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Dark matter, 1f exists, accounts for five times as much as ordinary baryonic
matter. Therefore, dark matter flow might possess the widest presence in
our universe. The other form of flow, hydrodynamic turbulence in air and
water, 1s without doubt the most familiar flow 1n our daily life. During the
pandemic, we have found time to think about and put together a systematic
comparison for the connections and differences between two types of flow,
both of which are typical non-equilibrium systems.

The goal of this presentation is to leverage this comparison for a better
understanding of the nature of dark matter and its flow behavior on all
scales. Science should be open. All comments are welcome.

Thank you!
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Data repository and relevant publications

Structural (halo-based) approach:

0.
1.

Data https://dx.doi.org/10.5281/zenodo0.6541230

Inverse mass cascade in dark matter flow and effects on halo mass
functions https://doi.org/10.48550/arXiv.2109.09985

Inverse mass cascade in dark matter flow and effects on halo deformation,
energy, size, and density profiles https://doi.org/10.48550/arXiv.2109.12244

Inverse energy cascade in self-gravitating collisionless dark matter flow and
effects of halo shape https://doi.org/10.48550/arXiv.2110.13885

The mean flow, velocity dispersion, energy transfer and evolution of rotating
and growing dark matter halos https://doi.org/10.48550/arXiv.2201.12665

Two-body collapse model for gravitational collapse of dark matter and
generalized stable clustering hypothesis for pairwise velocity
https://doi.org/10.48550/arXiv.2110.05784

Evolution of energy, momentum, and spin parameter in dark matter flow and
integral constants of motion https://doi.org/10.48550/arXiv.2202.04054

The maximum entropy distributions of velocity, speed, and energy from
statistical mechanics of dark matter flow
https://doi.org/10.48550/arXiv.2110.03126

Halo mass functions from maximum entropy distributions in collisionless
dark matter flow https://doi.org/10.48550/arXiv.2110.09676

Statistics (correlation-based) approach:

The statistical theory of dark matter flow for velocity, density,
and potential fields
https://doi.org/10.48550/arXiv.2202.00910

The statistical theory of dark matter flow and high order
kinematic and dynamic relations for velocity and density
correlations https://doi.org/10.48550/arXiv.2202.02991

The scale and redshift variation of density and velocity
distributions in dark matter flow and two-thirds law for
pairwise velocity https://doi.org/10.48550/arXiv.2202.06515

Dark matter particle mass and properties from two-thirds law
and energy cascade in dark matter flow
https://doi.org/10.48550/arXiv.2202.07240

The origin of MOND acceleration and deep-MOND from
acceleration fluctuation and energy cascade in dark matter
flow https://doi.org/10.48550/arXiv.2203.05606

The baryonic-to-halo mass relation from mass and energy
cascade in dark matter flow
https://doi.org/10.48550/arXiv.2203.06899
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Applications of dark
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The baryonic-to-halo mass
relation from mass and energy
cascade in dark matter flow

Xu Z., 2022, arXiv:2203.06899v1 [astro-ph.GA]
https://doi.org/10.48550/arXiv.2203.06899
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The existence of dark matter (DM) is supported by
numerous astronomical observations:

» Flat rotation curves of spiral galaxies

= Motion of galaxies in galaxy clusters

= Gravitational lensing, Bullet clusters, CMB ......

Though the nature of dark matter is still unclear, dark
matter is believed to be cold (non-relativistic),
collisionless, dissipationless, non-baryonic, barely
iInteracting with baryons except through gravity, and
sufficiently smooth with a fluid-like behavior.

Total galaxy baryonic mass = stellar mass + cold gas.

Stellar-to-halo mass relation (SHMR)
* halo abundance matching approach

Baryonic-to-halo mass relation (BHMR)

= Baryonic Tully and Fisher relation (BTFR):
vjp = Gmbao 4m observed baryonic mass

= Halo mass m;, can be related to the halo virial
radius r,Xarough constant density ratio A,

Gy~ () A7 (a)

= The BHMR (m, and m,) can be obtained only
if the relation between v;and r, is known.

* The BHMR from the mass and energy
cascade of dark matter flow?

* What is the average mass fraction of
baryons in all halos?

= What is the fraction of total baryons
residing in all galaxies?

275
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=" There exist an inertial range with a scale-

independent rate of energy cascade (€ does not
depend on eddy size /) for eddy size n</<L.nis a
dissipative scale determined by viscosity v and €.

== |n this range, inertial force is dominant over

i viscous force. For eddies with a characteristic
velocity u and size |, the lifetime (turnaround time)
of eddy is l/u. The rate € can be computed as the
Kinetic energy passed per eddy lifetime.

2
u

D RUS

/

turnaround time acceleration

log E(k)

Big whirls have little whirls, That feed on their velocity;
And little whirls have lesser whirls, And so on to viscosity.

T large scale
\ Energy
i

Integral scale contained
scale

inertial
subrange

dissipation
/7] scale
/

/ €: dissipated

y by viscosity v
Length scale : in%o heat. ’
| i =8\
k; ki" kﬁ: ornnp=| —
log & Wavenumber £
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Little halos have big halos, That feed on their mass;
Collisionless nature and long-range interaction. And big halos have greater halos, And so on to growth.

Long-range gravity requires a broad spectrum of £ Injection at
halos to be formed to maximize system entropy. No m=u / smallest scale
halo structure for short-range forces.

myNy,

q Propagation
. T range
A continuous cascade of mass/energy from smaller E@ é;))@
to larger mass scales with a scale-independent rate <
of mass transfer € ,and €, in a certain range of 3 /_v Deposition
mass scales (propagation range). S range
Q
-
The mass/energy cascade is an intermediate %
statistically steady state for non-equilibrium systems 5 N~ o
- o e \ ¢ Dissipated
to continuously maximize system entropy. ©
I to grow
: e M\ halos.
The maximum entropy distribution of dark matter \

flow (the X distribution).

Halo mass m,
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= Collisionless, no dissipation range in SG-CFD.
* The smallest length scale of inertial range is not limited by viscosity.

= This enable us to extend the scale-independent ¢, down to the smallest scale, where quantum
effects become important

= Dark matter flow exhibits scale-dependent flow behaviors for peculiar velocity, i.e. a constant
divergence flow on small scales and an irrotational flow on large scales.

= The constant divergence flow shares the same even order kinematic relations with those of
incompressible (divergence free) flow. This hints to similar scaling laws holds for dark matter.

o~ NSNS N NN

e scale scale n scale L

AN NN N,

o Quantum (i not present for Cascade (propagation range €,,€,) m, my* deposition
scale dark matter flow) range

N
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10° 1 ——— ————————
: . _ | ==K (2
Power-law time evolution for energy interms [ |___ p @
. ¥y
of rate of energy cascade ¢,;: | B, @K (2P, @
Power-law for 105 £ :
K,=-¢&1 Peculiar o 2302
kinetic energy g |
S
7 Power-law for
P = gé‘ut potential 104 b :
energy : ‘
K 3u, m’
g, =——"L=-="r-46x10"—
t 2 1, S
1[]3 i i M R i ; M i i
1[]_2 1[]_1 a '1[]0 101

" Also see detail analysis for inverse kinetic

enerqy cascade. The time variation of specific kinetic and potential energies

from N-body simulation. 279
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The largest mass scale (critical halo mass)

The smallest mass scale (dark matter particle mass)

= [\t the smallest scale, three fundamental constants:

Gravitational
constant

Rate of
energy gu — _4.6X 10_7 mz/S3

cascade

Planck h=1.05x10"" kg -m* /s
constant

G=6.67x10"m’/(kg-s’)

Simple dimensional analysis predicts:

Mass scale: :
my oc(—&,1° [G*)? ~8.7x10"" kg = 0.5GeV

1

Length scale: [, o (—Gh/e, )3

|
Time scale: £, € (Gzhz/gf )5

Three fundamental constants:

Gravitational
constant

Rate of
energy g =—4.6x107 m*/s’
cascade

Velocity
dispersion or U, EM(CZ =1)=35461km/s

Hubble constant H

G=6.67x10"m’/(kg-s*)

Simple dimensional analysis predicts:

Mass scale: m, oc —ug/(Ggu )=~ 9.14x10"° M

Length scale: [, oc —ug/gu ~3.14Mpc

Time scale: t, cu; /e, ~8.7x10°yr
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Baryonic Tully-Fisher

Halo mass and halo

= cascade

relation (BTFR): size relation:
4 4
v, =Gma, m, = gﬂ'rh ‘A pa”
Rate of 12 Small halos <m;:

eneray &, =—p,

q? Baryonic mass in
equilibrium with DM,
i.e. same kinetic energy u?

g

Baryonic Tully-Fisher

Halo mass and halo

relation (BTFR): size relation:
4 4
v, =Gma, m, —gmfh A _poa
VJZF Large halos >m;:

‘ Turnaround time

Baryonic mass and DM

are two miscible

rate of cascade.

C
\/ O‘f

4

v, =

2

sz

u’
N
Vy

f HMZ

9

2) 1/9 23 P13
(— (Gm,H)" ua™”
A

m, )1/3 e

a’ oc (mh )1/3 a

phases sharing same

o (m, )1/9 g
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Critical B i i Il halos:
I otation v, = ua(q p)/2 \/ ,Bf /af The baryonlc_ 1r/r;ass in ma alos . vy
g Speed: o m, :(M cl) (mh’ Mcl(a):( ) (Ba’) (7j (ng
= 3 '
Critical _ 4 A, 'Bf (3¢-p)/2 The baryonic mass in large halos:
— circular cc 9 2 a ua 5/9 9) _% 12 2 % uS
b= Speed: \ f mb :(Mc2) (mh) Mcz(a)=(§] (afap) 5 [A ] [Gg ]
= Critical 4 Ga-p)2 e
— halo Th :§a<3q o H lﬂf\/ﬁf/af
size: The baryonic-halo-mass ratio in critical halos:
3\¥2 5/24 2
= o _ 16 ,Bf A, a%(3q—p) y _m,, Mc2 B 81(2/AC) (5¢+p)/2
ass: he Q1 af 2 (Z) = m - M - 1/2 5/2
= ' Mass he cl 16(af) ('Bf)
Critical 2 (B i scale m,
® baryonic 7, = ( fj ( jcf(”) A(z=0)~0.076
. Al a
mass: c \¥f
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Table 2. Parameters for deriving baryonic-to-halo mass ratio

A 200 p  7/4 M, 3.01x10%a™"*M_

£ 4.6x107 m* /s> q ~1/2 M, 129x10°a**°M_
H, 1.62x107%1/s a, 05 m,  133x10%aM_

” 354.61km/s B, 0.16 m,  1.01x10"a "M,

a,(z=0) 1.2x107°m/s m. 4 A(z) 0.0761a*"

??D 076 QD 0556 m;; 4 X 1013 HE}FIMM{H [27]
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| o Halos with m, <m, from SPARC data -
o Halos with m, >m, from SPARC data "
-:“-':;: "{,-n"‘ - .
m: ) E -
= O
=108 | O o : .
> : a i Z. 1/3
= il _: = vCIIII
ﬁ g~ = ]
(7] " =
S b 2 102 '_
? 1 7. 2,73 E
= € =4.6x10 'm-/s =
S w7k . 1 ©
z a
% mhc E
. _
From Eq. (21)
= = ‘From Eq. (23)
_,m_a P R A A T M T PR R R "|[:|JI 1 : : : = Lg ' = |3 — ""4
1010 10M 1012 1013 1014 10 10, 1 10

: 0 .
Halo massm, (M_ ) Halo circular velocity Vo (km/s)
h S

Halos have different rate of energy cascade with an average
around g, (spatial intermittence in dark matter flow?) 284
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' | | © From SPARC data
. _ From Eq. (21)
) - _ = = :
;: 1) e , z | From Eq. (23) i
T . \ g;
> 1/3 =
= r E
=
2 102} 1 310°f ;
F :}
= 3
= =
~ oz
B =
= 0 FromSPARCdata|| =
. FromEq.(21)
h - = FromEq. (23)
,1[]1 i P I B | i PR R N | : T 1 -1.[]1 i L a i 1 P |
10' 102 103 10% 10° 10° Fral 1017 Y 10" 10
Halo size I (kpc) alo mass m, ( mm)
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Baryonic mass

~1/3 4/3
In small halos: m, = (Mcl) (mh)

Baryonic mass
in large halos:

Model incorporate two limits:

) )

= Dash line: the stellar-to-halo mass ratio obtained
from halo abundance matching approach (requirt
to match the stellar mass function)

m, m,

m,, (z)

m,

m,, (z)

2

L b l ass
Baryonic massm_ (M _ )

=2%A(z) [

m,

WA - The scaling 4/9 law for both SHMR and BHMR

SPARC data and model

1013 , . ; —
4/9
1{112;—
o __1_- o PR -
10" O S0 T o
.':-!;' %ﬂ“-
l‘,; > '=:r_‘“ I:i.:l.-'
10 ; ”~ ?
':::' '!..1' ﬁ:‘—;’ I::I
S O
10% & - 5O 4
D
E-g.i" /
/7
100 2
L0
ol / ©  From SPARC data
4 == =Stellar-to-halo mass at =0 [5]
— Baryonic-to-halo mass at z=0 (Eq. (37))
-1{]1'[:' -1{]11 -1{]12 -1{]13 -1{]14
Halo mass m, (Msuﬂ)
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Models for baryonic-to-halo mass ratio: W T T T
_ __ L [ —z=0.0
| - 22| | e 2=03
m — m : m ’
—b =Dm A(Z) h + h " —z=1.0
m, m,, (z) m,, (z) ~ —_—2=20
L . ol ITIh"”E
m is a parameter to adjust the transition; _ | /
=
E.D

= There exist a maximum BHMR ~0.076 at

o 102 [
critical halo mass m,.=1.33x10"2 M,
= The critical halo mass decreases with time
= The maximum BHMR increases with time
_1[]_3 — i | M i . i PR
1@ 1™ 1072 1012 104

Halo mass m_(M_ ) 087
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Overall cosmic baryonic-to-DM mass ratio (including P R e S
both halos and out-of-halo) is ~18.8% in ACDM model: : Fraction of ]
: M baryonic mass in
- - | V2 halos is ~7.6% |
Baryonic-to-DM mass Baryonic-to-halo mass . a _— siall
ratio in out-of-halos ratio in all halos E
/ 0.188— 4, (Z)Abh (Z) ) |
Aboh(Z): 1 4 ) 107 ?
dh (Z
N\
Fraction of DM mass in halos 10 F 3
Use double-A mass function to compute: —¢—I, for baryons in small halos from Eq. (33)
- | The b _ o F —l—fz for barvons in large halos from Eq. (34)
s . [~ 13 (32 #\I3 e baryonic-to- ——f,+f for BHMR in all halos
=] L () (M) (v ) v g messratlo | (0 for BEMR oot o emEq (3
in small halo
=—8—Fraction of barvons in all halos

;., ", . 5/9 s _5/9 The baryonIC-tO- 102 i 2 100 Tk
[, = L Y (V)(Mcz) (V / mh) dV halo mass ratio
S ‘ in large halos Redshift evolution of BHMR
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Halo mass function Mass/energy cascade Tully-Fisher relation
Modified Newtonian Stellar-to-halo mass Baryonic-to-halo mass

Dynamics relation relation

= Review direct energy cascade from large to small scales in hydrodynamic turbulence

= Reveal inverse mass and energy cascade that is unique for dark matter flow

= Present a fundamental theory for baryonic-to-halo mass ratio based on the mass/energy cascade in dark
matter flow (agrees well with SPARC data)

= Predict a maximum baryonic-to-halo mass ratio ~0.076 for halos with a critical mass (agrees with SPARC
data) and an average ratio ~0.024 for all halos

= Predict two distinct regimes for small and large halos, respectively, with critical halo mass and size
explicitly derived (agrees with observations of stellar-to-halo mass ratio).

= Predict the fraction of total baryons in all galaxies is ~7.6% and that fraction increases with time (agrees
very well with astronomical surveys including optical Sloan Digital Sky Survey and HIPASS). Most baryons
(~92.4%) are not in galaxies.
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