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Preface
Dark matter, if exists, accounts for five times as much as ordinary baryonic 
matter. Therefore, dark matter flow might possess the widest presence in 
our universe. The other form of flow, hydrodynamic turbulence in air and 
water, is without doubt the most familiar flow in our daily life. During the 
pandemic, we have found time to think about and put together a systematic 
comparison for the connections and differences between two types of flow, 
both of which are typical non-equilibrium systems. 

The goal of this presentation is to leverage this comparison for a better 
understanding of the nature of dark matter and its flow behavior on all 
scales. Science should be open. All comments are welcome.

Thank you!



3

Data repository and relevant publications 
Structural (halo-based) approach: Statistics (correlation-based) approach:

0. Data https://dx.doi.org/10.5281/zenodo.6569898

1. The statistical theory of dark matter flow for velocity, density, 
and potential fields 
https://doi.org/10.48550/arXiv.2202.00910

2. The statistical theory of dark matter flow and high order 
kinematic and dynamic relations for velocity and density 
correlations https://doi.org/10.48550/arXiv.2202.02991

3. The scale and redshift variation of density and velocity 
distributions in dark matter flow and two-thirds law for 
pairwise velocity https://doi.org/10.48550/arXiv.2202.06515

4. Dark matter particle mass and properties from two-thirds law 
and energy cascade in dark matter flow 
https://doi.org/10.48550/arXiv.2202.07240

5. The origin of MOND acceleration and deep-MOND from 
acceleration fluctuation and energy cascade in dark matter 
flow https://doi.org/10.48550/arXiv.2203.05606

6. The baryonic-to-halo mass relation from mass and energy 
cascade in dark matter flow 
https://doi.org/10.48550/arXiv.2203.06899

0. Data https://dx.doi.org/10.5281/zenodo.6541230

1. Inverse mass cascade in dark matter flow and effects on halo mass 
functions https://doi.org/10.48550/arXiv.2109.09985

2. Inverse mass cascade in dark matter flow and effects on halo deformation, 
energy, size, and density profiles https://doi.org/10.48550/arXiv.2109.12244

3. Inverse energy cascade in self-gravitating collisionless dark matter flow and 
effects of halo shape https://doi.org/10.48550/arXiv.2110.13885

4. The mean flow, velocity dispersion, energy transfer and evolution of rotating 
and growing dark matter halos https://doi.org/10.48550/arXiv.2201.12665

5. Two-body collapse model for gravitational collapse of dark matter and 
generalized stable clustering hypothesis for pairwise velocity 
https://doi.org/10.48550/arXiv.2110.05784

6. Evolution of energy, momentum, and spin parameter in dark matter flow and 
integral constants of motion https://doi.org/10.48550/arXiv.2202.04054

7. The maximum entropy distributions of velocity, speed, and energy from 
statistical mechanics of dark matter flow 
https://doi.org/10.48550/arXiv.2110.03126

8. Halo mass functions from maximum entropy distributions in collisionless 
dark matter flow https://doi.org/10.48550/arXiv.2110.09676
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Structural (halo-based) 
approach for dark matter flow
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The mean flow, velocity dispersion, 
energy transfer and evolution of 

rotating & growing dark matter halos
Xu Z., 2022, arXiv:2201.12665 [astro-ph.GA]
https://doi.org/10.48550/arXiv.2201.12665

https://doi.org/10.48550/arXiv.2201.12665


83

Introduction

Existing study of halos mostly focus on the spherical non-rotating non-growing halos with a 
vanishing radial flow (fully virialized halos with slow mass accretion in their late stage). 

 Goal 1: Explore solutions of mean flow and dispersions for spherical,
axisymmetric, growing and rotating halos (fast mass accretion in their 
early stage) with an effective angular velocity ωh(t) and varying size rh(t)

 Goal 2: Explore the transition of halos from early to late stage
 Goal 3: Explore the role of halos in energy transfer between mean flow 

and random fluctuation.

Review: In hydrodynamic turbulence, “Reynolds stress” facilitates the one-way energy exchange 
from coherent (mean) flow to random fluctuation (turbulence) and enhances system entropy.

Axisymmetric 
means no φ
dependence.

The polar flow 
(meridional flow) : ( ), ,u u r tθ θ θ=

azimuthal flow 
(zonal flow): ( ), ,u u r tϕ ϕ θ=

( ),r ru u r t=Radial flow: ( )2 2 , ,rr rr r tσ σ θ=

( )2 2 , ,r tθθ θθσ σ θ=

( )2 2 , ,r tϕϕ ϕϕσ σ θ=

( ),h h r tρ ρ= ( ),r r r tφ φ=Density: Potential:
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Reduced equations and anisotropic parameter 

( )2 2 2 2
2

2

1

1 2 1 0
2

h rrr r r
r rr

h rr

uu uu
t r r r r

θθ ϕϕ ϕρ σ σ σ φσ
ρ σ

∂  + +∂ ∂ ∂
+ + + − + =  ∂ ∂ ∂ ∂ 



2
2 2 2 sin

cos
u θθ
ϕ θθ ϕϕ

σθσ σ
θ θ
∂

= − +
∂

0r
r

u u u u
u

t r r
ϕ ϕ ϕ∂ ∂
+ + =

∂ ∂

The full momentum equations (Jeans’ equation) reduces to  

( )2

2

1 0h rh
r u

t r r
ρρ ∂∂

+ =
∂ ∂

( )
2

,rr Gm r t
r r
φ∂

=
∂

( )
2

,1
4

r
h

m r t
r r

ρ
π

∂
=

∂

2 2 2

1 21
2h

rr

uθθ ϕϕ ϕσ σ
β

σ
+ +

= −
2 2

21
2h

rr

θθ ϕϕσ σ
β

σ
+

= −

The continuity equation reduces to:  

2 2 2 0r rθ ϕ ϕθσ σ σ= = =

Observations of flow on rotating sphere strongly suggest 
that as the rotation rate increases, the azimuthal flow 
becomes dominant and the polar flow may be neglected.

0uθ ≈With and

Six equations and 8 
Variables; need extra 

closures to solve;

Anisotropic parameter should include effect of uφ or 
centripetal force:

Circle: uφ ; Square: radial flow urp ; Diamond: uθ

Old New

Polar flow can be neglected

Simulation

For θ:

For φ:
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Evolution of halo angular momentum

( ) ( ) ( )
2

2

1 0h rh r
h

u u ru u u
t r r r

ϕϕ
ϕ

ρρ
ρ

 ∂∂  + + =
∂ ∂

( ) ( ) ( )3 2

0
2 , sinh h

h h h h r h
H rr r u r d u r
t t

π

ϕπ ρ θ θ θ∂ ∂ = − ∂ ∂ ∫

( )( )3 2

0 0
2 sinhr

h hH r r u d dr
π

ϕπ ρ θ θ= ∫ ∫

The halo angular 
momentum is 
conserved only if 

( )h
r h

r u r
t

∂
=

∂

However, for 
growing halos 

0hr t∂ ∂ >
( ) 0r hu r ≤

From continuity and momentum equations:

The halo angular momentum is: 

Time evolution of angular momentum:

0hH
t

∂
>

∂

 In hydrodynamic turbulence, angular momentum 
is conserved during vortex stretching.

 In dark matter flow, halo angular momentum is 
not conserved and always increasing with time.

 The Tidal Torque Theory (TTT) relates the 
angular momentum to the misalignment between 
the tidal shear field and halo shape.

 TTT predicts a linear increase with time t for halo 
with a fixed given mass 

 A growing halo may obtain its momentum 
through continuous mass acquisition and 2

hH t

hH t
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Evolution of halo rotational kinetic energy

( ) ( )2 22
2

2

1 2 0
h rh r

h

productionderivative advection

u u ru uu
t r r r

ϕϕ
ϕ

ρρ
ρ

 ∂∂  + + =
∂ ∂

 

From continuity and momentum equations:

( )2 2

0 0

1 2 sin
2

hr

a hK r u d dr
π

ϕπ ρ θ θ= ∫ ∫

The halo rotational kinetic energy is 
obtained by integration: 

Time evolution of rotational kinetic energy:

( ) ( ) ( ) ( )2 2 2 2

0 0 0

21

, sin 2 sinhra h r
h h h h r h h

K r ur r u r d u r r u d dr
t t r

π π

ϕ ϕπ ρ θ θ θ π ρ θ θ∂ ∂ = − − ∂ ∂ ∫ ∫ ∫




 In hydrodynamic turbulence, the “Reynolds” stress 
facilitates the one-way energy exchange from coherent 
(mean) flow to random fluctuation and enhances entropy.

 In dark matter flow, the production term describes the 
fictitious stress acting on the gradient of mean radial flow 
to facilitate the energy transfer between mean azimuthal 
flow and random fluctuation.

 Since ur is positive in core region and negative in outer 
region, the energy transfer is two-way, i.e. energy is drawn 
from random motion to mean flow in outer region and from 
mean flow to random motion in core region.

 However, for entire halo, there is a net transfer from mean 
flow to random flow to enhance the halo entropy.

Fictitious 
stress

gradient

1: surface contribution from 
mass cascade
2: bulk cont. from energy transfer 



General solutions for rotating, and growing halos

( ) ( ) ( ) ( )2 2 2
0

1 2

, , , , , ,rr t r t r t u r tθθ ϕ ϕσ θ σ α θ= +




( ) ( ) ( ) ( )2 2 2
0, , , , , ,rr t r t r t u r tϕϕ ϕ ϕσ θ σ β θ= +

( ) ( ) ( ) ( )2 2 2
0, , , , , ,rr rr t r t r t u r tϕ ϕσ θ σ γ θ= +

2
2 2 2 sin

cos
u θθ
ϕ θθ ϕϕ

σθσ σ
θ θ
∂

= − +
∂

0r
r

u u u u
u

t r r
ϕ ϕ ϕ∂ ∂
+ + =

∂ ∂

( ) ( ) ( ) ( ) ( ), , h su r t t r t F x Kϕ ϕ ϕθ ω θ=

( )

( )

ln ln
ln ln ln

lnln
ln

h s
h

s
h

ru x xF t t
rx x u x
t

ϕ

ω∂ ∂ + + ∂ ∂ ∂ =
∂∂ −
∂

Introduce reduced 
spatial/temporal coordinate: 

( ) ( ) ( )
,

s h

r crx r t
r t r t

= =

( ) ( )sinK θα
ϕ θ θ=

1
2
ϕ ϕ

θ
ϕ

β α
α

α
+ −

=

Key: decomposition of velocity dispersion:
Separation of 

variables: 

 Spin causes velocity anisotropy; Velocity dispersions can 
be expressed as a function of azimuthal flow uφ. 

 Velocity dispersion is expected to be isotropic for non-
rotating halos with a spherical symmetry. 

 For spherical halos with a finite spin, velocity dispersions 
are only isotropic along the axis of rotation (θ=0)

( ) ( ) ( ) ( )2 2 2 2
0, 0, , 0, , 0, ,rr rr t r t r t r tθθ ϕϕσ θ σ θ σ θ σ= = = = = =

with an 
angular 

exponent

Momentum 
equation for θ:

Momentum 
equation for φ:

Mass 
cascade

Halo spin

Radial flow

1: Axial-dispersion 2: Spin-dispersion



88

( ) ( )
2
01 , 0h rr r r

r a
h

u uu F r t
t r r r

ρ σ φ
ρ

∂∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂

( ) ( )2

2

ln ,ln 2 2
ln ln

ah
a

u rF r t
x x u
ϕ ϕ

ϕ ϕ

γ ρ α
γ

∂ ∂
+ + − =

∂ ∂

( )2 2 2 2
2

2

1 2 1 0
2

h rrr r r
r rr

h rr

uu uu
t r r r r

θθ ϕϕ ϕρ σ σ σ φσ
ρ σ

∂  + +∂ ∂ ∂
+ + + − + =  ∂ ∂ ∂ ∂ 

( )1
2a

ϕ ϕ

ϕ

α β
α

γ
+ +

=

Momentum 
equation for r:

General solutions for rotating, and growing halos

and

Two anisotropy 
parameters are related: 

The coupling function reflects the coupling between axial-dispersion and spin-dispersion

( )1 2 2
0

1
1

a
h

r uϕ ϕ

αβ
σ γ
−

=
+

For virialized “small” halos with slow mass accretion (late 
stage), the axial- and spin-dispersions are decoupled.
Axial-dispersion is dominant to balance gravity.

Equation for axial-dispersion: Equation for spin-dispersion:

( ), 0aF r t =

For “large” halos with fast mass accretion (early stage), 
the axial- and spin-dispersions are decoupled. 
Spin-dispersion is dominant to balance gravity.

2 2
0r uϕ ϕσ γand 1 0hβ ≈

2 2
0r uϕ ϕσ γ 1 1h aβ α≈ −( ), r

aF r t
r
φ∂

≈ −
∂

and
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Two limiting situations: “small” and “large” halos

( )
( )

( )
( )

1 ,r s
F

h

F m r t
C

F c m t
= =

The ratio of core mass to halo mass: 

( ) ( ) ( )
( )

'

3 2,
4

h
h

s

m t F x
r t

r x F c
ρ

π
=( ) ( ) ( )

( )
,r h

F x
m r t m t

F c
=

( ),cr hm zν δ σ= 1.68crδ ≈

σ is (root mean square) fluctuation of 
the smoothed density

We still require a clear definition of “small” and “large” halos.
Enclose mass within radius r Halo density 

Properties of “large” halos: 
 Early stage of halo life with high peak height ν
 Extremely fast mass accretion
 A growing core with scale radius rs~t
 Growing halo size rh~t and halo mass mh~t
 Constant halo concentration c≈3.5 (limiting c)

Peak height: From spherical 
collapse model

At same redshift z, large halos has higher ν

Properties of “small” halos: 
 Late stage of halo life with low peak height ν
 Extremely slow mass accretion
 A stable core, constant scale radius rs, and 

constant core-to-halo mass ratio CF
 Increasing concentration c~t2/3~a and mh~F(c)
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Solutions for “small” halos at late stage

Properties of “small” halos (continued): 
 Virialized and bound with vanishing radial flow
 Incompressible (proper velocity) with
 More spherical and isotropic  
 Axial-dispersion dominant over spin-dispersion
 Azimuthal flow uφ strongly dependent on polar angle θ
 Negligible surface energy 

0∇⋅ =v

The variation of mean flow and velocity dispersions 
from N-body simulation

1aα = 1 0hβ =

2 2 2 2
rr uϕϕ θθ φσ σ σ= = +

1 ϕ ϕ ϕα β γ+ = =

1θα =

0ru uθ= =( ), 0aF r t =

Anisotropy parameters : 

Angular exponent : 

1ϕα = 2ϕ ϕβ γ= =

Mean flow: 
Coupling 
function: Velocity dispersions: 
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Energy equipartition along three directions

 Due to finite spin, kinetic energy is not 
equipartitioned along each direction with the 
greatest energy along the azimuthal direction and 
the smallest along the polar direction. 

 Different from usual objects, halos are hotter with 
faster spin due to energy transfer between mean 
flow and random motion. The variation of dispersion parameters 

αφ, βφ, and γφ

rϕθ 2 2 2
0 2rr r uϕσ σ= +2 2 2
0 2r uϕϕ ϕσ σ= +2 2 2
0r uθθ ϕσ σ= +2uϕ

2 2 2
0rr r rσ σ σ= =2 2

0rϕϕσ σ=2 2
0rθθσ σ=
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Solutions for “large” halos at early stage

Properties of “large” halos (continued): 
 Non-virialized with non-zero self-similar radial flow
 Spin-dispersion dominant over axial-dispersion
 Azimuthal flow uφ is less dependent on polar angle θ
 Non-zero surface energy The variation of mean flow and velocity dispersions 

from N-body simulation

1h hβ β≈

2 2 2 2
rr uϕϕ θθ φσ σ σ= = +

1θα 

0uθ =

Anisotropy parameters : 

Angular exponent : 

1ϕα 1ϕ ϕβ α= +

Mean flow: 
Coupling 
function: Velocity dispersions: 

( ), r
aF r t

r
φ∂

≈ −
∂

10ϕ ϕγ α≈ +
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Solutions for “large” halos at early stage

( ) ( ) ( ) ( ) ( ), , , f h s

F x
u r t u x t r t

xϕ ϕθ θ α ω= =

( ) ( ) ( )
( )
( )'h r

s

F xtu x u r x
r t F x

= = −

( )
2

216
3f g

c
F c

α γ
π

=( )
2

13 1
2 2h

h f

c H t
F c

ω
α α

− 
= − ∝ 
 

( ) ( ) ( )
( ) ( ) ( ) ( )2 ' '4

2 ' 5 418 fx x

F y F y F y F yxx dy dy
F x F x y yϕγ λ

∞ ∞ 
= + 

 
∫ ∫

( )
( )( )

2

2

9

3 2 1 2
f

h

F c

c

π
λ

α
=

−

( )1 2 2
0

1
1

a
h

r uϕ ϕ

αβ
σ γ
−

=
+

( )1
2a

ϕ ϕ

ϕ

α β
α

γ
+ +

=

Radial flow: 

Azimuthal  
flow: 

Angular 
velocity: and

Dispersion 
parameter: 

( ) ( )
( )
( )

( ) ( )
( )

2 22 2
2
0 2 2 ' 2 ' 2 ' 3

2 2
4

cir
r x

x

F x F x F xv xx dx
c F x x F x x F x x

σ
π

∞
∞   = − −  
   

∫
Axial-

dispersion: 

The variation of azimuthal flow from 
N-body simulation and comparisonAnisotropic 

parameters: 

1ϕ ϕβ α= + 10ϕ ϕγ α≈ +

hα

Deformation 
parameter: 

and
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Angular exponent and anisotropic parameters
The variation of angular exponent αθ and 
anisotropic parameter αa

Variation of new (βh1) and traditional 
anisotropic parameter (βh) and comparison
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Halo momentum and energy in terms of F(x)

( ) ( ) ( )2 2 2 2 2 2
20 0

1 24 1hr c

g h h g h
h

r r r r dr r xF x dx r
m c F c

π ρ γ
 

= = − = 
 

∫ ∫
22

3 h gI m rω = 22
3h h gH rω=

3 2 0
1 2 3 0

0 0 3

hp h

p h h hpV
h

hp

G H
dV H G

m
G

ρ
 −
 ⊗ =  
  

∫ x u
( ) ( )2

0 0

1 3 24 1
2

hr c

h h r h
h

L r u dr F x dx Hr
m cF c

π ρ
 

= = −  
 

∫ ∫

( ) ( )2

0 0

1 1 44 1
2

hr c

hp h rp h
h

L r u dr F x dx Hr
m cF c

π ρ
 

= = −  
 

∫ ∫

( ) ( )3 2
20 0

1 3 34 1
2

hr c

h h r h
h

G r u dr xF x dx Hr
m c F c

π ρ
 

= = − 
 

∫ ∫

( ) ( )3 2
20 0

1 1 54 1
2

hr c

hp h rp h
h

G r u dr xF x dx Hr
m c F c

π ρ
 

= = − 
 

∫ ∫

( ) ( ) ( )
2 2

21 1 1 1
3 3h h hp g

h f h f

c cH G G Hr
F c F cα α α α

   
= − − = −   
   

( ) ( )2 2

0

1 , 4 ,
2

hr

r r h
h

K u r a r r a dr
m

π ρ= ∫

( )2 2

0

1 4 ,
2

hr

rp rp h
h

K u r r a dr
m

π ρ= ∫

( )3 2

0 0

1 12 sin
2

hr

a h
h

K r r u d dr
m

π

ϕπ ρ θ θ =  
 ∫ ∫

Mean square radius: Moment of inertia: Angular momentum: 

(physical) 
radial linear 
momentum:
(peculiar) 

radial linear 
momentum:

(physical) 
virial quantity:

(peculiar) 
virial quantity:

Angular 
momentum:

(physical) 
radial kinetic 

energy:

(peculiar) 
radial kinetic 

energy:

Rotational 
kinetic 
energy:

Specific momentum tensor:
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Halo spin parameters in terms of F(x)
1 2

h h
p

h

H E
Gm

λ =
'

2
h

p
cir h

H
v r

λ =

h h hE K= Φ +

( )2 2 2

0

1 14 ,
2

hrh r
h h c h

h h

Gm Gmr r a dr H r
r m r

γ π ρ γΦ ΦΦ = − = − = − ∆∫

( )23 2 2h v e hK nσ= = Φ

( )
1 3

2 32 1
0

1
3 3 2

v c
v h v hGm H aγσ γ γ −

Φ

∆ = −Φ =  
 

1 3

2
0

2 h
g g h g

c

Gmr r a
H

γ γ
 

= =  ∆ 

( )21 3
2 4a h h h gK rω≈ =H H

2

4 21 1
3 2 3 2

e a v a
p g g v

h v

n K Kγλ γ γ γ γ γ
σΦ Φ

   = + = −   Φ   

'
2

2 1 2
3 3

a a
p g g v

h v

K Kγλ γ γ γ γ
σ

Φ
Φ= =

Φ

1 0.031
3 2

eH
p

nγλ γ
π Φ

 = + ≈ 
 

' 0.038
3 2

H
p

γλ
π

= ≈

Two definitions of spin parameters: 

( )
( ) ( )'

2 0
1

c F x F xc dx
xF c

γΦ
 

= ≈ 
 
 

∫

2 3cir c h hv Hr Hrπ= ∆ =

2
h H hH Hrγ=

and

Halo (specific) energy and angular momentum: 

and

and

Halo (specific) potential energy: 

Halo (specific) kinetic energy and rotational kinetic energy: 

Mean square 
radius: 

Virial 
dispersion: 

and

Circular 
velocity: 

Spin parameters 
reflects the ratio 

between rotational and 
virial kinetic energy
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Energy, momentum and spin parameter for NFW 
and isothermal halos
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The energy transfer between mean flow and 
random flow in “large” high v halos

( ) ( )

2 1

2 0

1 1 21
ch h h

h h

S S

L m r F x dx
t t cF cα α

 
   ∂  = − + −    ∂     
  

∫




Two contributions for change of halo momentum 
/energy: 
S1: Bulk contribution from internal exchange 
between mean flow and random flow
S2: Surface contribution from mass cascade

 For angular momentum, all contributions from S2, 
i.e. mass cascade.

 For radial kinetic energy, two contributions are 
comparable.

 For rotational kinetic energy, contribution from S2 
is dominant, i.e. mass cascade. 

 In addition, local energy transfer can be two-way. 
S1<0 for entire halo, one-way net kinetic energy 
is transferred from mean flow to random motion to 
enhance halo entropy.

Example:
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Halo relaxation (stretching) from early to late stages
 Two-parameter Einasto profile for relaxation
 The path of evolution in c-α space (shape 

parameter vs. concentration)

 Contour for constant core/halo mass ratio CF

 Evolution path from N-body simulation (green)

 Simplified path for analytical calculation (blue)
Blue segment 1 (BS1): constant c≈3.5
Blue segment 2 (BS2): constant α≈0.2

 Path to composite halos with α≈0.7 (red)
follows a constant CF = 0.27; Adiabatic process

 Goal: explore the continuous variation of halo 
shape, density profile, mean flow, momentum, 
and energies during halo relaxation. 

( )
( )

( ) ( )1,
,

r s
F

h

F m r
C t
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Decomposition of radial flow
Extend key function F(x) to two-parameter function F(x,α), where α is a shape parameter:
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(From continuity equation)

Enclosed mass:

From mass 
cascade:

From conc. 
change:

From shape 
change:

 Early stage “large” halos: uhc=0 and uhα=0
radial flow from cascade uhm is dominant;

 Late stage “small” halos: all three radial 
flows vanishes and uh=0;

 For halo “relaxation” from early to 
late stage (BS2), we expect a 
constant rs, constant α,mh~F(c,α), 
uhα=0, and uhm+uhc=0
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Density profile from early to late stages
 During BS1 with constant c≈3.5 and constant 

CF, decreasing α involves significant change of 
density in halo core, i.e. steeper density slope 
and increasing core mass.

 During BS2 with constant α≈0.2, increasing c
involves a stable core (constant scale radius rs
, constant core mass, and core density ρc) and 
extending halo skirt (“halo stretching” vs. 
“vortex stretching” in turbulence).

Variation of halo density normalized by the 
average core density ρc (with r<rs)

 Vortex stretching: anisotropic, volume 
conserving, constant density, and 
decreasing momentum of inertia.

 Halo stretching: isotropic, increasing 
volume, varying density, and increasing 
momentum of inertia.
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Moment of inertia from early to late stage

( )2 22 2 ,
3 3h g h sI m r m r F cω ω α= =

( ) ( )g sr c r F cω=

Variation of moment of inertia 
with concentration c

Moment of 
inertia:

( )
( ) ( )
( ) ( )

2
5 5 ,2

,
2 3 3 ,2

c
F c

c

α
α

ω α

α α ααα
α α α

Γ −Γ =   Γ −Γ 

Mean square 
radius:

 Red path is adiabatic with constant halo mass, with 
both angular momentum and rotational energy 
conserved. 

 Green path from simulation shows significant 
increase in moment of inertia from halo “stretching”.

 Simplified blue path with constant rs and core mass 
shows the increase in moment of inertia that 
plateaus at large c.
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Variation of mass, moment, energy during relaxation

 Halo “relaxation” (via BS2): with constant α≈0.2, 
increasing c, constant rs , core mass, and core density

 Specific rotational kinetic energy is relatively conserved

 Spin-dispersion dominant to axial-dispersion dominant

22
3h h grω=H

( )21 3
2 4a h h h gK rω= =H HSpecific rotational 

kinetic energy:

Specific angular 
momentum:

0
h tΦ ∝

hm t∝

gr t∝
t∝hH

0.27FC =

0
aK t∝

1
h tω −∝

0.031pλ ≈
For early stage “large” halos:

For late stage “small” halos:
0

hm t∝
0

gr t∝

0t∝hH
0.083FC =

0
aK t∝

0
h tω ∝

0.124pλ ≈
0

h tΦ ∝

Variation of halo momentum and 
energies during halo relaxation

λp: spin 
parameter

gr∝hH 1
h grω −∝

Spin-dispersion 
dominant

Axial-dispersion 
dominant
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Summary and keywords

 Review one-way energy transfer via vortex stretching in turbulence; 
 Halos enable a two-way energy transfer between mean flow and random motion;
 Analytical solutions of mean flow, velocity dispersion, and anisotropy parameters for halos at their 

early stage and late stage using decomposition of velocity dispersion.
 “Early-stage” halos have their mass, size, kinetic/potential/rotational energy, and the specific angular 

momentum all increase linearly with time via continuous mass acquisition. Halo core spins faster 
than the outer region. 

 “Late-stage” halos are more spherical in shape, incompressible, and isotropic. Due to finite halo 
spin, kinetic energy is not equipartitioned along each direction with the greatest energy along the 
azimuthal direction. Halos are hotter with faster spin.

 Identify the path of relaxation via halo stretching for halos relaxing from early to late stage involving 
continuous variation of shape, density profile, mean flow, momentum, and energy. 

 Might extend to consider effect of black hole at halo center on radial flow

Early stage “large” halos Late stage “small” halos Core mass ratio Axial dispersion
Vortex stretching Halo stretching Fictitious stress Spin dispersion

Path of halo evolution 
“relaxation”

Radial flow 
decomposition

Energy transfer
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