
Hardware Code Generation Techniques for
Accelerating Python

Jackson P. Morgan, Todd S. Palmer, and Kyle E. Niemeyer

The Center for Exascale Monte Carlo Neutron Transport (CEMeNT)

Oregon State University

Annual Meeting of the American Nuclear Society, Anaheim, CA

June 16th, 2022

This work was supported by the Center for Exascale Monte-Carlo Neutron Transport (CEMeNT) a PSAAP-III project funded by the Department of Energy, grant number: DE-NA003967 1

Introduction

2

MC/DC: Monte Carlo / Dynamic Code

Kobyashi Problem: Image courtesy Ilham

Variansyah
3

•Dynamic neutron transport solver made
for rapid methods exploration at high
performance computing and exa-scale

•Target various hardware architectures

•Written in Python

MC/DC–TNT: Toy Neutronics Testbed

•Mono-energetic, slab-geometry,

transient tallies, fission, event-

based, with surface tracking

•Architecture targets: Nvidia GPUs

and x86 CPUs

•Validated with AZURV1 [1]

4
V

ac
u

u
m

V
ac

u
u

m

L = 40cm, ν = 2.3, Δx = 0.49cm

Σcap = Σscat = Σfis = 1/3cm-1

MC/DC–TNT

• Modularity in mind

•10 accelerated functions

•Advance implemented on
hardware target

5

.

└── mcdc_tnt

├── numba_kernels

│ ├── cpu

| ├── pyopenmp

│ └── cuda

├── pk_kernels

├── hcgl_kernels

└── pure_py_kernels

Methods of Acceleration

6

Heterogeneous Targeting: Python Glue

•Python serves as glue
code

•Native Python modules
used produce and just-
in-time (JIT) schemes

•Can target multiple
architecture types

7

PyKokkos

•Python library that
implements parts of Kokkos
Portability framework [2]

•Brand new and under active
development

•Currently building out HIP
functionality

8

Numba + CUDA

•Converts Python code then
implements the LLVM
compiler [3]

• Industry support and active
development

•Often operates on pure Python
code

•Experimental full implementation
of OpenMP [4]

9

HCGL and Mako Templating Engine

• Implemented on PyFR [5] at
petascale [6]

•Code-generating libraries to
compile templated code

•Our implementation plugs into
PyCUDA and g++

10

Results

11

Runtime Test Problem

•Sub-critical slab with initial
population of 1×108 particles

•Validated with MC/DC

•Follow particles till death

12
V

ac
u

u
m

V
ac

u
u

m

L = 1cm, ν = 2, Δx = 0.01cm
Σcap = Σscat = Σfis = 1/3cm-1

Performance: CPU

Method of

Implementation

Compile Time [s] Run Time [s]

Pure Python* N/A 52970

Numba (Native threading) 5.28 232.3

Numba PyOmp 5.66 382.3

PyKokkos 37.50 158.4

Integration test problem: L = 1cm, Δx = 0.01cm, Σf = Σc = Σs = 1/3 cm-1, ν = 2,
vacuum boundary conditions on LHS and RHS w/ 1 × 108 Initial particles

16 threads on an i7-10875H CPU
*one thread

13

Performance: GPU Implementation

Method of Implementation Compile Time [s] Run Time [s]

Numba 6.25 179.36

PyKokkos 39.72 385.24

HCGL (PyCUDA) 2.45 160.53

1 single GPU (NVIDIA TeslaV100 at 1530MHz w/ 16GB) on 1 Lassen node

14

Integration test problem: L = 1cm, Δx = 0.01cm, Σf = Σc = Σs = 1/3 cm-1, ν =
2, vacuum boundary conditions on LHS and RHS w/ 1 × 108 Initial particles

Conclusions and Future
Work

15

Difficulty of Implementation

•Numba is simple

•Pykokkos is more difficult

•HCGL is very difficult but more performant

16

Performance

•Ease of use inversely proportional to max performance

•Every method is very performant! (relative to Python)

•Diminishing returns for more difficult implementations

17

Future Work

•Complete transient tally implementation for all methods

•Test deployment on new hardware

• Implement testbed in C++

• Implement Numba on MC/DC to accelerate pure Python code and
gain fine grain parallelism

18

Acknowledgments

Special thanks to:

• Ilham Variansyah

•Aaron Reynolds

•CEMeNT Team and Associated Folks!

19

Citations

[1] Ganapol B.D., Baker, R. S., Dahl, J. A., & Alcouffe, R. E. (2001). Homogeneous Infinite Media Time-
Dependent Analytical Benchmarks. International Meeting on Mathematical Methods for Nuclear
Applications, 836(December), 1–4.

[2] Awar, N. Al, Zhu, S., Biros, G., & Gligoric, M. (2021). A performance portability framework for python.
Proceedings of the International Conference on Supercomputing, 467–478.
https://doi.org/10.1145/3447818.3460376

[3] Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A LLVM-Based Python JIT Compiler. Proceedings
of the Second Workshop on the LLVM Compiler Infrastructure in HPC.
https://doi.org/10.1145/2833157.2833162

[4] T. G. Mattson, T. A. Anderson, G. Georgakoudis, K. Hinsen, and A. Dubey, “PyOMP: Multithreaded
Parallel Programming in Python,” Comput. Sci. Eng., vol. 23, no. 6, pp. 77–80, Nov. 2021, doi:
10.1109/MCSE.2021.3128806.

[5] Witherden, F. D., Farrington, A. M., & Vincent, P. E. (2014). PyFR: An open source framework for
solving advection-diffusion type problems on streaming architectures using the flux reconstruction
approach. Computer Physics Communications, 185(11), 3028–3040.
https://doi.org/10.1016/j.cpc.2014.07.011

[6] Witherden, F. (2021). Python at petascale with PyFR or: how I learned to stop worrying and love the
snake. Computing in Science & Engineering, 9615(c), 1–1. https://doi.org/10.1109/mcse.2021.3080126

20

https://doi.org/10.1145/3447818.3460376
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1016/j.cpc.2014.07.011
https://doi.org/10.1109/mcse.2021.3080126

Backmatter Slides

21

Event-Based MC Transport Flow Chart

22

Advance till

collision (surface

tracking)

Still in space and

time?
Sample event

Event

Type

Scatter Add fissions Capture

CleanupPopulation control

Other Acceleration Techniques in Python

•Cython (able to use C++ standard parallelism)

•PyCUDA and PyOpenCL (used but not directly)

•MPI4Py (Does not accelerate code, only runs more of it)

•Python CUDA

•Pure Numba / SciPy implementations (C under the hood)

•Build your own!

23

Planed Explorations within MC/DC

•Fully transient Monte Carlo

• Intrusive UQ

•Dynamic Quasi Monte Carlo

•Dynamic Weight Windows

•Population Control Methods

•Python Based Parallelization

•Asynchronous GPU scheduling

•Machine Learning MPI scheduling

24

Future Development Path of MC/DC

1. Address Numba issues in MC/DC
Replace JITClass with Numba structured array

Runtime and memory profiling

2. Write event-based MC/DC (pure Python + MPI4Py)
Reuse and exploit existing MC/DC (history-based) modules

with Python decorator

3. Integrate findings from MC/DC-TNT
PyKokkos, Numba, PyOMP, Mako templating

25

AVURV Benchmark Descirption

26

We can simulate fission by having c>1

NTE with initial source

Science Python & HPC: Bigger Picture

•Enables rapid methods development for complex systems [7]

•Off the shelf codes for science applications available [8]

•There is a trade off in performance in benchmarks [9]

•A rich environment or high productivity in science [10]

•Allows nuclear folks to better interface with other fields!

•Can alleviate the need for C++ testbeds as initial performance

analysis of methods can be examined

27

[7] Barba, L. A., Klockner, A., Ramachandran, P., & Thomas, R. (2021). Scientific Computing With Python on High-Performance Heterogeneous Systems. Computing in
Science & Engineering. https://doi.org/10.1109/MCSE.2021.3088549
[8] Bogdan Opanchuk, Daniel Ringwalt, Lev E. Givon, & SyamGadde. (2021). Reikna(0.7.4). http://reikna.publicfields.net/en/latest/
[9] Oden, L. (2020). Lessons learned from comparing C-CUDA and Python-Numbafor GPU-Computing. Proceedings -2020 28th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing, PDP 2020, 216–223. https://doi.org/10.1109/PDP50117.2020.00041
[10] L. A. Barba, "The Python/Jupyter Ecosystem: Today’s Problem-Solving Environment for Computational Science," in Computing in Science & Engineering, vol. 23, no.
3, pp. 5-9, 1 May-June 2021, doi: 10.1109/MCSE.2021.3074693.

http://reikna.publicfields.net/en/latest/
https://doi.org/10.1109/PDP50117.2020.00041

