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Preface
Dark matter, if exists, accounts for five times as much as ordinary baryonic 
matter. Therefore, dark matter flow might possess the widest presence in 
our universe. The other form of flow, hydrodynamic turbulence in air and 
water, is without doubt the most familiar flow in our daily life. During the 
pandemic, we have found time to think about and put together a systematic 
comparison for the connections and differences between two types of flow, 
both of which are typical non-equilibrium systems. 

The goal of this presentation is to leverage this comparison for a better 
understanding of the nature of dark matter and its flow behavior on all 
scales. Science should be open. All comments are welcome.

Thank you!
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Data repository and relevant publications 
Structural (halo-based) approach: Statistics (correlation-based) approach:

0. Data https://dx.doi.org/10.5281/zenodo.6569898

1. The statistical theory of dark matter flow for velocity, density, 
and potential fields 
https://doi.org/10.48550/arXiv.2202.00910

2. The statistical theory of dark matter flow and high order 
kinematic and dynamic relations for velocity and density 
correlations https://doi.org/10.48550/arXiv.2202.02991

3. The scale and redshift variation of density and velocity 
distributions in dark matter flow and two-thirds law for 
pairwise velocity https://doi.org/10.48550/arXiv.2202.06515

4. Dark matter particle mass and properties from two-thirds law 
and energy cascade in dark matter flow 
https://doi.org/10.48550/arXiv.2202.07240

5. The origin of MOND acceleration and deep-MOND from 
acceleration fluctuation and energy cascade in dark matter 
flow https://doi.org/10.48550/arXiv.2203.05606

6. The baryonic-to-halo mass relation from mass and energy 
cascade in dark matter flow 
https://doi.org/10.48550/arXiv.2203.06899

0. Data https://dx.doi.org/10.5281/zenodo.6541230

1. Inverse mass cascade in dark matter flow and effects on halo mass 
functions https://doi.org/10.48550/arXiv.2109.09985

2. Inverse mass cascade in dark matter flow and effects on halo deformation, 
energy, size, and density profiles https://doi.org/10.48550/arXiv.2109.12244

3. Inverse energy cascade in self-gravitating collisionless dark matter flow and 
effects of halo shape https://doi.org/10.48550/arXiv.2110.13885

4. The mean flow, velocity dispersion, energy transfer and evolution of rotating 
and growing dark matter halos https://doi.org/10.48550/arXiv.2201.12665

5. Two-body collapse model for gravitational collapse of dark matter and 
generalized stable clustering hypothesis for pairwise velocity 
https://doi.org/10.48550/arXiv.2110.05784

6. Evolution of energy, momentum, and spin parameter in dark matter flow and 
integral constants of motion https://doi.org/10.48550/arXiv.2202.04054

7. The maximum entropy distributions of velocity, speed, and energy from 
statistical mechanics of dark matter flow 
https://doi.org/10.48550/arXiv.2110.03126

8. Halo mass functions from maximum entropy distributions in collisionless 
dark matter flow https://doi.org/10.48550/arXiv.2110.09676
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Statistical (correlation-based) 
approach for dark matter flow
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Scale and redshift dependence 
of density and velocity 

distributions in dark matter flow
Xu Z., 2022, arXiv:2202.06515 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2202.06515

https://doi.org/10.48550/arXiv.2202.06515
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Introduction

 N-body simulations are invaluable tools for DMF: 
 Velocity fluctuation and distributions
 Density is non-uniform (density 

fluctuation/distributions) 

 Fundamental problems when projecting N-body 
density/velocity field onto structured grid:
 N-body fields are sampled discrete locations 

of particles. 
 The sampling has a poor quality at locations 

with low particle density

Review: 
Statistical theory in hydrodynamic turbulence
 Velocity fluctuation and distributions
 Incompressible on all scales

 Divergence-free
 Constant density

Halo-based non-projection approach:
 Instead of projecting, analysis is performed by 

the statistics over all pairs on different scales 
to maximumly preserve the information from 
N-body simulation 

 Based on the halo description, divide all 
particles into halos and out-of-halo particles, 
whose distributions evolve differently

 Scale and redshift dependence of distributions 
can be studied by the variation of generalized 
kurtosis for a given distribution. 

Goal 1: Density distributions and two-point 
statistics

Goal 2: Velocity distributions and redshift 
and scale dependence
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One-point probability distributions of density field
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 Projecting particle field onto structured grid involves 
information loss and numerical noise. 

 Without projecting onto grid, Delaunay tessellation is 
used to reconstruct the density field and maximumly 
preserve information in N-body data. 

 Compute the volume Vp occupied by every particle

Delaunay 
tessellation 

( ) p pm Vρ =x

Particle 
density

Particle log-density

Particle density 
contrast

Constraints for density 
contrast and log-density

Redshift evolution of particle density distribution from z=10 
to z=0. Density evolves from initial Gaussian to an 

asymmetric distribution with a long tail ~δ-3
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Probability distributions of log-density field

( ) ( ) ( )2 2
1 21 1

2 2
1 21 2

1exp exp
2 22 2

c cf
η µ η µ

η
σ σπσ πσ

   − −−
= +   

      

Distribution of log-density at different redshifts z. The 
log-density evolves from Gaussian to an approximately 

bimodal distribution at z=0 with two peaks.

1 0.404c =

1 0.30µ = −

1 1.212σ =
2 4.256µ =

2 2.979σ =

 Gaussian distribution of log-density at high redshift. 
 Bimodal distribution of log-density at low redshift. 
 Two peaks corresponds to contributions from particles 

in all halos and particles out-of-halo.
 Best fitted bimodal distribution at z=0 showing fraction 

of particles in halos is about 60%, consistent with 
inverse mass cascade theory.

2 11 0.596c c= − =

Particles in halos should have an average density close 
to Δc, the critical density ratio 18π2, such that the mean 
density for all halo particles <μ2>=log(18π2) ≈5 
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Halo-based non-projection approach for particle 
density

 Checking the density distributions of particles in halos 
and out-of-halo particles separately. 

 Identifying all halos in entire system and dividing all 
particles into halo and out-of-halo particles. 

 For out-of-halo particles, the distribution is relatives 
Gaussian (or δ is lognormal) with mean density 
decreasing with time. 

 For halo particles, log-density distribution evolves with 
increasing mean density due to the formation of halos. 
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Characterizing the time evolution of the shape of 
distribution by introducing nth order generalized kurtosis:

nth central moment
Redshift evolution of log-density distributions 

for two different types of particles. 

Generalized 
kurtosis

3 5 0K K= =2 1K = 4 3K = 6 15K = 8 105K =For Gaussian:
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Time evolution of comoving particle density field

The redshift evolution of generalized kurtosis of log-
density for two different types of particles. 

 Distribution of η is always 
Gaussian for out-of-halo particles.

 Distribution of δ for out-of-halo 
particles is approximately log-
normal

 Distribution of η for halo particles 
approaching some symmetric non-
Gaussian distribution with 
vanishing odd order kurtosis
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Time evolution of particle density field

The variation of mean and standard deviation 
of log-density with scale factor a. 

 For out-of-halo particles, the mean log-density 
decreases with time and  <η><0 after z=1. This 
reflects less and less out-of-halo particles due to 
inverse mass cascade.

 For halo particles, mean log-density increasing with 
time (<η> ~ a1/2) reflects more and more particles 
residing in halos

 For halo particles, standard deviation of log-density 
increasing with time (std(η) ~ a1/2)
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Two-point statistical measures of density field
Defining two-point density correlation function from radial 
distribution function g(r) in statistic mechanics, a quantity 
to measure the averaged particle density from an arbitrary 
reference particle:

( ) 24p
p

N
dN g r r dr

V
π=

( ) 2
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g r r dr V

N
π

∞ −
=∫

( ) ( ) ( ) ( ) 1r g rξ δ δ= + = −x x r
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0
, 4 0pr a r dr V Nξ π

∞
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Correlation cannot be 
positive on all scales

( ) ( )0 0
,l a r a drδ ξ

∞
= ∫ ( ) ( )2

1 0
,l a r a rdrδ ξ

∞
= ∫

pN V
mean number 

density of particles 
in entire system

Two length scales can be defined from density correlation:
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( )( )

22
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1, exp 7 8a u r r rr a
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 Ω       

On large scale, transverse velocity correlation 
can be well modelled by exponential function:

2 21.4r Mpc h≈

( ) 2
2 0

2

, exp rT r a a u a
r

 
= − ∝ 

 
( )2

0 0 0.45a u u a=

Redshift-independent length 
scale, might be related to the 

size of sound horizon 

( ) ( )' 2
2 0

2 2

, 2 exp 3r rR r a R r a u
r r

  
= ⋅ = = − −  

  
u u

Total velocity correlation

( )maHf
δ η ∇⋅
≈ = −

Ω
u Linear perturbation 

theory on large scale: 

Modeling density correlation on large scale:
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Specific potential/kinetic energy from density 
correlation function
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In statistical mechanics, potential energy of any system 
with particles interacting via a pairwise potential Vg(r)  
can be related to the radial distribution function g(r):
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Cosmic energy equation

The variation of two comoving 
correlation lengths with scale factor a.

Power-law evolution and rate of energy cascade εu:
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Density spectrum/dispersion functions and real 
space distribution of density fluctuation 
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Window function when smoothed with a filter of size r
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Correlation and spectrum form Fourier pair:

Matter spectrum function:

The power per logarithmic interval:

Density dispersion function (the variance of the density 
fluctuation on scale r): First order spherical 

Bessel function of 
the first kind

The real-space distribution 
of density fluctuation in 

scales [r, r+dr]
Modeling density dispersion function on large scale:
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Density correlation function (simulations & models)

Density correlation function (solid blue) 
varying with scale r at z=0.

Density correlation function varying with 
scale r at different redshifts. 
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Density correlation and spectrum functions 
(simulation & models)

Two-point second order density 
correlation varying with scale factor a. Without projection, density power spectrum can be 

obtained from Fourier transform of correlation. 
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Density dispersion function and distribution of 
density fluctuation

Density dispersion function obtained from density 
correlation and compared with models.

Distribution of density fluctuation on scale r 
obtained from density dispersion function
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Characterizing distributions of velocity fields 

( )ˆ ˆT = − × ×u u r rˆ ˆL i iu u r= ⋅ =u r

'= −r x x ˆ r=r r

Longitudinal velocity:

' ' 'ˆ ˆL i iu u r= ⋅ =u r

Velocity difference or 
Pairwise velocity:

'
L L Lu u u∆ = −

Transverse velocity:

Velocity sum:
'

L L Lu u u∑ = +

( )' ' ˆ ˆT = − × ×u u r r

Pair of particles with 
distance of r

We focus on the distribution of seven types of velocities:

Based on halo-based non-projection approach, 

Velocity of all particles in entire system: 
Redshift-dependent velocities (dependent on z): 

pu

Velocity of all halo particles: hpu

Velocity of all halos: 

Velocity of all out-of-halo particles: opu

hu

Scale-dependent velocities (dependent on r): 

Pairwise velocity:
'

L L Lu u u∆ = −
Velocity sum: '

L L Lu u u∑ = +

Longitudinal velocity: '
Lu Luand
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Redshift dependence of velocity distributions
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The scale and redshift variation can be studied by 
Introducing generalized Kurtosis:

Redshift evolution of generalized kurtosis for velocity 

The central moment of order n: 

The nth order longitudinal structure function:

 All velocities are initially Gaussian. 
 Velocity distribution of halo particles deviates from 

Gaussian much faster than out-of-halo particles 
due to stronger gravitational interaction in halos. 

 All velocities become non-Gaussian with time to 
maximize system entropy 
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Scale-dependence of velocity distributions
 Even order generalized kurtosis (4th, 6th, 

and 8th order) at z=0. 

 Velocity of fully developed dark matter flow 
is never Gaussian on any scale due to 
long-range gravity despite that they can be 
initially Gaussian.

 For incompressible flow with short range 
force, distribution is nearly Gaussian on 
large scale and non-Gaussian on small 
scale due to viscous force. 

 On small scale, distribution of ΣuL
approaches the distribution of uL with 
ρL=0.5.  

 On large scale, distribution of ΣuL
approaches the distribution of ΔuL with 
ρL=0. 
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Scale-dependence of velocity distributions
 On both small and large scales, generalized 

kurtosis approaches constant such that there 
exist unique (limiting) probability distributions 
that are independent of scale r.

 While on the intermediate scale around 1Mpc/h, 
all three velocity distributions exhibit the 
greatest value of generalized kurtosis of 
different order. 

 Third order kurtosis (skewness) vanishes on 
both small and large scales, where distributions 
are symmetric. 

 The negative skewness on the intermediate 
scale (distribution skews toward positive side) 
can be an important signature of inverse 
cascade of kinetic energy.
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First moment of velocity fields and pair conservation 
equation

The variation of first moment of longitudinal velocity   
(mean pairwise velocity) with scale r 

( )( )
( )( )

( )( )1 , ln 1 ,
ln3 1 ,

L r a r au
Har ar a

ξ ξ

ξ

+ ∂ +∆
= −

∂+

Pair conservation equation relates the pairwise velocity 
with density correlation

For large scale in linear regime, average correlation   

1ξ  ln ln 2aξ∂ ∂ =

( ) ( )( )
( )( ) ( )

2 , 1 , 2 ,
33 1 ,

L r a r au
r a

Har r a
ξ ξ

ξ
ξ

+∆
= − ≈ −

+

ln ln aξ α∂ ∂ =( ),r a a rα γξ ∝

1Lu
Har
∆

= − 3α γ= +

and

and
For small scale in non-linear regime, 

Stable 
clustering 
hypothesis
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First moment of velocity fields

Lu Har∆ = − 2Lu Har=

( )5 25 3
L tu Har ua r r−∆ = − −

( ) 2
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2 r
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22 exp 4L
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aHf r aHr r r
  ∂

∆ = = − −  Ω ∂   

'
2R = ⋅u u

0LuΣ =

Mean velocity difference (pairwise velocity, normalized 
by u) varying with scale r at different redshift z

On small scale:

A better relation to fit the simulation data: 

On large scale:

Total velocity 
correlation

From pair 
conservation 

equation
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Second moment of velocity fields

Second moment of velocity (normalized by u^2) 
varying with scale r at z=0

Increase of velocity dispersions with r for r<rt (pair of 
particles are more likely from same halos) is mostly due 
to the increase of velocity dispersion with halo size.
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Second moment of pairwise velocity (pairwise 
dispersion) and the two-thirds law

Second order longitudinal structure function 
(pairwise velocity dispersion)

Reduced second order longitudinal structure function 
(pairwise velocity dispersion) and two-thirds law
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Two-thirds law for higher even order structure 
functions and generalized stable clustering (GSCH)

( ) ( ) ( )2 32 *
2 2 22 ,0lp n n
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u u H m s
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Original scaling for incompressible flow does not 
apply for dark matter flow.

All odd order structure functions follow linear law 
from generalized stable clustering hypothesis

All even order reduced structure functions follow 
the same scaling of two-thirds law.
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Comparison of velocity fields between incompressible 
and dark matter flow
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Modeling velocity distributions on small scale
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v veX v
v K
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=

 On small scale, velocities  uL and ΣuL should have 
the same limiting distribution. 

 On small scale both should follow a X distribution to 
maximize system entropy.

Maximum entropy distribution:

Shape parameter: α; 
Velocity scale: v0;

Distributions of  velocities on 
scale of r=0.1Mpc/h at z=0
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The mth order generalized kurtosis of X distribution:

 The shape of velocity distribution changes with 
redshift z such that α is redshift-dependent. 

 Kurtosis Km is only dependent on α and also redshift-
dependent
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Distribution of pairwise velocity on small scale
 On small scale, velocities  uL and 

ΣuL follows X distribution.
 Distribution of pairwise velocity ΔuL

is different with moment estimated.
 Pairs of particles with same r can be 

from halos of different size.

The limiting distributions of velocity fields on small and large scales
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'
L L Lu u u∆ = −

Key: correlation between two longitudinal 
velocities decreases with halo size:

Double-λ halo mass function:

Generalized kurtosis:

Exponential??
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Velocity distributions on intermediate scale

Distribution of ΣuL is symmetric, while the distribution of ΔuL is non-symmetric with non-zero (negative) 
skewness and skew toward positive side. This is a necessary feature of inverse energy cascade.
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Modeling velocity distributions on large scale

( ) 21 sech
4 2Lu

xP x
s s∆

 =  
 

( ) 1 exp
Lu

xP x
s s∆

 →∞ ≈ − 
 

 Distribution of ΔuL on large scale is usually assumed 
to be exponential in literature (non-smooth).

 This seems not agree with N-body simulation
 On large scale, Both ΣuL and ΔuL can be modelled 

by a logistic distribution. 

Logistic distribution for both velocities:

( ) ( ) ( )
L L Lu u uP z P x P z x dx

∞

∆ −∞
= −∫

( ) ( )sinuLP
stMGF t

st
π
π

=

Reduce to exponential at large velocity:

Longitudinal velocity uL should satisfy for ρL=0:

Moment 
generating 

function for uL
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The redshift evolution of velocity distributions

 Distribution of different types of velocities  
changes due to redshift evolution of α.

 Shape parameter α decreases with time.

 Most velocities follows the X distribution 
to maximize system entropy

 Halo velocity and out-of-halo particle 
velocity evolves much slower than halo 
particle velocity due to weaker gravity on 
large scale.
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( )( ) ( ) ( )
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2 1

1 22
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m
m
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K X
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α απ
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= ⋅  
 

Generalized kurtosis of X distribution:

Plot K4 vs. K6, K4 vs. K8, and K4 vs. K10;
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Summary and keywords

 A halo-based non-projection approach is proposed to study the scale and redshift 
dependence of density and velocity distributions in dark matter flow. 

 A two-thirds law for pairwise velocity was established, i.e.  S2
lp-2u2~ εu r2/3, where r is the 

separation between pair of particles and εu is the constant rate of energy cascade.
 Two-thirds law can be generalized to all even moments of pairwise velocity, while odd 

moments ~r 
 The distributions of longitudinal velocity uL , pairwise velocity ΔuL, and velocity sum ΣuL, 

are analytically modeled on both small and large scales
 Fully developed velocity fields are never Gaussian on any scale despite that they can 

be initially Gaussian. 
 Delaunay tessellation is used to reconstruct the density field from N-body simulation, 

which results in an asymmetric density distribution with a long tail. 
 Density correlation is obtained by directly counting all pairs on a given scale r along with 

simple analytical models for all second order density statistics. 

Delaunay tessellation Pairwise velocity Skewness
Generalized kurtosis Velocity sum Generalized stable clustering 

Two-thirds law X distribution Pair conservation equation
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