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Multifractal detrended fluctuation analysis (MFDFA) has become a central method to characterise the
variability and uncertainty in empiric time series. Extracting the fluctuations on different temporal scales
allows quantifying the strength and correlations in the underlying stochastic properties, their scaling
behaviour, as well as the level of fractality. Several extensions to the fundamental method have been

developed over the years, vastly enhancing the applicability of MFDFA, e.g. empirical mode decomposition
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for the study of long-range correlations and persistence. In this article we introduce an efficient, easy-to-
use python library for MFDFA, incorporating the most common extensions and harnessing the most of
multi-threaded processing for very fast calculations.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A common tool to unveil the nature of the scaling and frac-
tionality of a process, natural or computer-generated, is Multi-
fractal Detrended Fluctuation Analysis (MFDFA). It was initially
developed by Peng et al. [1,2] as basic Detrended Fluctutation
Analysis (DFA) and later extended to study multifractal processes
by Kandelhardt et al., giving rise to MFDFA [3]. It addresses the
question of the presence of correlations in time series and can
be employed to analyse both discrete as well as continuous-time
stochastic processes. Since its initial development in the late 90’s,
it has been revisited to incorporate several other elements, e.g.
empirical mode decomposition as a method for detrending [4-7],
overlapping moving windows [8,9], and a new metric denoted
extended detrended fluctuation analysis [10-13]. There are sev-
eral additional features exist, designed to study correlations of
two or more time series [14,15], lag correlations in time se-
ries [16], and Fourier-DFA [17], amongst others. A comprehen-
sive study of DFA and the interplay between trends in data and
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correlated noise can be found in Ref. [18]. Multifractal time se-
ries analysis has found application in various fields, such as the
analysis of heartbeat rate [19], arterial pressure [10], EEG sleep
data [11,13], physiology [20], keystroke time series from Parkin-
son’s disease patients [21], cosmic microwave radiation [22,23],
seismic activity [24,25], sunspot activity [26], atmospheric scintil-
lation [27], temperature variability [28], meteorology [29], precip-
itation levels [30], streamflow and sediment movement [7,31-36],
protein folding [37], finance and econophysics [38-42], electric-
ity prices [43,44], power-grid frequency [45,46], epidemiology [47],
music [48-50], ethology [51,52], multifractal harmonic signals [53],
and microrheology [54].

MFDFA is a numerical algorithm designed to determine the self-
similarity of a stochastic process. Putting it simply, the algorithm
examines the relation between the diffusion of the process and its
propagation in time or space. Auto-regressive and stochastic pro-
cesses with different power-law scaling will diffuse with different
rates. Fluctuation Analysis (FA), which precedes the development
of MFDFA, provides a method to uncover these correlations, but
fails in the presence of trends in the data, which, for example,
are particularly present in weather and climate data. Detrending
the data via polynomial fittings (DFA) allows one to uncover solely
the relation between the inherent fluctuations and the time scaling
of a process, thus circumventing the impact of non-stationarity in
the data. Likewise, other methods—as empirical mode decompo-
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sition or moving average windows—are viable options to detrend
the data. Another problem is that a process might be driven by
more than one time scale, i.e.,, have more than one internal pe-
riod, which can be removed either with local polynomial fittings
or EMD. Moreover, a stochastic process might be of a monofractal
or multifractal nature. By studying a continuum of power varia-
tions of DFA one extends into MFDFA, which permits the study
of the fractality of the data by comparing power variations, i.e., a
multifractal spectrum.

In this software we sought to design a computationally effi-
cient code focused on computational speed and usability. There
are currently no flexible and available implementations of MFDFA
in python. Available are some MATLAB [55] as well as R pack-
ages [56,57]. There is a particularly thorough introductory guide to
MFDFA in MATLAB with a source-code by Espen A. F. Ihlen [55],
which is easy to implement but numerically inefficient. With
this implementation efficiency was sought. This was achieved by
making the most out of python, reshaping the code to allow
for multi-threading, especially relying on numpy’s polynomial,
which scales easily with modern computers having more processor
cores [58]. Moreover, this library contains the most commonly ap-
plied methods alongside with DFA and MFDFA: the added feature
of empirical mode decomposition is implemented to substitute the
polynomial fittings; A moving window is included, especially valu-
able for shorter time series; The extended DFA (eDFA) method is
also included, adding a second metric of fractal scaling, especially
valuable for multifractal or aperiodic time series.

In the following sections we will introduce MFDFA alongside
some of the aforementioned methods incorporated into the MFDFA
library. We will present two classical applications, one with a
monofractal process and one with a multifractal noise, and show
how to use MFDFA to extract their characteristics from a single
one-dimensional time series. Python code is presented to expli-
cate the use of the MFDFA library. Subsequently we study two
real-world time series: the sunspot time series from 1818 to 2020
which accounts for the daily recorded sunspots and the quarter-
hourly electricity trading market, which accounts for a small vol-
ume of electricity sell and purchase at 15 minute windows in
Continental Europe. Lastly we address a few details of the library
and contribute a few closing remarks.

2. Theoretical basis

In the following we briefly summarise the theoretical basis of
Multifractal Detrended Fluctuation Analysis. Later we detail the dif-
ferent included extensions and which modifications these add to
the original MFDFA algorithm.

2.1. Multifractal detrended fluctuation analysis

Multifractal Detrended Fluctuation Analysis studies the vari-
ances of the fluctuations of a given process by considering increas-
ing segments of a time series.

i) Take a time series X(t) (in time or space t) with N data
points, discretised as Xj, i=1,2,..., N. Find the “detrended” pro-
file of the process by defining

1
yi:Z(Xk_IJ’X)afori:]azv"'st (1)
k=1

i.e., the cumulative sum of X; subtracting the mean wx of the data.

ii) Section the data into smaller non-overlapping segments of
length s, obtaining therefore Ns; = int(N/s) segments. Given the
total length of the data is not always a multiple of the segment’s
length s, discard the last points of the data.
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iii) Consider the same data, apply the same procedure, but dis-
card now instead the first points of the data. One has now 2N
segments of the time series.

iv) To each of these segments fit a polynomial y, of order m
and calculate the variance of the difference of the data to the poly-
nomial fit

S
F(v,s)= % Z[Y(vfl)eri — Y—1s+il% (2)
i=1
for v=1,2,..., N5, where yu_1)s+i is the polynomial fitting for
the segment Y(,_1)s4; of length s, fitted via least-squares. The or-
der of the polynomial y, can be freely chosen, giving rise to the
denotes (MF)DFA1, (MF)DFA2, ..., (MF)DFAm, dependent on the
chosen degree m of the polynomial.

v) Notice now F(v,s) is a function of each variance of each
v-segment of data and of the different s-length segments chosen.
Define the g-th order fluctuation function by averaging over the N;
variances of the segments of size s

1 Ng 1/q
Fq(s) = {N— Z[F(v,s)]‘”zl : (3)

S y=1

The fluctuation function Fg(s) depends on two parameters: the
segment size s and the g-th power. The fluctuation function Fg(s)
is the function we will focus on which the MFDFA algorithm de-
veloped extracts from the data.

Two closely related algorithms are discussed and introduced
here, DFA [1] and MFDFA [3]. DFA is a particular case of MFDFA
for the choice of g = 2. What is presented above is the MFDFA
algorithm as according to Kantelhardt et al. [3], for which a partic-
ular choice of g =2 leads to the fluctuation function F;(s). The
DFA fluctuation function Fz(s) can unveil solely the monofrac-
tal spectrum of a time series. If the examined time series X; is
monofractal, DFA is sufficient to describe and uncover the scaling
relations in the data. If not, one must rely on MFDFA and the study
of the spectrum unveiled by varying the g-th power.

We will later detail two changes: i) The first involving empir-
ical mode decomposition (EMD) for detrending, where the local
polynomial fittings are replaced and the trends of the data are
subtracted by removing select Intrinsic Mode Functions (IMFs) ob-
tained via empirical mode decomposition. ii) The second change
involves substituting the non-overlapping segments with overlap-
ping ones.

The inherent scaling properties of the data, if the data displays
power-law correlations, can now be studied in a log-log plot of
Fq(s) versus s, where the scaling of the data obeys a power-law
with exponent h(q) as

Fq(s) ~ s"@ (4)

where h(q) is the generalised Hurst exponent or self-similarity ex-
ponent, which will dependent on q if the data is multifractal, and
relates directly to the Hurst index [59]. The generalised Hurst ex-
ponent h(q) is obtained by finding the slope of F4(s) curve in the
log-log plots.

If the data is monofractal, the generalised Hurst exponent
h(q) = H is independent of q and the generalised Hurst exponent
is simply the Hurst index H. On the other hand, if the data is mul-
tifractal, the dependence on q can be understood by studying the
multifractal scaling exponent t(q), given by

T(q) =qh(q) — 1, (5)

which depends on the generalised Hurst exponent h(q). Similarly,
one can construct the singularity spectrum D(«) as the Legendre
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transform [60-63]. If t(q) is sufficiently smooth, the singularity
strength « is given by

a="1'(q) =h(@ +qh'(@), (6)

from which the singularity spectrum D(«) can be constructed as

D(a) =qa — t(q). (7)

The singularity spectrum D(«) describes the dimension of the
subset of the time series which is characterised by the singular-
ity strength o [64]. The breadth of singularity strength « indi-
cates the strength of the multifractality of the time series, centred
around the most prominent scale of the time series, i.e., h. The
singularity spectrum D(«) takes the shape of an inverted parabola
with a maximum at D(x = 0) = Dg, known as the box-counting
or Minkowski-Bouligand dimension, or sometimes simply fractal
dimension [60]. D(o = 1) = Dy is known as the information di-
mension and D(« = 2) = D, the correlation dimension [65]. For a
clearer discussion of these properties, see Refs. [3,66]. An exten-
sive and very illustrative representation of this can be found in
Ref. [55]. For a careful analysis of the meaning and interpretation
of the generalised Hurst coefficients extracted from (MF)DFA, see
Ref. [67], where a description and clarification is given on what
are persistent and anti-persistent motions, stationary and non-
stationarity time series, among other relevant details.

2.1.1. Empirical mode decomposition

Empirical mode decomposition (EMD) is a method with a vari-
ety of applications in time series analysis [G8]. It seeks to extract
the modes of oscillation of a time series strictly from the data. One
can harness the ability of the EMD, i.e., the Hilbert-Huang decom-
position of a time series, to obtain the trend or trends of the time
series and utilise those to transform non-stationary into stationary
data. The central concept, developed by Qian, Gu, and Zhou [6], is
to substitute the detrending method employed in the traditional
MEFDFA, i.e., polynomial fittings, by removing instead particular In-
trinsic Mode functions extracted via EMD. A sketch of the method
can be seen in Fig. 1.

EMD can be summarised in a few steps: a set of intrinsic mode
functions (IMFs) are extracted from the time series, obeying: 1) the
number of extrema and the number of zero crossings must maxi-
mally differ by one. 2) for any point, the mean value of the enve-
lope defined by the local extrema is zero. Numerical methods—as
cubic splines—are used to find the curve that best fits “between”
the local extrema of the time series. The method is applied iter-
atively: i) Obtain an IMF by finding the “best” curve between the
local extrema of the time series; ii) Subtract this IMF to the time
series; iii) Repeat. Apply the process recursively to the time series
until the final IMF contains solely a residual trend of the data.

2.1.2. Moving windows

The overlapping moving windows included in this library is
not aimed at detrending, but instead for the analyses of rather
short time series or very large scales in longer time series [8].
In the literature several applications of moving average windows
have been proposed as methods to remove trends and ensure sta-
tionarity, by simply removing a windowed average to the time
series [8,9,42]. This is not what we do here. Here, we substitute
the non-overlapping segmentation, as explain after Eq. (1), by a
moving window, replacing the two separate segmentations by a
moving window of each segment size s over the time series, as
proposed by Zhou and Leung [8]. This is particularly relevant when
examining short time series, where quickly the choice of larger lags
s separates the data into a small number of segments, resulting in
a poor statistics for the scaling at larger lags. A sketch of the meth-
ods can be seen in Fig. 1.
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Fig. 1. Multifractal Detrended Fluctuation Analysis (MFDFA) of an exemplary 288
data points time series X;. Panel a) shows, from top to bottom: the time series; a
first-order polynomial fit (m = 1); a third-order polynomial fit (m = 3); the EMD
detrending with the slowest Intrinsic Mode Function (EMD); a first-order polynomial
fit with moving windows with a step of 36 data points (m = 1, window = 36).
The last example with a moving window results in overlapping segments, given by
the window size. For all examples, the segments have a size of s =72 data points
and the lines indicate the fits, either via polynomials or EMD. Panel b) displays
the changing segment size s for a first-order polynomial fit (m = 1); From top to
bottom: the time series; segmentation with s =48; s =72; s =96; s = 144. Shaded
areas on both panels indicated the standard deviation of each segment.

2.1.3. Extended detrended fluctuation analysis

A new metric of similar nature as the fluctuation function Fg(s),
given in Eq. (3), has been proposed in Ref. [10] This measure su-
persedes the g-order powers and takes in solely the case of DFA
where g = 2. Instead of finding the average of the variances over
each choice of segments of size s, it considers the difference be-
tween the extrema of the fluctuation function at each segment s.
Take F(v,s) as given in Eq. (2) and extract the maximum and min-
imum of the variances over all windows v for a certain window
size s

AF(s) = mvax[F(v, s)] — mvin[F(v, s)]. (8)

This new metric AF(s) is denoted Extended Fluctuation Analysis.
In general, AF(s) can scale as a power law with a different expo-
nent

AF(s) ~sP. 9)

This metric takes into account aperiodicities in the data which, in
some sense, would be accounted for as a multifractal behaviour.
It can unravel a second scaling phenomenon due to local changes
of a time series’ period. A purely monofractal time series would
result in 8 = H.

3. Examples
To exemplify the usage of MFDFA, we first take two common

examples of stochastic processes, a fractional Ornstein-Uhlenbeck
process and general process that has a symmetric Lévy «-stable



L. Rydin Gorjéo, G. Hassan, J. Kurths et al.

Computer Physics Communications 273 (2022) 108254

)

101 4

100 4

10734

segment size s

Fig. 2. Multifractal Detrended Fluctuation Analysis (MFDFA) of three exemplary sample paths of fractional Ornstein-Uhlenbeck processes, given by Eq (10), with Hurst indices
of H=10.3,0.5, and 0.7. Panel a) displays the log-log plot of the segment size s versus the fluctuation function F;(s), given by Eq. (3), for ¢ = 2. Each line has a slope of
H 4+ 1, as expected. The inset shows Fq(s) for the case of H=10.3 and the power variations ¢ = —10, —2, 2, 10. These lines are all parallel indicating that the process is
monofractal, as expected. The dashed lines indicate the theoretical expected scaling, i.e., a slope of H+ 1=0.3 + 1, where the +1 account for the increase in regularity
due to the integration. The generalised Hurst coefficients h(q), which are simply H + 1, are obtained by extracting the slopes of the curves (in a log-log scale). Panel b)
shows the multifractal scaling exponent t(q), given by Eq. (4), which exhibits a linear dependency, i.e., h(q) = H, indicating again the process is monofractal. The processes
were numerically integrated with an integration step At =0.001 over N = 10* time units (N = 107 data points). The MFDFA algorithm ran in 1min 29s + 1.85s, for 100

segments s and 40 g-variation powers, with first-order polynomial fits.

distribution, with single parameter . We will show how to ex-
tract the fluctuation function Fg(s) and how to interpret the plots
conventionally extracted to perform the analysis. Subsequently we
test the algorithm with real-world data on sunspot time series, fol-
lowing Ref. [26], and later apply the algorithm to electricity price
time series from the European Power Exchange.

3.1. Numerically generated data

3.1.1. Fractional Ornstein-Uhlenbeck process

To study the scaling effects in continuous stochastic pro-
cesses, three exemplary fractional Ornstein-Uhlenbeck processes
are taken, defined as [69]

dX; = —0Xdt + odBf!, (10)

with a fractional Brownian motion Bff with the covariance func-
tion

1
E[BﬁBﬁ]:5(|t|2”+|t/|2”—|t—t/|2”). (11)

Eq. (10) fixed mean reverting strength 6 = 1.0 and volatility o =
0.5, with three distinct Hurst indices of H =0.3, 0.5, and 0.7. Note
here that the classic uncorrelated Brownian motion is given by
H = 0.5. A fractional Brownian motion has a self-similarity ex-
ponent given by the Hurst index H, thus the three choices of
fractional Ornstein-Uhlenbeck should result in a scaling of h(q) =
H + 1. The +1 is due to the integration, which smooths the fluc-
tuations and thus increases the regularity of the process. We will
now numerically integrate these processes and utilise the MFDFA
library to identify the Hurst coefficients and the presence of a
monofractal vs multifractal spectrum in the time series.

Let us exemplify how to numerically generate data and utilise
the MFDFA library Load the MFDFA library alongside with the frac-
tional Brownian noise generator fgn included in your python
console or editor.

Listing 1: Load the MFDFA library.

import
import

1 from
2 from

To numerically integrate an Ornstein-Uhlenbeck process, given by
Eq. (10), we utilise an Euler-Maruyama scheme with a stepsize

At = 0.001 for a total time of ¢t = 10 (thus we have 107 data
points). Here exemplified is the fractional Ornstein-Uhlenbeck pro-
cess with H=0.3.

Listing 2: Integrate Ornstein-Uhlenbeck process.

# integration time and time sampling
t_final = 10000

dt = 0.001

N = int(t_final/delta_t)

0w 30 U W

# The parameters theta and sigma

9 the 1

10 sig 0.5

11

12 # Initialise the array X

13 X = np.zeros(N)

14

15 # Generate the fractional Brownian noise
16 # with a Hurst coefficient of H = 0.3

17 dB = (t_final xx H) =« (N, H=0.3)

18

19 # Integrate the process

20 for i in range(1,N):

21 X[i] = X[i-1] - thexX[i-1]«dt + sig«dB[i]

To retrieve the MFDFA spectrum of the generated time series, de-
fine the set of g power variations and the lags s to examine, and
call the MFDFA function.

Listing 3: Applying MFDFA.
22 # 100 lag s points from 3 to 1000

23 lag = np.logspace(0.6,3,118).astype(int)
24 lag = np.unique(lag)

25

26 # q power variations, removing O power
27 q¢ = np.linspace(-10,10,41)

28 q = q[q!=0.0]

29

30 lag, fluct = (X, lag = lag, q = q)

When not declaring the values of the q powers, g =2 is assumed,
thus resulting in the conventional DFA. Likewise, not declaring
the order of the polynomial fitting, a first-order polynomial is as-
sumed, i.e., order = 1.

In Fig. 2 the MFDFA of the three processes can be seen. In panel
a) the fluctuation function F,(s), with g = 2, is shown for a poly-
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Fig. 3. Multifractal Detrended Fluctuation Analysis (MFDFA) of three exemplary symmetric Lévy «-stable distributed processes, with o =1.75, 1.25, and 0.75. In panel a) the
fluctuation function Fq(s) is shown as a function of the segment size s on double logarithmic scales for = 1.25 and different values of the power, ¢ =—-10, -5, -2, 2,5, 10.
For q > o the curves are not parallel, indicating the multifractal nature of the process. Panel b) displays the generalised Hurst exponent h(q), where a clear non-linear
dependency on q is observable. The inset displays the multifractal scaling exponent 7(q) displaying two clear distinct behaviours for ¢ < 0 and q > «. The solid lines indicate
the theoretical expected scaling for q < 0. The three processes were drawn from Lévy a-stable distributions, each with N = 107 data points. The MFDFA algorithm ran in

1min 24s + 2.17 s for 100 segments s, 40 q powers, and third-order polynomial fits.

nomial detrending of first order. This is the conventional DFA. The
slopes of each curve in the log-log plot reveal the Hurst indices
of each process, i.e., the fractional Ornstein-Uhlenbeck with Hurst
H = 0.3 scales with a slope of 1.3 =0.3 + 1, the other two with
H =0.5 and H = 0.7 have a slope of 1.5 and 1.7, respectively.
The inset in panel a) shows the fluctuation function Fg(s), with
q=—10, —2, 2, and 10, for the fractional Ornstein-Uhlenbeck pro-
cess with H = 0.3. Note that the slope of all power variations is the
same, i.e., the process is monofractal, as expected. The monofrac-
tality of the process is also evident in panel b). The multifractal
scaling exponent 7(q) is shown and is purely a linear function.
Likewise, in the inset, the generalised Hurst indices h(q) for the
three processes for a set of power variations q € [—10, 10] are
displayed. The linear shape of 7(q) and constant value of h(q)
in the inset indicates, as expected, that these three processes are
monofractal. Small deviations are seen for very negative q powers
(g £ 7), which arise due to the numeric (negative) powering op-
eration, which highly depends on the numerical precision of the
data.

3.1.2. Lévy-driven process

As a second example, take a collection of Lévy distributed ran-
dom variables [70]. That is, each X; is drawn independently from a
symmetric «-stable distribution, such that the probability density
function of X(t) vanishes as a power-law P (x) ~ |x|~©@~1 for large
|x| [70]. These processes exhibit heavy tails, ill-defined variances,
and multifractal scaling. In Fig. 3 three symmetric Lévy «-stable
distributed processes with o = 1.75,1.25, and 0.75 are studied
with MFDFA.

The multifractal behaviour can be identified directly in panel
a), where the fluctuation function Fg(s) for o = 1.25 is shown.
The lines of Fg(s) are not parallel for different positive g powers,
showing that the process is not mono-fractal. In fact, the process
is bi-fractal, having a separate behaviour for ¢ < 0 and q > «. For
positive power variations q > «, the generalised Hurst exponent
h(g) decays like 1/q. For values of q < 0, the generalised Hurst ex-
ponent h(q) = 1/«. This can be seen clearly in Fig. 3 b), where
the generalised Hurst exponent h(q) is displayed. In the inset, one
notices that the multifractal scaling exponent t(q) =0, for ¢ > «
(always zero for q > 2), once again showing that none of these
processes are distinguishable for positive power variations.

In general, without the aid of the multifractal spectra, which
we uncovered by studying MFDFA for a range of g values, it is
not possible to distinguish between Lévy distributed processes. The
particular choice of ¢ = 2, i.e., conventional DFA, obscures the frac-
tality of these processes, as they all show a similar scaling for

q =2, i.e, h(q=2)=1/2 for all Lévy motions, including (non-
fractional) Brownian motions (where oo =2).

3.2. Real-world data, empirical mode decomposition, and extended DFA

In order to evaluate the efficiency of the algorithm, we test here
two real-world data sets. Firstly, using MFDFA we will evaluate the
multifractality of sunspots time series, a recurring phenomenon
on the Sun’s photosphere which can be observed with a tele-
scope [26]. Secondly, we will analyse the German and Autrian spot
market intraday quarter-hourly electricity price extracted from the
European Power Electricity Exchange (EPEX SPOT) [71,72]. We il-
lustrate the application of two advanced features of the developed
python package, moving windows and the masking of missing
data points.

3.2.1. Sunspots

The sunspot numbers, also called Wolf numbers, are a rather
simple measure of solar activity by counting in a weighted man-
ner the number of groups of sunspots and single sunspots visible
from the Earth in the solar photosphere, ie. it is an integrated
measure over space [74,75]. Hence, the sunspot numbers form a
time series which has a mean period of about 11 years, but is far
from being simply periodic [62]. Solar activity is the result of com-
plex magneto-hydrodynamic processes in the Sun characterised by
a highly complex spatio-temporal dynamics. It is of special inter-
est to analyse the rather long series of sunspot numbers in order
to explore some relations to the underlying spatio-temporal sys-
tem.

The emergence of sunspots has a distinct statistics and a multi-
fractal spectrum which has been examined in Ref. [26]. This publi-
cation has become a reference for multifractal studies as the data
from the ILSO World Data Center, Royal Observatory of Belgium,
Brussels is freely available [73]. Here, we will focus on numeri-
cal efficiency and how to deal with missing or corrupt data. We
utilised another feature integrated in MFDFA that enables an ef-
ficient management of missing data points. In python’s numpy
arrays, missing or corrupt values in a time series can be handled
with masked data, which logs the missing data points and takes
these into account while performing averages, sums, and power
operations. When calculating averages or the variance of a seg-
ment, or when taking powers, the masked entries are not taken
into account. For the particular application with sunspot time se-
ries, which are recorded daily since 1818, there are 3247 missing
values, over a total of 74145 entries, i.e., roughly 4.4% of the data
is missing. To go around this, simply use
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Fig. 4. Multifractal Detrended Fluctuation Analysis (MFDFA) of sunspot time series from 1818 to 2020, by the ILSO World Data Center, Royal Observatory of Belgium,
Brussels [73]. Panel a) shows the number of sunspots registered from 1818 to 2020. Panel b) displays the fluctuation function Fg(s) as a function of the segment size s on a
double-logarithmic scale for g = —10, —5, —2, 2, 5, 10, with positive q values in orange and negative q values in green. Panel c) displays the generalised Hurst coefficient h(q)
over ¢, and the inset displays the multifractal scaling exponent t(q), given by Eq. (4), both highlighting the multifractal spectrum of the data (h(q) is not constant over q, T(q)
is not linear over q). Panel d) displays the singularity spectrum D(«) over the singularity strength @ which shows a large breadth of « spanning over [1.25, 2.25], indicating
the strong multifractality of the data. The MFDFA algorithm ran in 426 ms + 11.8 ms, for 70 segments s, 40 q powers, and first-order polynomial fits. The missing values
were neatly removed by utilising numpy’s masked arrays, which is integrated in MFDFA and allows the user to simply “mask” empty or corrupted data. (For interpretation

of the colours in the figure(s), the reader is referred to the web version of this article.)

Listing 4: MFDFA and missing data.

# Read data whichever way preferred
data = (’sunspot.csv’)

# Mask missing values. For this case -1
# is a missing entry in the record
data[data ==-1.] = np.nan
data = np.ma. (data)
# Run MFDFA (choose lag and q)

lag, fluct = (data, lag,

O W o J 0 U B WwN

iy

a)

The MFDFA will extract the variances as it is possible, taking into
account the missing values in the time series. Here we highlight
that MFDFA calculated 40 g-powers over 70 segments s in 426 ms
+ 11.8 ms.

In Fig. 4 we display the fluctuation function Fg4(s) for q =
—10,-5,-2,2,5,10, in panel b), for s € [70,1000] These curves
are not parallel, suggesting the time series is not monofractal. In
panel c) the generalised Hurst exponent h(gq) is shown as func-
tion of g, and similarly the multifractal scaling exponent 7(q) in
inset. The generalised Hurst exponent h(q) is not constant over
g and consequently the multifractal scaling exponent t(q) is not
linear, indicating clearly the time series in multifractal. In panel
d) we display the singularity spectrum D(c) over the singularity
strength «, as given by Eq. (7). The singularity strength o« spans
a wide range of values, over [1.25,2.25], indicating how strongly
multifractal the time series is. Here recall that a monofractal time
series, as the fractional Ornstein-Uhlenbeck previously shown in
Fig. 2, has a very narrow range of the singularity strength «, cen-
tred around H. For the case of sunspot time series we see a wide
range of «, indicating the various scales of the phenomenon. Note

as well that h(q) and « are always larger than 1, indicating that
this is a non-stationary process.

3.2.2. German and Austrian spot market intraday quarter-hourly
electricity price time series

We will examine now a 4-year long time series sampled at 15
minutes of the spot market intraday quarter-hourly German and
Austrian electricity price [71,72], from the 1st of January 2015 to
end of December 2019, traded at the European Power Exchange
(EPEX SPOT). To the extent of our knowledge no multifractal anal-
ysis of this particular data has been performed before, but other
multifractal studies of price time series exist [44]. In Wang et
al. [44], the authors examine different scaling properties for se-
lected periods of low, regular, and high electricity price for some
United States of America’s electricity markets in the year 2000 and
2001. Here we propose a different analysis, studying the data and
examining a short and long time scale of the data without sepa-
rating different activity periods.

We know that the 15 minute trading electricity market amounts
to a small volume of the overall exchange electricity sold, thus
this market serves only electricity producers which can either ex-
tract or inject power from the power-grid system in a very fast
manner (< 15 minutes) [76,77]. This will lead us to explore to sep-
arate scaling phenomena in the data: A short and a long timescale
of market activities. The expectation is that the very short-time
trading is highly volatile, given the necessity of the power grid in
injecting or extracting power is a fairly speedy manner. In the long
run, the quarter-hourly market is intrinsically linked to the larger
hourly and daily electricity market, which has far less variability,
as most of the power is sold in lengthier contracts, stabilising the
value of the electricity price. Thus one expects a narrower mul-
tifractality at large temporal scales. Multifractality is nevertheless
expected, as the system exhibits very large yet seldom negative
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Fig. 5. Multifractal Detrended Fluctuation Analysis (MFDFA) of the spot market intraday quarter-hourly German and Austrian electricity price time series from 2015 to 2019,
traded at the European Power Exchange (EPEX SPOT) [71,72]. Panel a) displays the price in EUR/kWh from 2015 to 2019. Panel b) displays the log-log plot of the segment size
s versus the fluctuation function Fy(s) for ¢ = —10, -5, -2, 2,5, 10. Orange and green markers indicate the segments larger than two days, where purple indicate segments
between 1 and 48 hours. There two scales are studied separately. Panel c) displays the generalised Hurst coefficient h(q) over g, and the inset displays the multifractal scaling
exponent 7(q), given by Eq. (4). Panel d) displays the singularity spectrum D(«) over the singularity strength «. The short-time scale (1-48 hours) displays large generalised
Hurst coefficient h(q) and a very large breadth of the singularity strength «, indicating precisely the high volatility of the market at short time scales. In comparison, the
longer time scales (> 48 hours) are much “milder”, and the variations of o € [0.67, 0.92], which indicates the process is both stationary, int the long run, and only moderately
volatile. The MFDFA algorithm ran in 2min 11s £ 4.43s for 50 segments s, 40 q powers, first-order polynomial fits, and the moving window.

prices, as well as an occasional four of five-fold increase of the
(positive) prices, again occurring seldom and lasting very short pe-
riods.

In order to obtain a better statistics of the shorter time scales,
we will employ MFDFA’s moving windows method previously dis-
cussed. The moving window method requires the input of the
number of steps used to “move” the windows. For the following
example, the window parameter is set to 1, thus each overlap-
ping window is displaced by solely 1 data point. This substantially
increases the computational time as each averaging operation is
repeated by the number of segments s — 1. For Fig. 5, the total
calculation lasted 2min 11s + 4.43s for the windowed mode,
compared with 764ms 4+ 9.32ms with the conventional non-
overlapping windows, for 50 s segments.

Listing 5: MFDFA and moving window.

# Read data whichever way preferred

1
2 data = (’price.csv’)

3

4 # Run MFDFA (choose lag and q)

5 lag, fluct = (data, lag, q,

6 extension = {’window’ 1)

In Fig. 5 we display the MFDFA analysis of the price time series,
as previously done for the sunpots in Fig. 4. We perform a simi-
lar analysis as above, thus we will condense the technical details
and focus on the interpretation. Previous studies point to a clear
separation of the scaling behaviour of price time series [43,78,79].
They separate two time scales for periods shorter and longer than
24 hours. These studies used pricing data from before 2004 for
the Nordic grid (Nordpool). In our analysis, we similarly separate
two scales, between 1 and 48 hours and between 48 hours and

10 days. These are indicated in purple (short timescale) and or-
ange and green (long time scale). We first observe that negative q
powers do not exist for the short time scale. This is not unusual,
many processes do not show a multifractal spectrum with negative
q values. Note that this involves taking negative powers of the av-
erage of the variances, which is not always well defined for short
s segments. This also served as a threshold to assess the change in
the fractal behaviour of the time series. For the large time scales
(> 48 hours) the negative powers are well defined, and we can
identify the full singularity spectrum D(«), as seen in panel d).
We note that the short time scale (< 48 hours) has a very strong
multifractality (in purple). The singularity strength «, which we
can only extract for positive q values, has a very large breadth,
especially with its equivalent for the large time scale (in orange).
This is well grounded on the previous arguments of having a very
volatile market at these short time scales, thus these results are
in line with what is known about this market: The high volatility
and occasional burst—into very large electricity prices or into neg-
ative prices—generate a wide range of the singularity strength. The
long-term stability, connected with the larger intraday and day-
ahead electricity markets, makes the process far less multifractal
at large temporal scales.

4. The MFDFA library

The Multifractal Detrended Fluctuation Analysis library MEDFA
in python presented is a standalone package based integrally
on python’s numpy [58]. It can be found in https://github.com/
LRydin/MFDFA. It harnesses numpy’s vectorised polynomial fit-
tings, making it possible to utilise all computational cores in a
computer’s processor(s). Additionally, EMD is included as an ex-
tra feature, which is integrated into MFDFA by simply installing
the python library PyEMD [80]. The conventional plots associated
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Fig. 6. Speed performance of MFDFA for time series with sizes varying between
[103,10%] data points of a fractional Ornstein-Uhlenbeck as given by Eq. (10). In-
cluded are first-order and third-order polynomial fits, first-order fits with extended
DFA, and first-order fits with a moving window with a step size of 5. A comparison
with the distributed MATLAB code is included [55]. Tests ran on python 3.8.2 and
MATLAB R2020b. MFDFA has a average speed-up compared with the MATLAB code,
with a five-fold speed increase for first-order polynomial fits (m=1) and a x27-fold
increase for third-order polynomials fits (m=3). Both codes were tested for 100 seg-
ments s and 40 g powers. All tasks were performed on a laptop on two computer
cores at 2.9 GHz each.

with multifractal analysis, i.e., Fq(s) vs. s, h(q) and 7(q) vs. q, and
D(x) vs. «, are available as well and require the plotting library
matplotlib [81].

The MFDFA library accepts numpy’s masked arrays, which is
particularly convenient when dealing with time series with miss-
ing data, as exemplified in Sec. 3.2 and Fig. 4.

The MFDFA library offers a considerable speed-up in compari-
son with the available MATLAB version. The library is fully devel-
oped to work with multi-threading, which shows an increase in
the performance, while handling time series larger than 10° data
points. In Fig. 6 we display the performance of the MFDFA library
for time series of fractional Ornstein-Uhlenbeck processes given
in Eq. (10) of increasing length. The MFDFA operation scales lin-
early with the number of points of the generated time series. The
MFDFA algorithm runs in under 1s for time series having up to 10°
datapoints, with a first-order polynomial fittings, 100 segments
s and 40 g powers, and outperforms the conventional library in
MATLAB by up to a factor of x10% in computational speed.

Estimation error and significance calculation have not been in-
cluded in the library, as the focus lied on computational speed and
the inclusion of several extra features, as discussed.

5. Conclusion

We have presented a numerically efficient python implemen-
tation of Multifractal Detrended Fluctuation Analysis called MFDFA.
MFDFA has found extensive application in the past two decades,
yet a reliable, all-encompassing open-source software in python
does not exist to this date. In this library we have harnessed the
most of python’s flexibility with handling matricial operations
and multi-threaded polynomial fittings. In this implementation we
have included some of the more common extensions of MFDFA, in-
cluding a simple empirical mode decomposition as a mechanism to
detrend the data, a moving window to handle very short time se-
ries, and the extended Detrended Fluctuation Analysis, which can
track a different scaling mechanism for non-stationary time series.
The MFDFA library can also handle missing values in the data with
the aid of numpy’s masked time series.

We have initially turned to two classic numerically generated
stochastic processes, fractional Ornstein-Uhlenbeck processes and
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Lévy-distributed motions, and uncovered their monofractal and
multifractal with MFDFA. Subsequently we have studied two real-
world time series, the sunspot count from 1818 to 2020 and the
quarter-hourly electricity price time series from 2015 to 2019. For
both we performed a multifractal analysis, unveiling their scaling
properties and the strength of their multifractality. We focused on
MFDFA’'s speed, the ability to handled missing data, and the in-
tegrated overlapping moving window. The analysis displayed here
covered only part of MFDFA’s integrated options, thus we leave the
user to explore the other implemented methods, as the extended
DFA and EMD detrending, as these are more specialised to partic-
ular research fields.

We hope with this contribution we open a door to fast MFDFA
calculations that can be performed on a local machine without an
extensive numerical effort and very long time runs, thus permit-
ting in the future to analyse larger time series.
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