Motivating the Gauss sum proof of the quadratic reciprocity

Pierre-Yves QGaillard

1 Introduction

As the title indicates we try to motivate the Gauss sum proof of the quadratic reciprocity.

First recall the definition of the Legendre symbol. Let p be a prime, a an integer and
n(a, p) the number of distinct solutions of the equation z* = a in the field F,, := Z/pZ. Then the

Legendre symbol (%) is equal to n(a,p) — 1. Equivalently (1‘—;) is characterized by the conditions:
(%) € {-1,0,1} and (%) = a®Y/2 mod p. A proof of this equivalence is given in Proposition@
p. . Note that it implies (@) = (%) (%) for all a, b.

P
Consider the question:

Question 1. Given an odd prime q, is there an integer ¢* such that
q" p
)= (2 1)
(5)-C)

An answer will be given by the quadratic reciprocity law: see Theorem [3] p. [4] below.

for all odd prime p not equal to q¢

2 The main argument

Let p and ¢ be distinct odd primes.

Convention 2. Let ¢ be a prime number. In this section and the next two ones, unless otherwise
indicated, an equality between integers (or between an integer and an element of F,) will be
regarded as an equality in IF,, where /¢ is clear from the context. We have ¢ = p in this section and
the next one, and ¢ = ¢ in Section [4]

Clearly can be stated as
#\ (p— p
)= (2) 2)

q
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(equality in [F,). To handle this equation it will be convenient to embed I, in a larger ring A.
Then A will be a nonzero F p—algebraﬂ. One of the main features of an F,-algebra is a canonical
endomorphism, called the Frobenius endomorphism, defined by a + aP.

The first item on our agenda is to express Equality in terms of the Frobenius endomorphism
of some [F,-algebra A.

Suppose we have an integer ¢* and an [F,-algebra A with an element a € A such that the
equality

o = ¢ (3)

holds in F,, (see Convention . If ¢* is prime to p then a is invertible and we can rewrite as

@ = (g) (4)

an equality which does involve the Frobenius endomorphism of A.

In view of , this shows that, to answer our question, it suffices to find an integer ¢* prime
to p and a nonzero [, -algebra A with an element a € A satisfying the quadratic equation and

the linear equation (4)).
Our strategy will be as follows:
Step 1: Find an [F,-algebra A and a nonzero solution a € A of .

Step 2: Find an integer ¢* prime to p and a scalar A € F, such that A%a* — ¢* is not invertible in

A.

Then the quotient of A by the ideal generated by A?a* — ¢* will be a nonzero F,-algebra in
which (3]) and (4) hold (for the image of Aa in this quotient).

3 Step1

Let A be an [Fj-algebra. We will make some assumptions to make Equation in A as simple as
possible.
Our first simplifying assumption is that A is finite dimensional over F,. Let (b(z)).ex be an

[F,-basis of A. We can express an arbitrary element a € A as a =) f(z)b(z) with f(z) € F,,

and becomes
S @by =Y (?> F(0)bl).

PN

!Recall that an Fp-algebra is a ring A equipped with a morphism F, — A. (In this text all rings and all

algebras are associative, commutative and have an element 1.)
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Of course in general b(z)? will be a linear combination of the b(y), but our second simplifying
assumption is that each b(z)P is just “another” basis vector, which we denote by b(p * ). To make

things even simpler we suppose that the map z +— p*xx, X — X, is bijective. The above display

becomes Z ) bp ) =Y (‘g) () b(y),
that is y

flpxx) = (S) f(x)
for all x.

This suggests the following attempt: X =F,, p*z = pr (where the second p is viewed as an
element of F,, see Convention [2| p. , flz) = (%) (Recall that we want a nonzero solution of (4).)

So far A is only an [F-vector space with a basis indexed by I, and our problem becomes: Can

we find an F,-algebra multiplication on A such that b(z)? = b(xp) for all 7

It suffices to define the products b(x) b(y), and we see immediately that the formula b(x) b(y) =
b(z +y) does the job.
We prefer the notation b” to b(z), so that we get

VWY = b (PP =0, b =1

2

(The F,-algebra A is called the F,-algebra of the additive group F,.)

and

4 Step 2

We must compute . In the lines below the subscripts z,y, z run over F,; for instance £0

means that = runs over F} :=F,\ {0}. We have

2=y (l‘y) P =3 % ($y> poy

z,y z#£0 y

: o1 * _
Setting 2 :=x~ 'y € F; we get y = z2z and thus

. —ZZ( )W:Z( )me:;@ (;b(m)x_l)

z#£0 =z z#0
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— ; (2) ; pa+21 3 <§) _ ; (2) ; pa+a)e

z

If we set s =)

p.:

b® we can continue the above chain of equalities as follows (see Convention
z -1 z
Sz (s
20T 2\

—(—1)@ D2 g4 (Z (g) - (—71)

z

z€lFy

so that at the end we get

which suggests to set
q = (_1)(q71)/2 q.

To make sure that this answers Question [1] it suffices to check that ¢* — a2, or equivalently
that s, is not invertible in A. But the obvious equality b”s = s for all x implies cs € I, s for all
c € A. (The scalar A € F, mentioned in the description of Step 2 given at the end of Section [2]is
equal to 1.)

We have proved the quadratic reciprocity law:

Theorem 3 (Quadratic Reciprocity). If p and q are distinct odd primes, then we have

p q
wlth q = (_1)(2 )/ q, o7 equivalently

(-

5 Additional proofs

To make this short text more self-contained we add a couple of proofs.

For any positive integer n let C), be the group Z/nZ, for any group G let G(n) be the cardinality
of the set of elements of order n in G, and set ¢p(n) = C,(n). (Usually ¢ is called Euler’s totient

function.)
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Proposition 4. In the above setting we have for any group G of finite order n:

(a) G(k) = 0 if k does not divide n,

(b) >, G(d) = n where the sum runs either over the divisors of n or over all positive integers,
(c) Cn(d) = ¢(d) if d divides n,
(

d) >, 6(d) = n where the sum runs over the divisors of n.

Proof. Part (c) follows from the fact that C,, contains a unique group of order d whenever d

divides n. The proof of the other statements is straightforward. m

Theorem 5. Let G be a finite subgroup of the multiplicative group K* of a field K. Then G is

cyclic.

Proof. Let n be the order of G and let the above notation be in force. We claim G(d) = ¢(d) for
every divisor d of n. This will imply that G(n) = ¢(n) > 1, and thus that G is cyclic. Let d be a
divisor of n. In view of Parts (b) and (d) of Proposition |4] it suffices to prove G(d) < ¢(d). We
can assume G(d) > 1. Let g € G be of order d, let g% be the subgroup of G generated by g, and
let H be the subgroup of K* (the multiplicative group of K') consisting of all the solutions of the

equation ¢ = 1. We claim
G(d) < K*(d) = H(d) = g*(d) = ¢(d).

To prove H(d) = g%(d) note that we have g C H, that g” has order d, and that H has order
at most d (because the polynomial X¢ — 1 cannot have more than d roots in K). This implies

g” = H. The other statements are clear. [

Proposition 6. Let p be an odd prime and a a nonzero element of the field F,. Then a is a

square in F, if and only if aP~Y/? =1,

Proof. Let g be a generator of the multiplicative group F, of F, (see Theorem and set
n = (p—1)/2. Note that g" = —1 because (¢")?> = 1 and ¢g" # 1. If a = ¢g* for some integer k,

then a” = ¢®=D*k = 1. If ¢ = ¢®**! for some integer k, then a” = g®P~Dk+n = gn — 1. O
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