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Abstract. This article introduces a n-gram-based approach to automatic classification of Web 

services using a multilayer perceptron-type artificial neural network. Web services contain 

information that is useful for achieving a classification based on its functionality. The approach 

relies on word n-grams extracted from the web service description to determine its membership 

in a category. The experimentation carried out shows promising results, achieving a 

classification with a measure F=0.995 using unigrams (2-grams) of words (characteristics 

composed of a lexical unit) and a TF-IDF weight. 

1. Introduction 

Web services are reusable software components through which you can build and integrate new 

applications without having to deploy all the elements of a system. Web services have now become 

more popular due to their proliferation for the offering of cloud storage and resource management 

services. Web services are available in both public and private repositories through service descriptions. 

There are several public Web service repositories: a) the SOAP Web Services directory supported by 

Membrane; b) the Visual Web Service Web Services repository; c) the XMethods Web service 

repository; d) Programmable Web; e) OWLS-TC is a collection of test services recovered with their 

respective annotations on OWL-S [1]. 

These annotations express the semantics of the elements of a Web service. Web service descriptions 

are made using the standard WSDL language, such description consists of an XML-based text file, 

within which the elements required for service invocation [2] are defined. For developers and application 

developers to make use of the services they need to search for them within the service repositories. This 

task is commonly referred to as service discovery. However, service discovery is still an arduous and 

error-prone task, as most repositories offer keyword matching-based search mechanisms. In conjunction 

with this problem is the fact that service repositories are organized primarily by static structures that do 

not allow flexible and dynamic organization of services [3]. This research work has as its main objective 

to improve the organizational structure of Web service repositories in a way that facilitates the discovery 

of services. The main contribution of this article focuses on a Web services classification algorithm 

using word n-grams. As a result, you get collections of Web services organized by themes, your search 

is streamlined, consuming fewer resources, because it is done between services within the same category 

[4], [5]. 
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2. Description of the Web Service 

The recommended service description language for Web service deployment is called Web Service 

Description Language (WSDL), which is currently a standard accepted by W3C. WSDL defines an 

XML grammar to describe connected services as a collection of communication nodes capable of 

exchanging messages6. This work considers the WSDL 2.0 version, the latest and incorporating 

significant changes to the service description with respect to WSDL version 1.1. WSDL 2.0 changes the 

label to the label (see Fig. 1). The most significant differences between WSDL 1.1 and WSDL 2.0 are: 

the target Name Space is a required attribute in WSDL 2.0; message construction is eliminated in WSDL 

2.0; Operator overhead is not supported in WSDL 2.0; Port Type has been renamed to Interface; 

inheritance in Interface is supported by the use of extended attributes; and Port has changed the name to 

Endpoint [6], [7]. 

 

Fig. 1. Web Service Description Language 1.1 and 2.0 [8] 

 

3. Related works 

Descriptions of web services, OWLS or WSDL, contain free text (natural language), as well as 

parameter names, data names, complex and simple, operation names, and input-output parameters. 

Various works have used this information for a variety of tasks related to word processing. One of these 

tasks is to calculate the semantic similarity between services [9], classify services based on their content 

[10], and web service pooling [11]. In the context of Web services classification, approaches have been 

proposed using the OWLS-TC service collection for a supervised classification [12]. 

4. Results  

 

4.1 Proposed Approach 

This article introduces the classification of Web services using their textual descriptions and parameter 

names. This problem is addressed by the text classification paradigm, which consists of associating 

predefined categories from the analysis of a text [13]. 

The approach analyzes a collection of Web services for classification. The collection consists of the 

description in WSDL and its semantic extension in OWL-S of each service. Under this architecture, the 

first stage is the extraction of texts from the description files of the Web services, for this purpose, a 

WSDL and OWL-S file analyzer is performed in order to extract the text in natural language and the 

names of the elements Relevant. The extracted texts are then pre-processed to obtain the lexical units 

(simple words) that describe each service. The set of lexical units, characteristics of each web service, 

are represented as 1-grams, 2-grams or 3-grams, by a weighting of the terms, in a vector space model 
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[14]. Finally, vectors are used for the classification of services using a multilayer perceptron-type neural 

network. 

 

4.2 Extracting texts 

Description documents (WSDL) and semantic description documents of functionality (OWL-S), from 

the collection of Web services, are analyzed in order to identify and extract textual information, which 

is useful to achieve the content-based classification. This extracts the contents of the service Name and 

text Description tags from the Profile class from the functionality descriptions (OWL-S), these tags 

contain natural language text. From the WSDL, the name of the service (wsdl: service name), the name 

of the operations (wsdl: operation name), and the names of the message data types are extracted, either 

simple or complex (xsd: simple Type name and xsd: complex Type name) [15]. This natural language 

information and service element names are used to represent and subsequently classify services based 

on their content [16]. 

 

4.3 Preprocessing of texts 

The first task, after having the text of the services, is word segmentation. For web services, it is common 

to find service names, operations, or data types with compound words. To achieve the segmentation of 

words, compound names are transformed into their simple canonical form, that is, in lexical units, 

considering the change from lowercase to uppercase and the sub hyphen as word breakers. For example, 

get Address Location or get_address_location are broken down into the following lexical units: [get] 

[Address] [Location]. In addition, the texts of the services are normalized, by applying a conversion to 

lowercase, elimination of punctuation marks and suppression of empty words, that is, words that do not 

add meaning and are therefore considered non- functional for content-based service classification [17], 

[18]. 

 

4.4 Removing and representing the characteristics of services 

The set of normalized and filtered lexical units (words) are represented in the vector space model [19]. 

This model is used to represent texts in a formal way using terms as characteristics, which can be simple 

lexical units (1-grams), two-word sequences (2-grams), or any sequence of words (n-grams). In this 

article we complement the vector space model with the word bag representation, which consists of a 

collection of texts and their vocabulary of terms (features). Each text in web services is represented as 

a vector 𝑆𝑗 = (𝑤1𝑗 , 𝑤2𝑗 … 𝑤𝑛𝑗) ,  where each component 𝑤𝑖𝑗 expresses the importance or weighted 

frequency produced by the characteristic 𝑖, lexical unit(1-gram) or sequence of words (n-gram), of 

vocabulary in text j  of the Web service. In this work we focus on measuring the influence of 1-grams, 

2-grams and 3-gram words as characteristics (vocabulary terms) within the vector space for the 

classification of Web services.  

There are different approaches to gaining the importance or weighting of vocabulary terms over a 

text. This article is based on a heavy Boolean, a heavy frequency of occurrence of the term (TF), and a 

heavy based on the frequency of occurrence of the term in the text collection (TF-IDF). The Boolean 

weight of a term calculates the weight by assigning a value of 0 if the vocabulary term does not appear 

in the text and a value of 1 if the term is present. Meanwhile, the frequency-based weight (TF) calculates 

the number of times a vocabulary term appears in a text: 𝑤𝑖𝑗 = 𝑇𝐹(𝑡𝑖 , 𝑆𝑗) [20].  

This weight gives importance to the most frequent terms, however it is not a normalized weight that 

can cause distant values between vector components. Finally, you also have the weight based on the 

frequency of occurrence of the term in the text collection (TF-IDF), which captures the importance of a 

term for a Web service description text. This weight uses the frequency of occurrence of a vocabulary 

term in a text 𝑇𝐹(𝑡𝑖 , 𝑆𝑗) and the inverse frequency that determines whether the term is common in the 

collection of texts𝐼𝐷𝐹(𝑡𝑖 , 𝑆𝑗) = log |𝑆| 1+|𝑠∈𝑆 ∶ 𝑡𝑖∈𝑠| . So, the final formula for TF-IDF calculation is 

as follows: 𝑤𝑖𝑗 = 𝑇𝐹(𝑡𝑖 , 𝑆𝑗) × 𝐼𝐷𝐹(𝑡𝑖 , 𝑆𝑗) [21]. 
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4.5 Web services classification 

Web services classification is based on the vectors of each Boolean, TF, or TF-IDF weighted service. 

The classification presented in this article is considered a supervised classification, this has been widely 

used in the field of machine learning to estimate the predictor function of each class in our collection. 

Therefore, the collection of web services will be divided into a training set and a set for testing. The 

objective of this stage is to build a web services classifier considering 9 categories: Communication, 

Economy, Education, Food, Geography, Medical, Simulation, Travel and Weapon (Armament) [16].  

The classification task is carried out using an artificial multilayer perceptron-type neural network 

with supervised learning. The multilayer perceptron is an Artificial Neural Network (RNA) made up of 

multiple layers of neurons whose purpose is to solve problems of multiple classes. These types of neural 

networks, presented in [7], [9] and [18], are considered supervised classification algorithms and are 

inspired by the biological neural networks of the human brain. Under a mathematical scheme, a 

multilayer perceptron is a complex nonlinear function with a set of interconnected neural units, 

composed of an input layer and an output layer, this network is trained with a set of services, and then 

performs the corresponding parameter settings to output similar outputs with the test data. The idea is 

to evaluate the task of classifying services with the multilayer perceptron in combination with the 

weights (Boolean, TF or TF-IDF) and the formation of terms (1-grams, 2-grams and 3-grams), in order 

to find the best solution in terms of Precision. The implementation of the multilayer perceptron-type 

artificial neural network with supervised learning, for the classification of Web services, has been carried 

out using the WEKA tool [6]. 

 

4.6 Experimentation  

The evaluation of the proposed approach was performed with version 3.0 of the OLWS-TC7 collection, 

which consists of 2245 services described using WSDL and OWL-S. The services in this collection are 

seeded in the following categories: Communication, Economy, Education, Food, Geography, Medical, 

Simulation, Travel, and Weapon. This collection was divided into two groups: 1452 for the learning of 

the classification model and 352 for testing. The experimentation consists of evaluating the classification 

algorithm, artificial neural network of multilayer perceptron type, combining it with the representation 

based on 1-grams, 2-grams and 3-grams, as well as evaluating the three types of weights for the Boolean, 

TF and TF-IDF. All experiment configurations were executed on the set of 1452 service descriptions to 

achieve the learning of the prediction model and then evaluated with the set 352 test descriptions [11]. 

The evaluation of all experiments was performed using the Precision (P), Remembrance (R) and F 

measure metrics widely used in any classification task, in our case, text classification. These metrics 

compare the results of the classifier to be evaluated with the trusted external values (seed web services), 

using the following values: a) True Positive (VP) is the number of correct predictions of the services 

that correspond to the external judgment of trust (pre-classified services); True Negative (VN) is the 

number of correct service classifier predictions that do not correspond to trusted external judgment; 

False Positive (FP) corresponds to the number of incorrect service classifier predictions that correspond 

to the trusted external judgement; and finally False Negative (FN) is the number of incorrect service 

classifier predictions that do not correspond to the trusted external judgment [14]. 

Table 1 shows the TF weighting results for terms 1- grams, 2-grams and 3-grams for the classification 

of services with the multilayer perceptron neural network.  

Table 2 presents the TF-IDF weighting results for the terms 1-grams, 2-grams and 3-grams in the 

classification of services with the multilayer perceptron neural network. 

The results shown in Table 1 and 2 show that the best alternative is to consider 2-gram term formation 

and their TFIDF weighting for the classification of Web services using a multilayer perceptron neural 

network. This configuration achieves 99.5% of successfully classified services. The results of 

experimentation demonstrate the effectiveness of our approach to classifying Web services. 
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Table 1. Results by category using TF weighting 

 

  1-grama 2-grama 3-grama 

category P R F P R F P R F 

Communication 0.75 0.68 0.75 0.73 0.71 0.74 0.68 0.69 0.68 

Economy  0.78 0.7 0.69 0.72 0.72 0.75 0.7 0.71 0.7 

Education 0.74 0.68 0.68 0.77 0.73 0.76 0.68 0.72 0.71 

Food  0.75 0.69 0.71 0.76 0.68 0.75 0.69 0.73 0.72 

Geography  0.76 0.71 0.72 0.7 0.7 0.73 0.71 0.68 0.73 

Medicine 0.75 0.72 0.73 0.69 0.71 0.68 0.72 0.7 0.74 

Simulation  0.78 0.73 0.68 0.68 0.72 0.7 0.71 0.71 0.75 

Tourism  0.74 0.68 0.7 0.7 0.73 0.69 0.72 0.72 0.73 

Armament 0.75 0.7 0.68 0.69 0.68 0.7 0.73 0.73 0.74 

Weight 

Average 0.755 0.698 0.74 

 

0.715 

 

0.708 

 

0.722 

 

0.704 

 

0.71 

 

0.722 

 

 

Table 2. Results using TF-IDF weighting. 

 

  1-grama 2-grama 3-grama 

category P R F P R F P R F 

Communication 0.91 0.97 1 0.92 0.98 1 0.92 1 1 

Economy  0.92 0.98 1 0.99.5 0.97 1 0.99.5 1 1 

Education 0.99.5 0.99 0.99 0.94 1 0.99 0.94 0.95 0.98 

Food  0.94 0.98 0.98 0.94 1 1 0.94 0.96 0.99 

Geography  0.94 0.97 0.97 0.99.5 1 1 0.99.5 0.98 1 

Medicine 0.99.5 0.96 0.98 0.95 0.95 0.98 0.95 0.98 1 

Simulation  0.94 1 1 0.95 0.96 0.99 0.96 0.99 0.98 

Tourism  0.95 1 1 0.95 0.98 1 0.94 0.98 0.99 

Armament 0.94 0.98 1 0.96 0.98 1 0.95 0.97 1 

Weight 

Average 0.99.53 0.981 0.991 0.941 0.98 0.995 0.94 0.978 0.999.5 

 

5. Conclusions  

This article has presented a web services classification approach using an artificial neural network of 

multilayer perceptron type and using word n-grams. Several experiments have been presented, in which 

the composition of vocabulary terms (1-grams, 2-grams and 3-grams) was combined with the weights 

of these terms (Boolean, frequency of occurrence, and frequency of inverse occurrence proportional to 

its appearance throughout the collection). From this experimentation, it is noted that our web services 

classification proposal has achieved 99.5%efficiency. 

The main contributions of this work are: a) combinations of term compositions and their weights in 

experimentation for the classification of Web services; (b) extracting terms from the collection to form 

vocabulary; and c) the classification model, based on a multilayer perceptron neural network for the 

classification of Web services through its DESCRIPTIONs OWLS and WSDL. 
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