
Explorations of Python-Based Automatic Hardware Code Generation for Neutron Transport Applications

Jackson P. Morgan,1,2,† Todd Palmer,2,3 and Kyle E. Niemeyer1,2

1School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331
2Center for Exascale Monte Carlo Neutron Transport (CEMeNT)

3School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR 97331
†Corresponding Author, morgjack@oregonstate.edu

INTRODUCTION

Monte Carlo / Dynamic Code (MC/DC) is a soon-to-be
released Python-based neutron transport solver, developed as
part of CEMeNT (Center for Exascale Monte Carlo Neutron
Transport). It is a research code used to investigate novel
methods for the development of dynamic simulations. As
Monte Carlo (MC) neutron transport applications are often
highly computationally taxing, a Python-based technique to
rapidly gain parallelism for both GPU and CPU hardware is
required so methods implemented in MC/DC can be tested at
the high performance computing (HPC) scale.

Our objective is to find a technique that presents the best
software engineering solution to enable rapid prototyping for
methods research in MC/DC at the HPC scale using both CPUs
and GPUs. We are not looking to alter current development
dynamics for production HPC codes or suggest that these
techniques will enable Python-based development—or should
be pursued—for all production codes. Instead, we seek to
examine production techniques for rapidly developing novel
methods at large scales with the ability to take advantage of
accelerator hardware.

We implemented core components of MC/DC in a testbed
to allow for even faster exploration of parallelism in a Python
framework. This testbed, MC/DC-Toy Neutronics Testbed
(MC/DC-TNT), is a transient, event-based, mono-energetic
solver that enables straightforward parallelization of its com-
pute functions. While the performance of large-scale MC
codes is generally memory-bound rather than compute-bound
[1], our initial efforts examine techniques related to the latter
to gain a foothold in Python-based HPC.

METHODS OF PARALLELIZATION

We examine three methods of parallelization within a
Python framework. All three operate by using Python as “glue”
language (a language which is used to run other compiled
kernels) with a just-in-time (JIT) compilation scheme to pro-
duce and run compute kernels. All three are also coupled with
automatic code translation protocols, to aid in the rapid devel-
opment of these kernels, either with the source being written
in full Python or some Python-esq form.

PyKokkos

PyKokkos [2] is a Python library implementation for the
C++ Kokkos HPC portability model developed by Sandia Na-
tional Laboratories [3]. PyKokkos is under active development
and does not implement all the functionality of Kokkos, nor
is it as mature as some of the other methods presented here.

PyKokkos currently only implements CUDA and OpenMP
back-ends.

More than any other method we consider, PyKokkos has
the ability to abstract away the production of compute ker-
nels from their target hardware. It even has the ability to
abstract data structures from the user, appearing almost as
type-annotated NumPy [4] arrays. While the programming
model is entirely Python-based (the user only programs in
Python) it can be non-intuitive, as it is based on a paradigm
specifically designed for abstraction.

Numba + CUDA

Numba [5] is a translator and compiler for Python that
implements the LLVM high performance compiler library, and
promises “C-like speeds” for functions that implement it. In
simple cases, nothing more than a compiler flag is required to
produce a C kernel for a given function that is automatically
bound and run by Python. This can even apply to simple
functions to be parallelized on a CPU, where parallelization
can be implemented with one flag option above a function.
However, when functions become more complex, the use of
more Numba commands in the Python code is required. It
directly supports Nvidia GPUs and seems to be the method of
choice for interfacing with the CUDA API from Python.

Recently a sub-module to Numba has been developed
called pyomp [6] that seeks to allow Numba kernels to take
advantage of the OpenMP API for CPU threading. We explore
this sub-module and Numba’s native “threading” techniques
separately from one another as they require slightly different
implementations.

While Numba does have some abstractions for specific
GPU operations, most of these cannot be leveraged to offload
the computational burden in our simulations. In our use case
the user will effectively have to write CUDA C kernels within
Python. Thus, the user will have to be aware of the hardware
architecture, hampering rapid prototyping. Also, Oden found
that Numba does include a significant computational overhead,
reaching 50–85% of the performance of pure CUDA C ver-
sions of compute-intensive benchmarks [7]. In spite of this, we
include it in this comparison due to its increasing popularity,
ease of use for CPU implementations, and industry support.

Mako Templating Engine

This method has been implemented by the PyFR compu-
tational fluid dynamics solver [8] and uses the Mako template
engine [9] to abstract and simplify the scripting of compute
kernels.

At run time, this approach pushes static kernel templates



through the template engine to reform the kernel into a req-
uisite secondary language for a given hardware API. Then,
code is compiled to machine code and bound to Python using
a hardware code-generating library.

This type of abstraction, while somewhat convoluted, has
enabled PyFR to reach the petascale while being able to run on
CPUs and AMD/Nivdia/Intel GPUs [10]. The developers of
PyFR have reported less than 1% of computational overhead
due to the Python interpreter in this method [11].

We are confident this method will work in parallelizing
MC/DC-TNT at HPC scale; however, the initial development
needed appears to be significant. While the use of templates
does simplify the scripting of compute kernels, architecture-
specific knowledge is still required, again, hampering rapid
prototyping.

PRELIMINARY FINDINGS

Work is ongoing to implement all methods. Currently
Numba (threading and PyOmp) and Pykokkos (OpenMP) are
implemented on MC/DC-TNT. Table I shows run time data
for the Advance kernel (the most compute-intensive function,
which implements a surface tracking algorithm), as well as
a full integration test for a homogeneous slab problem with
vacuum bounds on either side (L=1 cm, ∆x = 0.01 cm, Σa =
Σ f = Σs = 0.333 cm−1, ).

All techniques demonstrate the viability of these paral-
lelization methods with a significant decreases in run time
between pure Python and any parallelization technique. As
some kernels must be implemented in serial, an integration
test for a slab problem shows all of the methods’ paralleliza-
tion abilities as well as the serial speed benefits of JITed code
when compared to a pure Python implementation. PyKokkos
does seem to be more performant than both Numba imple-
mentations, with Numba PyOmp being less performant than
Numba threading. PyOmp has not yet been incorporated into
the main distribution of Numba and as such does not receive
the continual updates that Numba threading does. We expect
that, when it is, we will see this gap between performance of
the two implementations narrow.

JIT compilation methods require an initial compilation
step when they are being run for the first time on a given
system with a given code (any alteration to kernel source code
will require this to be redone). Often these compiled binaries
are cached in order to prevent this extra runtime hit when
ran subsequently. However, depending on problem size, the
compilation time can be a significant percentage of overall
runtime and should be considered. Table II shows overall
compilation time when “warming up kernels” (making an
initial call with dummy values) before the simulation starts,
per method and hardware target. PyKokkos OpenMP takes
7 times longer than the Numba implementations to translate
and compile the kernels though all methods finish a matter of
seconds.

We also consider the difficulty of these implementations
when coming from a pure Python code. The Numba CPU
implementation was easy for simpler kernels, functioning as
advertised with a single compiler flag. More complex kernels,
especially ones designed to be run in parallel, had to be re-

TABLE I. Run time of Advance kernel and integration test in
seconds, using 1 × 108 particles and 16 threads (if method is
parallelized); kernel compilation time not included.

Method Advance Integration

Pure Python (CPU) 5.140 × 104 5.297 × 104

Numba (Threading) 1.887 × 102 2.323 × 102

Numba (PyOmp) 2.876 × 102 3.825 × 102

PyKokkos (OpenMP) 1.480 × 102 1.548 × 102

TABLE II. First run translation and compilation wall-clock
times for all kernels, in seconds.

Method Compilation time

Numba (Threading) 4.99
Numba (PyOmp) 5.66
PyKokkos (OpenMP) 37.50
PyKokkos (CUDA) 39.72

formed and use in kernel numba commands to work. Also,
we found that when Numba wasn’t able to produce kernels
for any reason it’s error messages directing us to the issues
where either cryptic or nonexistent. We found working within
Pykokkos to be more difficult than Numba for the CPU imple-
mentation. Fueled again by cryptic runtime errors, frustrating
type casting issues, and a lack of documentation both for the
build process as well as module commands. We expect as
PyKokkos matures these issues will be alleviated. It should
also be stated the allure of PyKokkos is not only a slight
increase of performance on CPU implementations when com-
pared to Numba but also in its portability, with promises of
CUDA GPU implementations with changing a single variable.
Early implementations of PyKokkos CUDA on MC/DC-TNT
does seem to confirm this.

FUTURE WORK

Significant work remains before we can select a method
to implement in MC/DC. Our immediate goals are to complete
the PyKokkos CUDA and Numba CUDA implementations be-
fore finally moving onto the Mako templating engine method.
We will also implement the AZURV1 [12] transient bench-
mark to further validate MC/DC-TNT as well as examine
performance under different nuclear material data regimes.

ACKNOWLEDGMENTS

The authors acknowledge useful discussions with Dr. Il-
ham Variansyah.

This work was supported by the Center for Exascale
Monte-Carlo Neutron Transport (CEMeNT) a PSAAP-III
project funded by the Department of Energy, grant number:
DE-NA003967.

REFERENCES

1. J. R. TRAMM and A. R. SIEGEL, “Memory bottlenecks
and memory contention in multi-core Monte Carlo trans-



port codes,” Annals of Nuclear Energy, 82, 195–202
(2015).

2. N. A. AWAR, S. ZHU, G. BIROS, and M. GLIGORIC,
“A performance portability framework for python,” in
“Proceedings of the International Conference on Super-
computing,” Association for Computing Machinery (6
2021), pp. 467–478.

3. H. CARTER EDWARDS, C. R. TROTT, and D. SUN-
DERLAND, “Kokkos: Enabling manycore performance
portability through polymorphic memory access patterns,”
Journal of Parallel and Distributed Computing, 74, 12,
3202–3216 (2014).

4. C. R. HARRIS, K. J. MILLMAN, S. J. VAN DER
WALT, R. GOMMERS, P. VIRTANEN, D. COURNA-
PEAU, E. WIESER, J. TAYLOR, S. BERG, N. J. SMITH,
R. KERN, M. PICUS, S. HOYER, M. H. VAN KERK-
WIJK, M. BRETT, A. HALDANE, J. F. DEL RÍO,
M. WIEBE, P. PETERSON, P. GÉRARD-MARCHANT,
K. SHEPPARD, T. REDDY, W. WECKESSER, H. AB-
BASI, C. GOHLKE, and T. E. OLIPHANT, “Array pro-
gramming with NumPy,” Nature, 585, 7825, 357–362 (9
2020).

5. S. K. LAM, A. PITROU, and S. SEIBERT, “Numba: A
LLVM-Based Python JIT Compiler,” in “Proceedings of
the Second Workshop on the LLVM Compiler Infrastruc-
ture in HPC,” Association for Computing Machinery, New
York, NY, USA (2015), LLVM ’15.

6. T. G. MATTSON, T. A. ANDERSON, G. GEORGAK-
OUDIS, K. HINSEN, and A. DUBEY, “PyOMP: Multi-
threaded Parallel Programming in Python,” Computing in
Science and Engineering, 23, 6, 77–80 (11 2021).

7. L. ODEN, “Lessons learned from comparing C-CUDA
and Python-Numba for GPU-Computing,” in “Proceed-
ings - 2020 28th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing, PDP
2020,” (2020), pp. 216–223.

8. F. D. WITHERDEN, A. M. FARRINGTON, and P. E.
VINCENT, “PyFR: An open source framework for solv-
ing advection-diffusion type problems on streaming archi-
tectures using the flux reconstruction approach,” Com-
puter Physics Communications, 185, 11, 3028–3040
(2014).

9. M. BAYER, “Mako: Templates for python,” (2013).
10. F. D. WITHERDEN, “Python at petascale with PyFR or:

how I learned to stop worrying and love the snake,” Com-
puting in Science & Engineering, 9615, c, 1–1 (2021).

11. F. D. WITHERDEN, M. KLEMM, and P. VINCENT,
“PyFR: Heterogeneous Computing on Mixed Unstructured
Grids with Python,” in “EuroSciPy,” Cambridge (2015).

12. B. GANAPOL, R. BAKER, J. DAHL, and R. E.
ALCOUFFE, “Homogeneous Infinite Media Time-
Dependent Analytical Benchmarks,” (2001).


