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Preface
Dark matter, if exists, accounts for five times as much as ordinary baryonic 
matter. Therefore, dark matter flow might possess the widest presence in 
our universe. The other form of flow, hydrodynamic turbulence in air and 
water, is without doubt the most familiar flow in our daily life. During the 
pandemic, we have found time to think about and put together a systematic 
comparison for the connections and differences between two types of flow, 
both of which are typical non-equilibrium systems. 

The goal of this presentation is to leverage this comparison for a better 
understanding of the nature of dark matter and its flow behavior on all 
scales. Science should be open. All comments are welcome.

Thank you!
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Data repository and relevant publications 
Structural (halo-based) approach: Statistics (correlation-based) approach:

0. Data https://dx.doi.org/10.5281/zenodo.6569898

1. The statistical theory of dark matter flow for velocity, density, 
and potential fields 
https://doi.org/10.48550/arXiv.2202.00910

2. The statistical theory of dark matter flow and high order 
kinematic and dynamic relations for velocity and density 
correlations https://doi.org/10.48550/arXiv.2202.02991

3. The scale and redshift variation of density and velocity 
distributions in dark matter flow and two-thirds law for 
pairwise velocity https://doi.org/10.48550/arXiv.2202.06515

4. Dark matter particle mass and properties from two-thirds law 
and energy cascade in dark matter flow 
https://doi.org/10.48550/arXiv.2202.07240

5. The origin of MOND acceleration and deep-MOND from 
acceleration fluctuation and energy cascade in dark matter 
flow https://doi.org/10.48550/arXiv.2203.05606

6. The baryonic-to-halo mass relation from mass and energy 
cascade in dark matter flow 
https://doi.org/10.48550/arXiv.2203.06899

0. Data https://dx.doi.org/10.5281/zenodo.6541230

1. Inverse mass cascade in dark matter flow and effects on halo mass 
functions https://doi.org/10.48550/arXiv.2109.09985

2. Inverse mass cascade in dark matter flow and effects on halo deformation, 
energy, size, and density profiles https://doi.org/10.48550/arXiv.2109.12244

3. Inverse energy cascade in self-gravitating collisionless dark matter flow and 
effects of halo shape https://doi.org/10.48550/arXiv.2110.13885

4. The mean flow, velocity dispersion, energy transfer and evolution of rotating 
and growing dark matter halos https://doi.org/10.48550/arXiv.2201.12665

5. Two-body collapse model for gravitational collapse of dark matter and 
generalized stable clustering hypothesis for pairwise velocity 
https://doi.org/10.48550/arXiv.2110.05784

6. Evolution of energy, momentum, and spin parameter in dark matter flow and 
integral constants of motion https://doi.org/10.48550/arXiv.2202.04054

7. The maximum entropy distributions of velocity, speed, and energy from 
statistical mechanics of dark matter flow 
https://doi.org/10.48550/arXiv.2110.03126

8. Halo mass functions from maximum entropy distributions in collisionless 
dark matter flow https://doi.org/10.48550/arXiv.2110.09676
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Statistical (correlation-based) 
approach for dark matter flow
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The statistical theory of dark 
matter flow (high order)

Xu Z., 2022, arXiv:2202.02991 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2202.02991

https://doi.org/10.48550/arXiv.2202.02991
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Introduction
Review: 
Statistical theory in hydrodynamic turbulence
 Kinematic relations between statistical measures 

(2nd and 3rd order) 
 Dynamic relations between statistical measures of 

different order (from NS equations of velocity)
 Reynolds decomposition
 Closure problem, eddy viscosity, etc… 

 Most kinematic relations between 
statistical measures (2nd) 
Need to extend to high and arbitrary order

 Develop self-consistent dynamic equation 
for velocity field

 Develop dynamic relations between 
statistical measures of different order

 Derive the “eddy” (artificial) viscosity from 
velocity fluctuation

Current statistical theory of dark matter flow is not satisfactory:
 Dark matter flow is intrinsically complex with different nature 

of flow on different scales, i.e. a constant divergence flow on 
small scale and an irrotational flow on large scale. 

 The kinematic and dynamic relations need to be developed 
separately for both types of flow on different scales.

 Dynamic equations of velocity (Jeans’ equation) are not self-
closed. No dynamic relations can be derived without a self-
closed dynamics for velocity evolution. 

 Existing work mostly focus on the 1st and 2nd 
order velocity statistics, while the peculiar 
velocity field contains much richer information 
beyond the second order. 

 Finally, very challenging to explore high order 
statistics, as that inherently involves tensor 
and vector calculus of great complexity. 
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Two-point third order velocity correlation tensors 

( )ˆ ˆT = − × ×u u r rˆ ˆL i iu u r= ⋅ =u r

Third order velocity correlation tensor (homogeneous and isotropic):

General form of isotropic third order tensor: 

Divergence of second order tensor:

'= −r x x ˆ r=r r

Curl of second order tensor:

Longitudinal velocity:

' ' 'ˆ ˆL i iu u r= ⋅ =u r

Velocity difference or 
Pairwise velocity:

'
L L Lu u u∆ = −

Transverse velocity:

Velocity sum:
'

L L Lu u u∑ = +

( )' ' ˆ ˆT = − × ×u u r r

Pair of particles with 
distance of r

( ) ( )( ) ( )( )' '
, 0ijk k i j jQ u u u= ∇ ⋅ =x x x Incompressible flow

Constant 
divergence 

flow

Irrotational 
flow

Different odd order kinematic 
relations for incompressible flow and 

constant divergence flow

Use this to derive Kinematic relations

( ) ( ) ( ) ( ) ( ) ( )' ',ijk ijk ijk i j k i j kQ Q Q r u u u u u u= = = =x r r x x x

( ) ( ) ( )( ) ( )3 3 3ijk i j k i jk j ki k ijQ r A r rr r B r r r D r rδ δ δ= + + +

'
3 3 3

, 3 3 3
25 2 3i j k

ijk k i j ij
k

u u u A B DQ A r rr B r D
r r r r r

δ
∂ ∂ ∂ ∂   = = + + + + +   ∂ ∂ ∂ ∂   

( ) ( )( ) ( )( ) ( ) ( )( )' '
, 0ijk k i j j i jQ u u u u uθ= ∇ ⋅ = ≠x x x x x

( ) ( )3
, 3

1 0mni ijk mnk j imk n k ink m k
BQ r Q A r r r r

r r
ε ε ε∂ ∇× = = − + = ∂ 
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Two-point third order velocity correlation functions

( ) ( ) ( )3 3 32R r L r T r= +

Using index contraction of third order tensor to define four scalar correlation functions

Two total correlation functions:

Longitudinal triple correlation function:

Transverse third-order correlation function:

Relation to third correlation tensor:

( ) ( )2 ' 3
3 3 3 3ˆ ˆ ˆ 2ijk i j k L LL r Q rr r u u A r B D r= = = + +

( ) ( ) ( )' 3
3 3 3 3

1 ˆ ˆ 4
2 ijk ik j jk i LR r Q r r u A r B D rδ δ= + = ⋅ = + +u u

( ) ( )' 3
31 3 3 3ˆ 2 3ijk ij k LR r Q r u A r B D rδ= = ⋅ = + +u u

( ) ( )'
3 3 3 32 2L T TT r u R L B r= ⋅ = − =u u

( )2
, , , 32 ,

1
iki k ijk i jk ikk i r

Q Q Q r R
r

δ= = =

( )2
, 312 ,

1
iik k r

Q r R
r

=

Correlation functions of any order (pth order):

( ) ( ) ( ), 1 , ,2p q p q p qR L T+ = +
( )

2 ' 2 '
, 1

q p q q p q
L i i Lp qR u u u u u u− − − −

+ = = ⋅u u

( )
1 '

,
q p q

L Lp qL u u u− −=

Goal is to identify kinematics relations between 
correlations functions of same order



Kinematic relations for third order correlation 
functions

Relations between 
correlation functions

For incompressible flow:

Correlation tensor in 
terms of correlations

For irrotational flow:

( ) ( )
' '

3 3 3 3 32ˆ ˆ ˆ ˆ ˆ ˆ
2 4 2ijk i j k i jk j ki k ij

L rL L rL LQ r rr r r r rδ δ δ− +
= + + −

( )4
3 33 ,

1
2 r

R r L
r

= ( )2
3 3 ,

1
4 r

T r L
r

= ( ) ( )2 2 4
3 3, ,

2
r r

r r R r T= ( ) '
31 0LR r u= ⋅ =u u

For constant divergence flow:

( )2 4
3 33 ,

1 1
2 2L r

R u r r L
r

θ+ = ( )2 2
312 ,

1
r

u r R
r

θ =

2 23 Lu u≈ ( ) ( )2 4
3 31 33, ,

1 1
6 2r r

R r R r L
r r

+ =

( ) ( )4
3 31 33, ,

1
r r

rR R r L
r

+ = ( )3 31 3 ,
3 2

r
L R rT− = ( )4

3 31 33 ,

23
r

R R r T
r

− =

0∇⋅ =u

θ∇ ⋅ =u

0∇× =u

Reduced to incompressible flow with Θ=0 
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Scaling laws for two-point third order velocity 
structure function (review)

( ) ( ) ( ) ( )33 ' 3
3 36 2lp

L L L LS r u u u L r u= ∆ = − = − ( ) ( )' mmlp
m L L LS u u u= ∆ = −

( ) ( ) ( )2 3 2 3
2 2 0lp lp

n n uS r S rε− ∝ −

:uε

Two-thirds law for even order (reduced) structure function:

Structure functions as moments of pairwise velocity:

rate of energy cascade.

( ) ( ) ( ) ( )2 1 1 22 1lp lp lp
n nS r n S r S r+ = +

( ) ( ) ( ) ( ) ( ) 2
2 1 2 22 1 0 2 2 1 ,0lp lp n n

n n n LS r n HarS n K u Haru r+ = − + = − + ∆ ∝

( )2 ,0 :n LK u∆ Generalized kurtosis of the distribution of pairwise velocity

Generalized stable clustering hypothesis (GSCH)
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Velocity correlation functions of any (pth) order 
L(p,q) and R(p,q)

or R3 or R31

p independent correlation functions

( ) ( ) ( ), 1 , ,2p q p q p qR L T+ = +( )
2 ' 2 '

, 1
q p q q p q

L i i Lp qR u u u u u u− − − −
+ = = ⋅u u( )

1 '
,

q p q
L Lp qL u u u− −=

Kinematic 
relations 
(for same 
order p)

Dynamic relations 
(for different order p)

2Lu∆or 
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Correlation functions in the limit of small and 
large scale

1

10
lim

q p q
L

pr
L

u u p
p qu

− −

−→
=

−

For odd order p 

1

1
lim

q p q
L

pr
L

u u p
p qu

− −

−→∞
=

−

( )

( )

1 ' 1
,

1 ' 10, 0, 0,
,0

lim lim lim
q p q q p q

L L Lp q

p pr r r
p L L L

L u u u u u p
L p qu u u

− − − −

− −→ ∞ → ∞ → ∞
= = =

−

( )

( )

2 '
, 1

1 '0 0
,0

1lim lim
1

q p q
Lp q

pr r
p L L

R u u p
L p qu u

− −
+

−→ →

⋅ +
= =

− −

u u

For even order p 

( )

( )

1 '
,

1 '0, 0,
,0

1lim lim
1

q p q
L Lp q

pr r
p L L

L u u u p
L p qu u

− −

−→ ∞ → ∞

+
= =

+ −

 The collisionless nature has effects 
on the limits of correlations functions 
oat both small and large scales.

 These results can be confirmed by 
N-body simulation data
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Correlation and structure functions from N-body 
simulation

Two-point third order velocity correlation and 
structure functions (normalized by u3) at z=0 

Two-point fourth order velocity correlation and 
structure functions (normalized by u4) at z=0 



Kinematic relations for correlation functions L(p,q) and 
R(p,q) of any (pth) order (derivation skipped)

For incompressible flow: For constant divergence flow:0∇⋅ =u θ∇ ⋅ =u

For irrotational flow: 0∇× =u

( )( ) ( ) ( ) ( )( )1
, 1 , 2 ,, ,

12 p q
p q p q p qp qr r

R r p q L r L
r

− +
+ + −+ − − =

( ) ( ) ( ) ( ) ( )( )1
, 1 , 2 , ,

22 p q
p q p q p qp q r

p q R p q L r T
r

− +
+ + −− − − − =

( ) ( ) ( ) ( ) ( )( ), , 2 , ,
2 2p q p q p q r

p q L p q L rT+− − − − =

( ) ( ) ( )( )1
, 1 , ,

11 p q
p q p qp q r

p q R r L
r

− +
+ −− − =

( ) ( ) ( )( )2
, , ,

12 1 p q p q r
p q T r L

r
− − =

( )( ) ( )( )2 1
, 1 ,1, ,

2 p q
p q p qp qr r

r R r T
r

− +
+ − −=

( ) ( ) ( )( )1 1
, 1 , ,

11 q p q p q
Lp q p qp q r

p q R u u r r L
r

θ− − − +
+ −− − + =

If Θ=0

Kinematic relations for even order correlations of 
constant divergence flow should be the same as 

that of incompressible flow

If Θ ≠0 and p is even: 1

0
lim 0q p q

Lr
u u − −

→
=

( ) ( ) ( )( )1
, 1 , ,

11 p q
p q p qp q r

p q R r L
r

− +
+ −− − =

If Θ ≠0 and 
p is odd:( )( )1 2

, 1 ,

1p
p p r

u r r L
r

θ−
−=

( ) ( ) ( )( )1 1
,1 ,0 ,

11 p p
Lp pp r

p R u r r L
r

θ− +− + =

( )( ) ( )2 2
1,02 2 ,,

1 1
2 L rr

r L r u
r r

θ = = ∆ If Θ ≠0 
and p=1:



225

Kinematic relations validated by N-body simulations

( ) ( ) ( )
( )

( )
( )

( )
( )

( )

, 1 , 1
, , 11 0

, ,

1 1 1
r p p p pS p q

p q p qp q
p q p q

L Lp q
H r R r dr

r L p q p q L
− −−

+− +

 − −
= − + ⋅ =  − − 

∫

( ) ( ) ( )
( )

( ), , 11 0
,

1
1

rS p q
p q p qp q

p q

p q
H r R r dr

r L
−

+− +

− −
= =∫

( ) ( )
( )

( ) ( ) ( ) ( ), , 1 , 21 0
,

1 2 1
2

rL p q
p q p q p qp q

p q

H r p q R p q L r dr
r T

−
+ +− +

 = − − − − = ∫

On small scale, kinematic relations for even order (even p) 
correlations are the same as those for incompressible flow:

On small scale, kinematic relations for odd order (odd p) 
correlations are the same as those for incompressible flow:

On large scale, kinematic relations for irrotational flow:

 To validate kinematic relations with N-
body data, we need to construct 
equivalent relations.

 Extract high order correlation functions 
from N-body simulation data

 Dark matter flow is of constant 
divergence on small scale and 
irrotational on large scale

 Check the equivalent kinematic 
relations against simulation data

Original Kinematic relations 
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Kinematic relations validated by N-body simulations

N-body simulation data satisfy the 
kinematic relations.
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Dynamic relations from dynamics on large scale
 Kinematic relations are relations 

between correlation and structure 
functions of the same order;

 Dynamic relations are relations between 
correlation functions of different orders 
and can only be obtained from the self-
closed dynamic evolution of velocity. 

 However, closure problem is well known 
for Jeans’ equations which are not self-
closed. 

 Self-closed dynamic equations of 
velocity must be introduced on small and 
large scale. 

 Dynamic equations are subsequently 
converted into dynamic relations.

( )c a
t

∂
=

∂
v v

( ) ( ) ( ) 21
2

c a a
t a

ν∂
+ ∇ ⋅ = + ∇

∂
v v v v v

( ) 21
2

j i i
j j

j

v v v
cv v

t a x
ν

∂ ∂
+ = + ∇

∂ ∂
( )' ''

' '2 '
'

1
2

j ji
i i

i

v vv cv v
t a x

ν
∂∂

+ = + ∇
∂ ∂

Self-closed adhesion approximation on large scale : 

“Artificial “ 
viscosity

Damping

( ) ( ) 21 c a a
t a

ν∂
+ ⋅∇ = + ∇

∂
v v v v v

Neglect 
second 
order

Zeldovich
approximation 

( ) ( )
04 1

2m

Gc a H H
Hf
π ρ 

= − =  Ω 
( ) ( )1

2
⋅∇ = ∇ ⋅ + ∇× ×u u u u u u

Matter dominant

0∇× =v

Using identity:

Index Eq. at location x'
iv×

jv×+ Index Eq. at location x’

= ( ) ( )' ''
' ' ' 2 ' '

'

1
2

k kj i k k
i j j i i j j i i j

j i

v vv v v v
v v c v v v v v v v v

t a x x
ν

∂∂ ∂
+ + = + + ∇ +

∂ ∂ ∂
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Dynamic relations from dynamics on large scale

21 2 2
2

ij kkjkki
ij ij

j i

Q QQ cQ Q
t a r r

ν
 ∂ ∂∂

= + + + ∇  ∂ ∂ ∂ 

Time evolution of the second order correlation tensor Qij: 

ijδ×

Time evolution of the second order correlation function R2: 

( ) 22 2
2 2

12 2 2R Rr cR r
t r r r

ν
  ∂ ∂∂

= Γ + +   ∂ ∂ ∂  

( ) ( )2
312 ,

1 1
2 2

kki
r

i

Qr r R
a r ar
∂

Γ = =
∂

( ) ( ) ( )2, 2 , 2 ,u
u u

E T k t cE k t k E k t
t

ν∂
= + −

∂

Fourier transform: 

( ) ( ) ( )
0

2 sinT k r kr kr dr
π

∞
= Γ∫

Real-space energy 
transfer function

Spectral energy 
transfer function

Dynamic relation 
between 2nd and 3rd 
correlation functions

( ) ( ) ( ) 2
313,2 2 RL r R r a

r
ν ∂

= = −
∂

( )
( )( )

2 2
2 2

1 1

m

Rr r
r r raHf

ξ  ∂ ∂  = −   ∂ ∂  Ω

( ) ( )( ) ( )
22

2 0

2 2 2 2

exp 7 8m
a u r r rr aHf r
rr r r r

νν ξ
      
 Γ = Ω = − − +     
       

( )
2

22 ' 2 0
31

2 2 2

2 exp 4L m L
a u a r rR u u Ha f u

r r r
νν

  
= = − Ω ∆ = − − −  

  

Density correlation: 

( )
( )( )

2
0 32

2
2

16 1

1 1
T k a u

r kr

ν
π

=
+

Eu: Energy spectrum Third order correlation: 
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Modeling high order correlation functions 
on large scale

( )
2 ' 3

31 3 33,2
2 2

expL
r rL R u u a u b
r r

  
= = = − −  

  

( )
2 ' 4

4 44,3
2 2

exp r rR u a u b
r r

  
= ⋅ = − −  

  
u u

( )
4 ' 5

5 55,4
2 2

expL
r rL u u a u b
r r

  
= = − −  

  

The same model can be generalized to high order 
correlation functions: 

( ) ( ) ( )
( )2 3 2' ' 2

1, 1,0

q qq q
L Lq qL u u u u Ha L aν +

+ = ∝ ∝ ∝

( ) ( )( )
( )

2 22 ' 2 ' 2 2
, 1 2,1

qq q q
q qR u u Ha R aν

−− −
− = ⋅ ∝ ⋅ ∝ ∝u u u u

Generalize to any order correlation functions: 

V(a) is artificial viscosity
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Modeling high order correlation functions 
on large scale

Two-point fifth order velocity correlation L(5,4) Two-point third order velocity correlation L(3,2) 
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Dynamic relations from dynamics on large scale

( )2
2 ,

1
2 L r

r u
r

θ = ∇⋅ = ∆u

( ) ( ) ( )' '2m mf f rδ δ δ ξ δδΩ = Ω + = =

Kinematic 
relation

( )maHf
δ η ∇⋅
≈ = −

Ω
u

On large scale, mean density at two locations is 
proportional to density correlation on the same scale

( ) ( ) 2
2 0

2 2,
3

r

L
Hau Har r a y y dy
r

ξ ξ∆ ≈ − = − ∫

From pair conservation equation:

( )Ha rθ ξ= ∇ ⋅ = −u

( )maHfθ δ= ∇ ⋅ = − Ωu

Dynamic equation 
on large scale



Reduced velocity dispersion is 
proportional to density 

correlation or mean density on 
the same scale

2 2lim 3
r

u u
→∞

=On large scale:

Dynamic relations from dynamics on large scale
Use dynamic equations at locations x and x’:

( ) 21
2

j i i
j j

j

v v v
cv v

t a x
ν

∂ ∂
+ = + ∇

∂ ∂
( )' ''

' '2 '
'

1
2

j ji
i i

i

v vv cv v
t a x

ν
∂∂

+ = + ∇
∂ ∂

ĵr×

−

=

îr×
2' 1ˆ ˆ 2ji

i j L

uvvr r c u
t t a r r

θ
ν

∂∂ ∂∂
− + = ∆ +

∂ ∂ ∂ ∂

( )Ha rθ ξ= ∇ ⋅ = −u

( ) ( )2
2 22 2 2m

u r
a a Hf Ha

r r r r
θ δ ξ

ν ν ν
∂ ∂ ∂ ∂

= = − Ω = −
∂ ∂ ∂ ∂

( )c a
t

∂
=

∂
v v

( ) ( )ˆ ˆi
i i i L

vr c a rv c a u
t

∂
= =

∂

( ) ( )
'

' 'ˆ ˆi
i i i L

vr c a rv c a u
t

∂
= =

∂

( ) ( )mf rδ ξΩ =Use and

( ) ( )
2 2 2

2 2 2

2 21
3 3 3 m

u Ha r Ha f
u u u

ν ξ ν δ− = − = − Ω

ˆ r=r r

Unit vector 
between two 

particles
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Divergence of velocity on all scales

( )Ha rθ ξ= ∇ ⋅ = −u

( )2
2 ,

1
2 L r

r u
r

θ = ∇⋅ = ∆u

Kinematic relation (good for all scales):

( ) 2
2 0

2 r

L
Hau y y dy
r

ξ∆ = − ∫

From pair conservation equation:
(for large scale)

( ) ( )m maHf aHf
θδ ∇ ⋅

= − = −
Ω Ω
u

Dynamic equation on large scale

On large scale:

Velocity divergence on different scales 
(normalized by Ha)
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Deriving exponential velocity correlation functions 
on large scale

 The exponential function was proposed for 
second order transverse velocity correlation 
T2 on large scale.

 This is not a coincidence and must be deeply 
rooted in the dynamics and kinematics on 
large scale.

( ) ( ) ( ) ( ) ( )2
2,1 2,0

1
4u r R r T rσ  ≈ + 

On large scale, velocity dispersion function 
can be approximated by:

Relate to velocity 
correlation functions 

(Equipartition)

( ) ( ) ( )22 1
3u ur E k W kr dkσ

∞

−∞
= ∫

Velocity dispersion function for kinetic energy 
contained in all scales above r: 

( ) ( ) ( ) ( )1
3

3 sin cos 3
j x

W x x x x
x x

= − =  
Window 
function

3 translational 1 rotational
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Deriving exponential velocity correlation functions 
on large scale

( ) ( ) ( ) ( ) ( )2
2,1 2,0

1
4u r R r T rσ  ≈ + 

( )
( ) ( ) ( ) ( )2,1
2,1 2,0

8

r

Ra R r T r
u r

ν
α

∂
 = + ∂

( )2,0
2

exp rT Const
r

 
= ⋅ − 

 

( ) ( ) ( )2,1
3,2 2

R
L r a

r
ν
∂

= −
∂

On large scale velocity dispersion function 
can be approximated as,

Relate to velocity 
correlation functions 

(Equipartition)

On large scale, the rate of energy cascade (m2/s3):

( ) ( )3
3,2
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L ru
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2
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r
ar u
σ

Π ∝
Kinetic energy in 

scales above r
Turnaround time for 

energy cascade

( ) ( ) ( )2
3,2 uL r u rσ∝

From dynamic relation on large scale:

Exponential second order transverse 
correlation function:

From kinematic relation on large scale for 
irrotational flow:
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Deriving power-law velocity correlation functions 
on small scale

( ) ( ) ( ) ( ) ( ) ( ) ( )2
2,1 2,0 2,0

1
5u r R r T r L rσ  ≈ + + 

( ) ( )( )
2 2

1

24 2
4 6

nn

d
rr u

n n r
σ

 ⋅
=  + +  

3 translational 1 internal 
rotational (two-
body is planar)

 Similar idea can be applied to determine the power-
law exponent of correlation functions on small scale

 On small scale, velocity dispersion function can be 
approximated as

From kinematic relations on small scale:

( )2 2
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2 12 nlS u r r=

( ) 2 22
2

1

1
2

nlS rL r u u
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( ) ( )2 2 2
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See slides

1 internal 
longitudinal 

relative motion

Power-law that can be 
related to virial theorem

( )2 2

1

31
10

n

d
rr n u
r

σ
  = +   

   
See slides

n =0.27 ≈ ¼, the one-forth law on small scale
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Dynamic relations from dynamics on small scale
 Self-closed equations for velocity evolution on 

small scale seems not exist. 

 we will first formulate the self-close equations 
for velocity on small scale. 

 These equations are subsequently applied to 
derive the dynamic relations on small scale. 

( ) ( ) ( ), , ,h h vt t t= +v x v x v r

1 1 1H
t a a a

φ
ρ

∂ ∇ ⋅
+ ⋅∇ + = − − ∇

∂
v pv v v

v r ϕ= +v v v Polar flow is neglected

( )tθ∇ ⋅ =v

( )*

1

1 1 1H
t a a a

φ γ∂
+ ⋅∇ + = − ∇ + ∇× ×

∂
v v v v v v



( ) ( ) *1 11
2

H
t a a a

γγ φ∂
+ − ⋅∇ + ∇ ⋅ + = − ∇

∂
v v v v v v

( ) ( ) ( ) ( ) *1 1 11 1
2

H
t a a a a

γγ γ θ φ∂  + − ∇ ⋅ ⊗ + ∇ ⋅ + − − = − ∇ ∂  
v v v v v v

Jeans equation (not self-closed):

ρ= 2p σ

Stress 
tensor Velocity 

dispersion 
tensor

Decompose total velocity into halo velocity and 
velocity in halos

Decompose velocity in halos into radial and 
azimuthal flow

Self-closed description of mean flow (derivation skipped):

 γ=1/2 for small scale 
dynamic equation.

 γ=1 for large scale 
dynamic equation.

Centripetal 
acceleration,
significant on 
small scale

Four equations and four unknowns
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Self-closed description of dynamics

( ) [ ]1 1

LHS RHS

H
t a a

γ∂
+ ∇× ⋅∇ + = ∇× ×

∂
ω v v ω ω v
 

( )*

1

1 1 1H
t a a a

φ γ∂
+ ⋅∇ + = − ∇ + ∇× ×

∂
v v v v v v



Taking curl on both sides:

∇×

Equation for vorticity: = ∇×ω v

 On large scale (large grid size Δx), γ≈1

 On small scale (small grid size Δx), γ≈1/2. 

 There is a transition between the two regimes.
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Averaged dynamic equations for velocity and the 
origin of effective viscosity 

( ) ( ) *1 11
2

H
t a a a

γγ φ∂
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v v v v v v

'= +v v v * * *'φ φ φ= +
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ν∂
+ ∇ ⋅ = + ∇

∂
v v v v v

With the self-closed description of velocity, we can derive 
the effective equations for mean flow 
Similar to Reynolds decomposition, decompose velocity 
and potential into mean and fluctuation in time,

Substitute into the self-closed description:

( ) ( )' ' 21
2a

ν ν− ∇ ⋅ = ∇ = ∇ ∇⋅v v v v

( ) ( )' '1 1 1
2 2 2

Ha
t a a

∂
+ ∇ ⋅ = − ∇ ⋅

∂
v v v v v v

* 3 2Haφ∇ = − v 1γ =and

Compare to dynamic equation on large sale:

The artificial viscosity on large scale origins 
from the unresolved velocity fluctuations

Subgrid model

Force as the gradient of 
kinetic energy in 

unresolved fluctuation

Force from 
Newtonian law of 

viscosity for 
mean flow

Divergence 
proportional to 
overdensity δ

( ) ( )'2 22 mF t a Hfν δ= + Ωv

( )maHf
δ ∇ ⋅
= −

Ω
vUse and integrate both 

sides of subgrid model

The larger mean density (higher resolution), 
the smaller unresolved velocity fluctuations

Averaging is essentially a filtering 
process with a cutoff resolution 

to separate variables into 
resolved and unresolved parts
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Dynamic evolution of vorticity, enstrophy, and energy

( ) ( )1 1H
t a

γ∂
+ = − ∇× ⋅∇

∂
ω ω v v

( ) ( ) *1 11
2

H
t a a a

γγ φ∂
+ − ⋅∇ + ∇ ⋅ + = − ∇

∂
v v v v v v

Taking curl on both sides of self-closed description:

∇×

Equation for vorticity: = ∇×ω v

( )
 

2 31
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t a Ha a
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Dynamic evolution of vorticity:

1: Transport 
of vorticity

2: Destroy of 
vorticity on 
large scale

3: Generation 
of vorticity on 
small scale
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2 1 11 1
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Dynamic evolution of enstrophy:
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Taking scalar product on both sides:

⋅v

2
2 * 2 2 *2 1 1 1 1
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H
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v v v v v v

Dynamic evolution of energy E at different location:

2 *1
2
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2V

K dV= ⋅∫ v v

Specific kinetic 
energy: Total energy:
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( ) ( )( )2 2ln1 1
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E Ha
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v v ω ω

Virial relation:

Rotational 
contribution

Velocity 
gradient

Decay on 
large scale
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Dynamic relations from dynamics on small scale
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Self-closed dynamic equations at two locations x and x’:
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Dynamic relations 
between second and 

third order correlations 
on small scale

With self-closed dynamic 
equations on small scale, we 

are ready to covert it into 
dynamic relations. Same 
approach was applied for 

irrotational flow on large scale.



242

Dynamic relations from dynamics on small scale
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Dynamic relations:

For comparison,  the 
four-fifths law for 
incompressible flow

GSCH:
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Summary and keywords
Third order velocity 
correlation tensor

Vorticity, Energy and 
Enstrophy

Self-closed velocity 
equation

Effective viscosity Kinematic relations Dynamic relations

 Analogy between dark matter flow and homogeneous isotropic turbulence is established 
for development of statistical theory in terms of correlation, structure, dispersion, and 
spectrum functions;

 General kinematic relations for two-point velocity statistics are developed on small and 
large scales respectively;

 On large scale, the redshift dependence of qth order velocity correlations follows  
~a(q+2)/2 for odd q and ~aq/2 for even q; The overdensity is proportional to density 
correlation on the same scale, i.e. <δ>=<δδ’>; (Negative) Effective viscosity in adhesion 
model originates from velocity fluctuations. 

 On small scale, self-closed description for velocity is developed such that the dynamic 
relation can be obtained, which can be validated by N-body simulation.
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