are recommended
- The software is open source and will soon be readily available

Copyright © University of Southampton, IT Innovation Centre, 2022

The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the University of Southampton.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

To view this licence, visit (https://creativecommons.org/licenses/by-nc-sa/4.0/). For reuse or distribution, please include this copyright notice.

IT Innovation Centre, Building 32, Room 3001, Electronics and Computer Sciences, Faculty of Engineering and Physical Sciences, Highfield Campus, University of Southampton, SO17 1BJ