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Introduction
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MC/DC: Monte Carlo / Dynamic Code

Kobyashi Problem: Image courtesy Ilham 

Variansyah
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•Dynamic neutron transport solver made 
for rapid methods exploration at high 
performance computing and exa-scale

•Target various hardware architectures

•Written in Python



MC/DC–TNT: Toy Neutronics Testbed

•Mono-energetic, slab-geometry, 

transient tallies, fission, event-

based, with surface tracking

•Architecture targets: Nvidia GPUs 

and x86 CPUs

•Validated with AZURV1 [1]
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L = 40cm, ν = 2.3, Δx = 0.49cm

Σcap = Σscat = Σfis = 1/3cm-1



MC/DC–TNT

• Modularity in mind

•10 accelerated functions

•Advance implemented on 
hardware target
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└── mcdc_tnt

├── numba_kernels

│ ├── cpu

|   ├── pyopenmp

│ └── cuda

├── pk_kernels

├── hcgl_kernels

└── pure_py_kernels



Methods of Acceleration
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Heterogeneous Targeting: Python Glue

•Python serves as glue 
code

•Native Python modules 
used produce and just-
in-time (JIT) schemes

•Can target multiple 
architecture types
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PyKokkos

•Python library that 
implements parts of Kokkos
Portability framework [2]

•Brand new and under active 
development

•Currently building out HIP 
functionality
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Numba + CUDA

•Converts Python code then 
implements the LLVM 
compiler [3]

• Industry support and active 
development 

•Often operates on pure Python 
code

•Experimental full implementation 
of OpenMP [4]
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HCGL and Mako Templating Engine

• Implemented on PyFR [5] at 
petascale [6]

•Code-generating libraries to 
compile templated code

•Our implementation plugs into 
PyCUDA and g++
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Results
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Runtime Test Problem

•Sub-critical slab with initial 
population of 1×108 particles

•Validated with MC/DC

•Follow particles till death
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L = 1cm, ν = 2, Δx = 0.01cm
Σcap = Σscat = Σfis = 1/3cm-1



Performance: CPU

Method of 

Implementation

Compile Time [s] Run Time [s]

Pure Python* N/A 52970

Numba (Native threading) 5.28 232.3

Numba PyOmp 5.66 382.3

PyKokkos 37.50 158.4

Integration test problem: L = 1cm, Δx = 0.01cm, Σf = Σc = Σs = 1/3 cm-1, ν = 2, 
vacuum boundary conditions on LHS and RHS w/ 1 × 108 Initial particles

16 threads on an i7-10875H CPU
*one thread

13



Performance: GPU Implementation

Method of Implementation Compile Time [s] Run Time [s]

Numba 6.25 179.36

PyKokkos 39.72 385.24

HCGL (PyCUDA) 2.45 160.53

1 single GPU (NVIDIA TeslaV100 at 1530MHz w/ 16GB) on 1 Lassen node
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Integration test problem: L = 1cm, Δx = 0.01cm, Σf = Σc = Σs = 1/3 cm-1, ν = 
2, vacuum boundary conditions on LHS and RHS w/ 1 × 108 Initial particles



Conclusions and Future 
Work
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Difficulty of Implementation

•Numba is simple

•Pykokkos is more difficult

•HCGL is very difficult but more performant
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Performance

•Ease of use inversely proportional to max performance

•Every method is very performant! (relative to Python) 

•Diminishing returns for more difficult implementations
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Future Work

•Complete transient tally implementation for all methods

•Test deployment on new hardware

• Implement testbed in C++

• Implement Numba on MC/DC to accelerate pure Python code and 
gain fine grain parallelism
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Event-Based MC Transport Flow Chart
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Other Acceleration Techniques in Python

•Cython (able to use C++ standard parallelism)

•PyCUDA and PyOpenCL (used but not directly)

•MPI4Py (Does not accelerate code, only runs more of it)

•Python CUDA

•Pure Numba / SciPy implementations (C under the hood)

•Build your own!
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Planed Explorations within MC/DC

•Fully transient Monte Carlo

• Intrusive UQ 

•Dynamic Quasi Monte Carlo

•Dynamic Weight Windows

•Population Control Methods

•Python Based Parallelization

•Asynchronous GPU scheduling

•Machine Learning MPI scheduling
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Future Development Path of MC/DC

1. Address Numba issues in MC/DC
Replace JITClass with Numba structured array

Runtime and memory profiling

2. Write event-based MC/DC (pure Python + MPI4Py)
Reuse and exploit existing MC/DC (history-based) modules 

with Python decorator

3. Integrate findings from MC/DC-TNT
PyKokkos, Numba, PyOMP, Mako templating
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AVURV Benchmark Descirption
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We can simulate fission by having c>1

NTE with initial source



Science Python & HPC: Bigger Picture

•Enables rapid methods development for complex systems [7]

•Off the shelf codes for science applications available [8]

•There is a trade off in performance in benchmarks [9]

•A rich environment or high productivity in science [10]

•Allows nuclear folks to better interface with other fields!

•Can alleviate the need for C++ testbeds as initial performance 

analysis of methods can be examined
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