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Preface
Dark matter, if exists, accounts for five times as much as ordinary baryonic 
matter. Therefore, dark matter flow might possess the widest presence in 
our universe. The other form of flow, hydrodynamic turbulence in air and 
water, is without doubt the most familiar flow in our daily life. During the 
pandemic, we have found time to think about and put together a systematic 
comparison for the connections and differences between two types of flow, 
both of which are typical non-equilibrium systems. 

The goal of this presentation is to leverage this comparison for a better 
understanding of the nature of dark matter and its flow behavior on all 
scales. Science should be open. All comments are welcome.

Thank you!
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Data repository and relevant publications 
Structural (halo-based) approach: Statistics (correlation-based) approach:

0. Data https://dx.doi.org/10.5281/zenodo.6569898

1. The statistical theory of dark matter flow for velocity, density, 
and potential fields 
https://doi.org/10.48550/arXiv.2202.00910

2. The statistical theory of dark matter flow and high order 
kinematic and dynamic relations for velocity and density 
correlations https://doi.org/10.48550/arXiv.2202.02991

3. The scale and redshift variation of density and velocity 
distributions in dark matter flow and two-thirds law for 
pairwise velocity https://doi.org/10.48550/arXiv.2202.06515

4. Dark matter particle mass and properties from two-thirds law 
and energy cascade in dark matter flow 
https://doi.org/10.48550/arXiv.2202.07240

5. The origin of MOND acceleration and deep-MOND from 
acceleration fluctuation and energy cascade in dark matter 
flow https://doi.org/10.48550/arXiv.2203.05606

6. The baryonic-to-halo mass relation from mass and energy 
cascade in dark matter flow 
https://doi.org/10.48550/arXiv.2203.06899

0. Data https://dx.doi.org/10.5281/zenodo.6541230

1. Inverse mass cascade in dark matter flow and effects on halo mass 
functions https://doi.org/10.48550/arXiv.2109.09985

2. Inverse mass cascade in dark matter flow and effects on halo deformation, 
energy, size, and density profiles https://doi.org/10.48550/arXiv.2109.12244

3. Inverse energy cascade in self-gravitating collisionless dark matter flow and 
effects of halo shape https://doi.org/10.48550/arXiv.2110.13885

4. The mean flow, velocity dispersion, energy transfer and evolution of rotating 
and growing dark matter halos https://doi.org/10.48550/arXiv.2201.12665

5. Two-body collapse model for gravitational collapse of dark matter and 
generalized stable clustering hypothesis for pairwise velocity 
https://doi.org/10.48550/arXiv.2110.05784

6. Evolution of energy, momentum, and spin parameter in dark matter flow and 
integral constants of motion https://doi.org/10.48550/arXiv.2202.04054

7. The maximum entropy distributions of velocity, speed, and energy from 
statistical mechanics of dark matter flow 
https://doi.org/10.48550/arXiv.2110.03126

8. Halo mass functions from maximum entropy distributions in collisionless 
dark matter flow https://doi.org/10.48550/arXiv.2110.09676
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Statistical (correlation-based) 
approach for dark matter flow
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The statistical theory of dark 
matter flow (second order)

Xu Z., 2022, arXiv:2202.00910 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2202.00910

https://doi.org/10.48550/arXiv.2202.00910
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Introduction

 N-body simulations are invaluable to understand dark 
matter flow (DMF). 

 Fundamental problems when projecting N-body 
velocity field onto structured grids:
 Velocity field is only sampled by N-body 

simulations at discrete locations of particles. 
 The sampling has a poor quality at locations with 

low particle density
 Velocity field can be multi-valued and 

discontinuous due to the collisionless nature. 

Review: 
Statistical theory in hydrodynamic turbulence
 Kinematic relations between statistical measures 

 Correlation functions
 Structure functions
 Power spectrum functions

 Incompressible on all scales
 Divergence-free
 Constant density

Approach:
 Use pairwise average for real-space two-point 

statistics to avoid projecting 

 Take advantage of symmetry implied by the 
assumptions of homogeneity and isotropy. 

 Develop kinematic relations between different 
statistical measures

 Identify the nature of DM flow, i.e. incompressible, 
constant divergence, or irrotational flow. 

Goal 1: what are the kinematic relations in 
dark matter flow?

Goal 2: what is the nature of dark matter 
flow on different scales?
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Two-point first order velocity correlation tensor 

( ) ( ) ( )',i iQ u p=x r x x

( ) ( ) ( ) ( )1,i i i iQ Q Q r A r r≡ ≡ =x r r

( ) ( )( ) ( )' 1
13i

i

Q r Ap A r
r r

∂ ∂
= − ∇⋅ = +

∂ ∂
u x x

( ) ( )( ) ( )' 1
1, 0i k

ijk ik
r r Ap A
r r

ε δ ∂ ∇× = ∇× = − + = ∂ 
Q x r u x x

the Levi-Civita symbol 
satisfies the identity 0ijk jkε δ = 0ijk j kr rε = × =r r

' = +x x r
General correlation tensor between velocity field and a scalar field p(x): 

Reduced to function of r due to homogeneity and isotropy:

Divergence of first order tensor:

Curl of first order tensor (always zero):

Pairwise average:  Averaging 
over all particle pairs with the 

same separation r.

 The first order correlation tensor 
must vanish for incompressible flow

 The curl of the first order correlation 
tensor is always zero for any flow

( ) ( )1 3A r pθ= − x

Incompressible 
flow

Constant 
divergence

( )1 0A r =

( ) 0iQ r = ( ) ( )
3i iQ r p rθ = − 

 
x
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Two-point second order velocity correlation tensors 

( ) ( ) ( ) ( )'ij ij i jQ Q r u u= =r x x

( ) ( ) ( ) ( )2 2ij ij i j ijQ Q r A r rr B r δ= = +r

2 2
, 2

14ij i j
A BQ A r r
r r r

∂ ∂ = + + ∂ ∂ 

( ) 2
2

1 0ij imj m
BQ r r A

r r
ε ∂ ∇× = − = ∂ 

( )ˆ ˆT = − × ×u u r rˆ ˆL i iu u r= ⋅ =u r

Second order velocity correlation tensor:

General form of isotropic second order tensor: 

Divergence of second order tensor:

'= −r x x ˆ r=r r

Curl of second order tensor:

Longitudinal velocity:

' ' 'ˆ ˆL i iu u r= ⋅ =u r

Velocity difference or 
Pairwise velocity:

'
L L Lu u u∆ = −

Transverse velocity:

Velocity sum:
'

L L Lu u u∑ = +

( )' ' ˆ ˆT = − × ×u u r r

Pair of particles with 
distance of r

( )( ) ( )', 0ij i i jQ u u= − ∇⋅ =x x

( )( ) ( ) ( )' '
, 0ij i i j jQ u u uθ= − ∇⋅ = − =x x x

Incompressible flow
Constant 

divergence 
flow

Irrotational 
flow

Same even order kinematic 
relations for incompressible flow 

and constant divergence flow

Used to derive 
Kinematic relations
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Two-point second order velocity correlation functions

( ) ' ' 2
2 2 23ij ij i iR r Q u u A r Bδ= = ⋅ = = +u u

( ) 2 ' 2
2 2 2ij i j L LL r Q rr r u u A r B= = = +

( ) ( )'
2 22ij i j T TT r Q n n B r= = ⋅ =u u

( ) ( ) ( ) ( )2 2 22 2R r R r L r T r= = +

Using index contraction of second order tensor to define three scalar correlation functions

( )
'

2

L L
L

L

u u
r

u
ρ = ( )

'

2

T T
T

T

rρ
⋅

=
u u

u
( ) ( ) ( )

1 21
3

u a  = ⋅ 
 

u x u x
One-dimensional 
RMS (root-mean-
square) velocity:

Total correlation function:

( ) ( ) ( )
0

sin
u

kr
R r E k dk

kr
∞

= ∫

( ) ( ) ( )
0

2 sinuE k R r kr kr dr
π

∞
= ∫

( ) ( ) 1
0 2 20 0

1
2u ul R r dr E k k dk

u u
π∞ ∞ −= =∫ ∫

Longitudinal correlation function

Transverse correlation function

Two correlation coefficients can be defined for 
longitudinal and transverse velocity:

and

The velocity power spectrum and correlation function 
form Fourier transform pair

Integral scale: the length scale within which velocities 
are appreciably correlated
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Kinematic relations for correlation functions

nth order spherical 
Bessel function of 

the first kind: ( ) 2
2 23 0

1 r

iR R y y dy
r

= ∫

Relations between 
correlation functions( )2

2 2 ,

1
2 r

T r L
r

= ( )3
2 22 ,

1
r

R r L
r

=

( ) ( ) ( )2
2 2, ,

1
2ij i j ijr r

Q r L rr r L
r

δ = − − 

For incompressible flow or constant 
divergence flow:

( ) ( ) ( )1
2 0

2
u

j kr
L r E k dk

kr
∞

= ∫
( ) ( ) ( ) ( )1

2 00 u

j kr
T r E k j kr dk

kr
∞  

= − 
 

∫

( ) ( )0 22 20 0

1 1
ul R r dr L r dr

u u
∞ ∞

= =∫ ∫

Correlation tensor in 
terms of correlations

Relations to power 
spectrum function

Integral length scale

( )nj kr
Characterizing the type of flow

2 2iR T=

For incompressible or 
constant divergence flow: 2 2iR L=

For irrotational flow:

For irrotational flow:

( )3
2 22 ,

1
r

R r T
r

= ( )2 2 ,r
L rT=

( ) ( )2 2,

i j
ij ijr

r r
Q r T T

r
δ= +

( ) ( ) ( ) ( )1
2 00

2 2u

j kr
L r E k j kr dk

kr
∞  

= − 
 

∫

( ) ( ) ( )1
2 0

2
u

j kr
T r E k dk

kr
∞

= ∫

( ) ( )0 22 20 0

1 1
ul R r dr T r dr

u u
∞ ∞

= =∫ ∫
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Correlation functions from N-body simulation 
and nature of dark matter flow

The variation of two-point second order velocity correlation 
functions (normalized by u2) with scale r at z=0 

Using correlation functions to 
characterize different types of flow.

rt

L2 and T2
Crossover at r= rt

<0>0L2 <0 at large r 
T2 >0 for all r
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Velocity correlation and collisionless particle 
“annihilation”

'
1 2 3mv mv m v+ = ( )3 1 2'

mv v v
m

= +

( ) ( )
2 2

22 2
3 1 2 0' '2 1L L

m mv v v u
m m

ρ   = + = +   
   

2 2 2 2 ' 2 ' 2
1 2 3

1 1 1
2 2 2

mc mv mc mv m c m v+ + + = +

( )
22 2 2 2

'
0 02 2 4 21 1 2 1

2 4 2
L L L L

L L

u u u u
m m m

c c c c
ρ ρ

      = + + − + ≈ + −      

Particle “annihilation” (r=0) leads to extra mass converted 
from kinetic energy if gravity is the only interaction and no 
radiation is produced from that “annihilation”. 

The correlation coefficients for longitudinal 
velocity and  for transverse velocity

Momentum conservation:

m, v1 m, v2 m’, v3
annihilation

Mass-energy conservation:

( ) ( ) ( )2 2 2
h v h h hm m mσ σ σ= + 2 2 1 2cor hρ σ σ= ≈

Equipartition: halo T and halo group T
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Modeling velocity correlation functions on large scale

Transverse velocity correlation function T2
varying with r at different redshifts z 

On large scale, transverse velocity correlation 
can be well modelled by exponential function:

2 21.4r Mpc h≈

( ) ( )2
2 0 2, expT r a a u r r a= − ∝ ( )2

0 0 0.45a u u a=

Redshift-independent length scale, 
might be related to the size of sound horizon 

( ) 2
2 0

2 2

, exp 1r rL r a a u
r r

  
= − −  

  

( ) ( )' 2
2 0

2 2

, 2 exp 3r rR r a R r a u
r r

  
= ⋅ = = − −  

  
u u

( ) ( )0 2 0 22 20 0

1 1 2
2ul R r dr R r dr a r

u u
∞ ∞

= = =∫ ∫

Using kinematic relations for irrotational flow 
on large scale

Longitudinal 
correlation

Total 
correlation

Correlation 
length
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Longitudinal and total velocity correlation

The variation of longitudinal velocity correlation 
function L2 with scale r and redshift z

The variation of total velocity correlation 
function R2 with scale r and redshift z
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Density and potential correlations on large scale
Using kinematic relations and exponential transverse 

velocity correlation, we can analytically derive all 
correlations for velocity, density and potential on large scale.

( )maHf
δ η ∇⋅
≈ = −

Ω
u ( )

4
mHf

G a
φ

π ρ
Ω ∇

= −u
2

24 G a
φδ η

π ρ
∇

≈ =

Linear perturbation theory and Zeldovich approximation 
on large scale: 

( ) ( )log 1η δ δ= + ≈xLog-density field: 

( )
( )( )

22
0

2
2 2 2 2

1, exp 7 8
m

a u r r rr a
rr r r raHf

ξ
      
 = ⋅ − − +     
 Ω       

( ) ( )
( )( )

2
2 0

23 0
2 2 2

3 3, , exp 4
r

m

a u r rr a y a y dy
r rr r raHf

ξ ξ
  

= == − −  
Ω   

∫

( ) ( ) ( )

2

' 2 2 0
0 2

2 2

1 9 exp 1
2 8 m

aH r rR a u r a
f r rφ φ φ

      
= ⋅ = − + ∝       Ω      

x x

Density correlation: 

Averaged density correlation: 

Potential correlation: 

Density correlation at z=0 and 
comparison with model
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Velocity/density/potential spectrum functions on 
large scale

( )
( )( )

2
2

0 32
2

2

8

1 1
u

kE k a u
r krπ

−

=
+

( ) 4
uE k k∝ 2 1kr 

( ) 2
uE k k −∝ 2 1kr 

Signature of Burger’s equation in 
weakly nonlinear regime

( ) 2
max 2 0

256
125uE k r a u

π
=max 2 2k r =

( )
( )( ) ( )( )

2
0

2 32
2 2

16 1

1 1m

a uE k
aHf r kr

δ
π

=
Ω +

( ) ( )
( )( ) ( ) ( )( )

2
2 2 0 2

2 32 2

2 2

32 1, 2 ,
1 1m

a u rP k a E k a k
aHf kr kr

δ δ
ππ= =

Ω +
( )

( )( )
2

0 2
max 2

128,
27 m

a u rP k a
aHf

δ
π

=
Ω

( ) ( ) ( )( )
2 2 4

0
32

2
2

18

1 1m

a u kaHE k
r f kr

φ π

− 
=   Ω  +

Velocity spectrum function: 

for

for

k4 spectrum due to 
vanishing linear momentum

k4

k-2
Eu

k
kmax

k-5/4

Small 
scale

Density spectrum function: 

Matter power spectrum: 

Potential spectrum function: 
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Second order velocity dispersion functions and 
energy distribution in real space

( ) ( ) ( ) ( )22 ' '1
3u u urr

r E k W kr dk E r drσ
∞ ∞

−∞
= =∫ ∫

( ) ( ) ( ) ( )1
3

3 sin cos 3
j x

W x x x x
x x

= − =  

( ) ( ) ( )22 1 1
3d ur E k W kr dkσ

∞

−∞
 = − ∫

( ) ( )( )3 2 4
2 2 2

1 12
24 uR r r r r

r r r r r
σ∂  ∂ ∂  =   ∂ ∂ ∂  

( ) ( )2 2 2
u dr r uσ σ+ =

( ) ( )2
u

ur

r
E r

r
σ∂

= −
∂

Dispersion function for smoothed velocity 
(energy contained in scales above r):

Window function for tophat spherical filter:

Energy contained in 
scales between [r, r+dr]

Energy contained in scales below r:

Energy decomposed into 
scales below and above r:

Relations to velocity correlation function:

Variation of two dispersion functions with scale r (simulation). 
Fraction of energy contained in large scale decreases with time.
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Second order velocity structure functions

( ) ( ) ( ) ( )( )22 ' 2
2 22lp

L L L LS r u u u u L r= ∆ = − = −

( ) '
1
lp

L L LS r u u u= ∆ = −

( ) ( )( ) ( )( )' 2
2 2 20

2 lim 2l
L Lr

S r u u L r u L r
→

= − = −

( ) ( )2 2
lp lS r S r≠

( ) ( ) 2
2 20 0

lim lim
r r

L r T r u
→ →

= =
The variation of longitudinal velocity dispersion 

<ΔuL
2> with scale r at different redshifts z 

2 2

0
lim 2Lr

u u
→

= 2 2lim Lr
u u

→∞
=

2 2
Lu u≠because of

Second order longitudinal structure function 
(pairwise velocity dispersion):

Second order longitudinal structure function (modified):

( ) ( ) ( )2 ' mlp
m L L LS r u u u= ∆ = −

Longitudinal Structure functions are moments of 
pairwise velocity:

2
2 20

lim lim 2lp lp

r r
S S u

→ →∞
= =

( ) ( )2 2lim lim 0
r r

L r T r
→∞ →∞

= =
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Second order velocity structure functions
Total velocity structure function:

( ) ( ) ( )22 ' 2
2 26 2ip

LS r u R r= ∆ = − = −u u u

( ) ( )2
2 26 2iS r u R r= −

( ) ( ) ( )( )2 00
4 1i

uS r E k j kr dk
∞

= −∫

( ) ( )( )3 2 4
2 2 2

1 12
12

i
dS r r r r

r r r r r
σ∂  ∂ ∂  =   ∂ ∂ ∂  

Structure function for enstrophy and real space 
enstrophy distribution:

( ) 2

0n uE E k k dk
∞

= ∫Enstrophy:

( ) ( ) ( ) ( )2 2 2 ' '
2 0

1
2 3

x

u nrr

S r
E k k W kr dk E r dr

r
∞ ∞

= =∫ ∫

( )( ) ( )24
22

21 1
3

i
x S r

S r r
r r r r r

∂∂ ∂  = ∂ ∂ ∂ 

( ) ( ) ( )2
2 2x

nrE r S r r
r
∂  = −  ∂

Total velocity structure function (modified):

Relation to velocity spectrum function:

Relation to velocity dispersion function:

Enstrophy of smoothed velocity by a filter of size r:  

Real space distribution of enstrophy between [r r+dr]:  

Relation to total structure function:

( ) ( )2 2
ip iS r S r≠ 2 2

Lu u≠because of
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Kinematic relations for structure functions
For incompressible flow or constant divergence flow:

( ) ( ) ( )1
2 0

4 1 3
3

l
u

j kr
S r E k dk

kr
∞  

= − 
 

∫

( ) ( )3
2 22

1i lS r r S r
r r

∂  =  ∂

( ) ( )( )3 2 4
2 5

12
12

l
dS r r r r

r r r
σ∂ ∂ =  ∂ ∂ 

Relation between different structure functions:

Relation to velocity dispersion functions:

For irrotational flow:

( ) ( ) ( ) ( )1
2 00

4 1 3 6
3

l
u

j kr
S r E k j kr dk

kr
∞  

= − + 
 

∫

( )
( )2 3

22

1i
l

rS r
r S r

r r r

 ∂ ∂   =  ∂ ∂

Relation between different structure functions:

The variation of longitudinal velocity structure 
function Slp

2 with scale r at different redshifts z 
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Energy and enstrophy distribution in real space

The real space distribution of energy   
on scale r at different redshifts

The real space distribution of enstrophy 
on scale r at different redshifts
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Correlation functions of velocity gradients and 
Kinematic relations

( ) ( )θ = ∇ ⋅x u x ( ) ( )= ∇×ω x u x

2 ' ' ' 2 2
2

1 Rr
r r r

θ θ ∂∂  −∇ ⋅ = ⋅ + ⋅ = −  ∂ ∂ 
u u ω ω

( )2
22

1
4

iR R r S r
r r rθ

∂ ∂ + =  ∂ ∂ 
ω

'
2 2

22
,

1
2

r

BR r A r
r r

⋅   ∂
= = −  ∂  

ω

ω ω

'
2 22 2

22
,

1 4
2 2 r

A BR r A r r
r r rθ

θ θ⋅  ∂ ∂  = = − + +  ∂ ∂  

Divergence of velocity: Vorticity (curl):

( ) ( )2 ' 2

0

sin
2 u

kr
E k k dk

kr
∞

−∇ ⋅ = ∫u u

( )( )3 2
22 2

1 1
96

xR R r S r r
r r r r rθ

∂  ∂ ∂  + =   ∂ ∂ ∂  
ω

( )3
2' 2 22

2 2 2

1 1 1 r LRr r
r r r r r r r r

  ∂∂∂ ∂ ∂    ⋅ = − = −   ∂ ∂ ∂ ∂ ∂     
ω ω

( ) ( ) ( )' 2

0

sin1
2 u

kr
R r E k k dk

kr
∞

= ⋅ = ∫ω ω ω

Vorticity correlation (divergence is zero):

( )3
2' 2 22

2 2 2

1 1 1 r TRr r
r r r r r r r r

θ θ
  ∂∂∂ ∂ ∂    ⋅ = − = −   ∂ ∂ ∂ ∂ ∂     

( ) ( ) ( )' 2

0

sin1
2 u

kr
R r E k k dk

krθ θ θ
∞

= ⋅ = ∫

Divergence correlation (vorticity is zero):

For incompressible flow or constant divergence flow:

For irrotational flow:

Divergence and vorticity correlations:
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Modeling the longitudinal structure function on large 
scale

2 2

1 2

1 exp 1L d
d d

r ru u a
r r

   
= + − −   

   

( ) ( ) ( )( )2 2
2 22lp

L LS r u u L r= ∆ = −

7 40.44da a=

1 11.953dr Mpc h=
1 4

2 27.4dr a Mpc h=

Structure function (pairwise velocity dispersion):

Modeling longitudinal velocity dispersion on large scale:

The variation of normalized longitudinal velocity 
dispersion 
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Modeling the longitudinal structure function on small 
scale (two-thirds 2/3 law)

( ) ( ) ( )( )2 2
2 22lp

L LS r u u L r= ∆ = −

Second order structure function (pairwise velocity dispersion):

Construct reduced structure function that is purely determined 
by the rate of energy cascade εu:

Variation of normalized reduced longitudinal 
structure function and two-thirds law

( ) 2
2 2 2lp lp

rS S r u= −

2
20

lim 2lp

r
S u

→
=with

( )2 33 2 * 2 3
2 2
lp
r uS a rβ ε= −( )2 3 2 3

2
lp
r uS rε∝ −

For hydrodynamic turbulence: 20
lim 0lp

r
S

→
=

( )2 2m s :uεand ( )3 2m s

Dimensional analysis leads to two-thirds law for 2
lp
rS

or

( ) ( )2 32 2 *
2 2 22 2lp lp

r sS r S u u r rβ = + = + 

By introducing a length scale rs: upper limit for two-thirds law

3
0 0

0 0
0

4 2 1.58
9 3s

u

u ur u t Mpc h
Hε

= − = = ≈ *
2 9.5β ≈and

Two-thirds law might be used to predict dark matter particle properties
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Modeling the longitudinal structure function on 
small scale (one-fourth ¼ law)

1/4 law for (modified) structure function on small scale:
Also see slides for additional information. 

( ) 1 4
2
lS r r∝

( )
( ) ( )

( )

2

0

2

0

4

4

r

r

GM y y y dy
yU r

x x dx

ρ π

ρ π
= −
∫

∫
( ) ( ) nmr a r rξξ

−
= ( ) ( )( ) ( )0 01

nmy y a y rξρ ρ ξ ρ
−

= + ≈

( ) ( )
( )

2 2
033

5 2 2 5 2
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1/4 law for (modified) longitudinal structure function 
can be used to derive all other velocity correlations 
on small scale:
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Modeling velocity correlation functions on small scale

( )2
2 12 nlS u r r=

( ) 2
2

1

1
n

rL r u
r

  
 = −  
   

( )2
2

1

3 3
n

rR u n
r

  
 = − +  
   

2
2

1

21
2

n
n rT u

r

  +
 = −  
   

( ) ( )( )
2 2 2

1 1

24 2 1.0745
4 6

n nn

d
r rr u u

n n r r
σ

   ⋅
= ≈   + +    

( ) ( ) 2
2

1

2 3
n

i rS r n u
r

 
= +  

 

( ) ( )
( )( )

2 2
2

1 1

6 3 2
0.6063

4 2

n nn
x n n r rS r u u

n n r r
+ ⋅    

= =   + +    

( ) ( ) ( )( )' 2
2

1

1 31
2 2

nn n n rR u
r r

+ +  
= ⋅ =  

 
ω ω x ω x

( ) ( )12
1

nn
uE k Cu r k − +−= ( ) ( )12

1
nnE k Cu r k −−=ω

( ) ( )( )
( ) ( )1

2 3 3 2
0.4485

2 3 2 2n

n n
C

n−

+ Γ +
= − =

Γ Γ −

1 4n ≈

( ) * 3
1 1r a r a−≈ *

1 19.4r Mpc h≈

with

and

Using kinematic relations on small scale:

Longitudinal 
correlation

Transverse 
correlation

Total 
correlation

Velocity dispersion function for energy contained 
below scale r:

Total structure 
function

Structure 
function for 
enstrophy

Vorticity 
correlation

Velocity & 
vorticity 

spectrum

Proportional 
constant



183

Modeling the velocity correlations on entire range

The fitted velocity correlation functions compared 
to original correlations from N-body simulation

 Correlation functions are modelled on both large and 
small scales

 Need smooth and differentiable velocity correlations for 
the entire range of scales 

 Correlations of vorticity and divergence can be obtained 
as derivatives of velocity correlations
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Final fitted correlation function is obtained by parameter 
optimization using correlations from N-body simulation
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Modeling divergence and vorticity correlations on 
entire range of scales

 With correlation functions modelled on entire range of  
scales, correlations of divergence and vorticity can be 
obtained using kinematic relations.

 Divergence is negatively correlated on scale  

 Vorticity is negatively correlated for scale r between 
1Mpc/h and 7Mpc/h (pair of particles mostly from 
different halos) and positively correlated on small 
scale (pair of particles from the same halo).

30r Mpc h>

Variation of correlation functions of divergence 
and vorticity with scale r at z=0

 Vorticity is dominant on small scale while divergence is 
dominant on large scale.
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Summary and keywords

 Identify connections with homogeneous isotropic turbulence for the development of the statistical 
theory in terms of correlation, structure, dispersion, and spectrum functions

 Identify the nature of peculiar velocity in dark matter flow: constant divergence flow on small scale 
and irrotational flow on large scale. 

 Develop kinematic relations between different statistical measures
 The limiting correlation coefficient of velocity ρ=1/2 on the smallest scale (r=0) is a unique feature of 

dark matter flow (ρ=1 for incompressible flow) along with the implications for particle annihilation
 On large scale, the transverse velocity correlation has an exponential form with a comoving length 

scale r2=21.3Mpc/h. All correlation/structure/dispersion/spectrum functions for velocity, density, and 
potential can be derived analytically using kinematic relations for irrotational flow. 

 On small scale, the longitudinal structure function follows a one-fourth law S2
l~r1/4, along with other 

correlation/structure/dispersion/spectrum functions obtained from kinematic relations for constant 
divergence flow.

Velocity correlation tensor Longitudinal velocity Two-thirds law / one-fourth law
Kinematic relations Transverse velocity Spectrum functions

Correlation functions Structure functions Dispersion functions
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