

A comparative study of dark matter flow & hydrodynamic turbulence and its applications

May 2022

Zhijie (Jay) Xu

Multiscale Modeling Team Computational Mathematics Group Physical & Computational Science Directorate <u>Zhijie.xu@pnnl.gov; zhijiexu@hotmail.com</u>

PNNL is operated by Battelle for the U.S. Department of Energy

Dark matter, if exists, accounts for five times as much as ordinary baryonic matter. Therefore, dark matter flow might possess the widest presence in our universe. The other form of flow, hydrodynamic turbulence in air and water, is without doubt the most familiar flow in our daily life. During the pandemic, we have found time to think about and put together a systematic comparison for the connections and differences between two types of flow, both of which are typical non-equilibrium systems.

The goal of this presentation is to leverage this comparison for a better understanding of the nature of dark matter and its flow behavior on all scales. Science should be open. All comments are welcome.

Thank you!

inp-st

place

Data repository and relevant publications Northwest

Structural (halo-based) approach:

- Data https://dx.doi.org/10.5281/zenodo.6541230 0.
- Inverse mass cascade in dark matter flow and effects on halo mass 1. functions https://doi.org/10.48550/arXiv.2109.09985
- 2. Inverse mass cascade in dark matter flow and effects on halo deformation. energy, size, and density profiles https://doi.org/10.48550/arXiv.2109.12244
- Inverse energy cascade in self-gravitating collisionless dark matter flow and 3. effects of halo shape https://doi.org/10.48550/arXiv.2110.13885
- The mean flow, velocity dispersion, energy transfer and evolution of rotating 4. and growing dark matter halos https://doi.org/10.48550/arXiv.2201.12665
- Two-body collapse model for gravitational collapse of dark matter and 5. generalized stable clustering hypothesis for pairwise velocity https://doi.org/10.48550/arXiv.2110.05784
- Evolution of energy, momentum, and spin parameter in dark matter flow and 6 integral constants of motion https://doi.org/10.48550/arXiv.2202.04054
- The maximum entropy distributions of velocity, speed, and energy from statistical mechanics of dark matter flow https://doi.org/10.48550/arXiv.2110.03126
- Halo mass functions from maximum entropy distributions in collisionless 8. dark matter flow https://doi.org/10.48550/arXiv.2110.09676

Statistics (correlation-based) approach: .5281/zenodo.6569898

0.	Data <u>https://dx.doi.org/10</u>
1.	The statistical theory of da and potential fields <u>https://doi.org/10.48550/ar</u>
2.	The statistical theory of da kinematic and dynamic relacorrelations <u>https://doi.org/</u>
3.	The scale and redshift vari distributions in dark matter pairwise velocity <u>https://do</u>
4.	Dark matter particle mass and energy cascade in dar https://doi.org/10.48550/ar
5.	The origin of MOND acceleration fluctuation and flow <u>https://doi.org/10.4855</u>
6.	The baryonic-to-halo mass cascade in dark matter flow https://doi.org/10.48550/ar

rk matter flow for velocity, density,

Xiv.2202.00910

rk matter flow and high order ations for velocity and density 10.48550/arXiv.2202.02991

ation of density and velocity flow and two-thirds law for .org/10.48550/arXiv.2202.06515

and properties from two-thirds law rk matter flow

Xiv.2202.07240

eration and deep-MOND from d energy cascade in dark matter 50/arXiv.2203.05606

relation from mass and energy

Xiv.2203.06899

Structural (halo-based) approach for dark matter flow

The mean flow, velocity dispersion, energy transfer and evolution of rotating & growing dark matter halos

Xu Z., 2022, arXiv:2201.12665 [astro-ph.GA] https://doi.org/10.48550/arXiv.2201.12665

Review: In hydrodynamic turbulence, "<u>Reynolds stress</u>" facilitates the **one-way** energy exchange from coherent (mean) flow to random fluctuation (turbulence) and enhances system entropy.

Existing study of halos mostly focus on the **spherical non-rotating non-growing** halos with a vanishing radial flow (fully virialized halos with slow mass accretion in their late stage).

- Goal 1: Explore solutions of mean flow and dispersions for spherical, axisymmetric, growing and rotating halos (fast mass accretion in their early stage) with an effective angular velocity $\omega_{\rm h}(t)$ and varying size $r_{\rm h}(t)$
- Goal 2: Explore the transition of halos from early to late stage
- Goal 3: Explore the role of halos in energy transfer between mean flow and random fluctuation.

Density: $\rho_h = \rho_h(r,t)$ Potential: $\phi_r = \phi_r(r,t)$ $u_r = u_r(r,t)$ $\sigma_{rr}^2 = \sigma_{rr}^2(r,\theta,t)$ Radial flow: The polar flow $u_{\theta} = u_{\theta}(r, \theta, t)$ $\sigma_{\theta\theta}^2 = \sigma_{\theta\theta}^2(r, \theta, t)$ (meridional flow): azimuthal flow $u_{\varphi} = u_{\varphi}(r,\theta,t)$ $\sigma_{\varphi\varphi}^{2} = \sigma_{\varphi\varphi}^{2}(r,\theta,t)$ (zonal flow):

Pacific Northwest NATIONAL LABORATORY Reduced equations and anisotropic parameter

The continuity equation reduces to:

$$\frac{\partial \rho_h}{\partial t} + \frac{1}{r^2} \frac{\partial \left(r^2 \rho_h u_r\right)}{\partial r} = 0$$

Six equations and 8 Variables; need extra closures to solve;

Observations of flow on rotating sphere strongly suggest that as the rotation rate increases, the azimuthal flow becomes dominant and the polar flow may be neglected.

With
$$u_{\theta} \approx 0$$
 and $\sigma_{r\theta}^2 = \sigma_{r\varphi}^2 = \sigma_{\varphi\theta}^2 = 0$

The full momentum equations (Jeans' equation) reduces to

$$\frac{\partial u_{r}}{\partial t} + u_{r} \frac{\partial u_{r}}{\partial r} + \frac{1}{\rho_{h}} \frac{\partial \left(\rho_{h} \sigma_{rr}^{2}\right)}{\partial r} + \frac{2}{r} \sigma_{rr}^{2} \left(1 - \frac{\sigma_{\theta\theta}^{2} + \sigma_{\varphi\phi}^{2} + u_{\varphi}^{2}}{2\sigma_{rr}^{2}}\right) + \frac{\partial \phi_{r}}{\partial r} = 0$$
For θ : $u_{\varphi}^{2} = \sigma_{\theta\theta}^{2} - \sigma_{\varphi\phi}^{2} + \frac{\sin\theta}{\cos\theta} \frac{\partial \sigma_{\theta\theta}^{2}}{\partial \theta}$

$$\frac{1}{\frac{\partial \phi_{r}}{\partial r} = \frac{Gm_{r}\left(r,t\right)}{r^{2}}}{\frac{\partial w_{r}}{\partial r} + w_{r} \frac{\partial u_{\varphi}}{\partial r} + \frac{w_{r} u_{\varphi}}{r} = 0$$

$$\rho_{h} = \frac{1}{4\pi r^{2}} \frac{\partial m_{r}\left(r,t\right)}{\partial r}$$

Anisotropic parameter should include effect of u_{ϕ} or centripetal force:

Pacific Northwest Evolution of halo angular momentum

From continuity and momentum equations:

$$\frac{\partial \left(\rho_{h} u_{\varphi}\right)}{\partial t} + \frac{1}{r^{2}} \frac{\partial \left[\left(\rho_{h} u_{\varphi}\right) u_{r} r^{2}\right]}{\partial r} + \frac{u_{r}}{r} \left(\rho_{h} u_{\varphi}\right) = 0$$

The halo angular momentum is:

$$\overline{H}_{h} = \int_{0}^{r_{h}} 2\pi r^{3} \rho_{h}(r) \left(\int_{0}^{\pi} u_{\varphi} \sin^{2} \theta d\theta \right) dr$$

Time evolution of angular momentum:
$$\frac{\partial \overline{H}_{h}}{\partial t} = 2\pi r_{h}^{3} \rho_{h}(r_{h}) \int_{0}^{\pi} u_{\varphi}(r_{h}, \theta) \sin^{2} \theta d\theta \left(\frac{\partial r_{h}}{\partial t} - u_{r}(r_{h}) \right)$$

The halo angular momentum is conserved only if

$$\frac{\partial r_h}{\partial t} = u_r\left(r_h\right)$$

$$\frac{\partial r_h}{\partial t} > 0 \qquad \Longrightarrow \quad \frac{\partial \overline{H}_h}{\partial t} > 0$$

- In hydrodynamic turbulence, angular momentum is conserved during vortex stretching.
- In dark matter flow, halo angular momentum is not conserved and always increasing with time.
- The Tidal Torque Theory (TTT) relates the angular momentum to the misalignment between the tidal shear field and halo shape.
- TTT predicts a linear increase with time t for halo with a fixed given mass $\overline{H}_{h} \sim t$
- A growing halo may obtain its momentum through continuous mass acquisition and $\overline{H}_{h} \sim t^{2}$

Northwest Evolution of halo rotational kinetic energy

From continuity and momentum equations:

Pacific

The halo rotational kinetic energy is obtained by integration:

$$\overline{K}_a = \frac{1}{2} \int_0^{r_h} 2\pi r^2 \int_0^{\pi} \left(\rho_h u_{\varphi}^2\right) \sin\theta d\theta dr$$

Time evolution of rotational kinetic energy:

- In hydrodynamic turbulence, the "Reynolds" stress facilitates the one-way energy exchange from coherent (mean) flow to random fluctuation and enhances entropy.
- In dark matter flow, the production term describes the fictitious stress acting on the gradient of mean radial flow to facilitate the energy transfer between mean azimuthal flow and random fluctuation.
- Since u_r is positive in core region and negative in outer region, the energy transfer is two-way, i.e. energy is drawn from random motion to mean flow in outer region and from mean flow to random motion in core region.
- However, for entire halo, there is a net transfer from mean flow to random flow to enhance the halo entropy.

$$\frac{\partial \overline{K}_{a}}{\partial t} = \pi r_{h}^{2} \rho_{h}(r_{h}) \int_{0}^{\pi} u_{\varphi}^{2}(r_{h},\theta) \sin \theta d\theta \left(\frac{\partial r_{h}}{\partial t} - u_{r}(r_{h})\right) - \underbrace{\int_{0}^{r_{h}} 2\pi r^{2} \frac{u_{r}}{r} \rho_{h}\left(\int_{0}^{\pi} u_{\varphi}^{2} \sin \theta d\theta\right) dr}_{2} \quad \begin{array}{c} 1: \text{ surf}_{mass} \\ \text{mass}_{n} \\ 2: \text{ bulk} \end{array}$$

face contribution from cascade k cont. from energy transfer 86

Northwest General solutions for rotating, and growing halos

Key: decomposition of velocity dispersion:

Introduce reduced spatial/temporal coordinate: $x(r,t) = \frac{r}{r_s(t)} = \frac{cr}{r_h(t)}$

$$\sigma_{\theta\theta}^{2}(r,\theta,t) = \underbrace{\sigma_{r0}^{2}(r,t)}_{1} + \underbrace{\alpha_{\varphi}(r,t)u_{\varphi}^{2}(r,\theta,t)}_{2}$$
1: Axial-dispersion 2: Spin-dispersion
$$\sigma_{\varphi\varphi}^{2}(r,\theta,t) = \sigma_{r0}^{2}(r,t) + \beta_{\varphi}(r,t)u_{\varphi}^{2}(r,\theta,t)$$

$$\sigma_{rr}^{2}(r,\theta,t) = \sigma_{r0}^{2}(r,t) + \gamma_{\varphi}(r,t)u_{\varphi}^{2}(r,\theta,t)$$

Momentum equation for θ :

Pacific

Momentum equation for φ :

$$u_{\varphi}^{2} = \sigma_{\theta\theta}^{2} - \sigma_{\varphi\varphi}^{2} + \frac{\sin\theta}{\cos\theta} \frac{\partial\sigma_{\theta\theta}^{2}}{\partial\theta}$$

Separation of $u_{\varphi}(r,\theta,t) = \omega_h(t)r_s(t)F_{\varphi}(x)K_{\varphi}(\theta)$ variables: $\sigma_{rr}^{2}(r,\theta=0,t) = \sigma_{\theta\theta}^{2}(r,\theta=0,t) = \sigma_{\varphi\varphi}^{2}(r,\theta=0,t) = \sigma_{r0}^{2}(r,t)$ Spin causes velocity anisotropy; Velocity dispersions can be expressed as a function of azimuthal flow u_{o} . Velocity dispersion is expected to be isotropic for nonrotating halos with a spherical symmetry. For spherical halos with a finite spin, velocity dispersions are only isotropic along the axis of rotation (θ =0) $\frac{\partial \ln F_{\varphi}}{\partial \ln x} = \frac{u_h(x) + x \left(\frac{\partial \ln \omega_h}{\partial \ln t} + \frac{\partial \ln r_s}{\partial \ln t}\right)}{x \frac{\partial \ln r_s}{\partial \ln t} - u_h(x)}$ Mass cascade Radial flow Halo spin $K_{\omega}(\theta) = (\sin \theta)^{\alpha_{\theta}}$ exponent

Northwest General solutions for rotating, and growing halos

Momentum
equation for r:
$$\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{1}{\rho_h} \frac{\partial \left(\rho_h \sigma_{rr}^2\right)}{\partial r} + \frac{2}{r} \sigma_{rr}^2 \left(1 - \frac{\sigma_{\theta\theta}^2 + \sigma_{\varphi\phi}^2 + u_{\varphi}^2}{2\sigma_{rr}^2}\right) + \frac{\partial \phi_r}{\partial r} = 0$$

Equation for axial-dispersion:
$$\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{1}{\rho_h} \frac{\partial \left(\rho_h \sigma_{r0}^2\right)}{\partial r} + \frac{\partial \phi_r}{\partial r} + F_a(r,t) = 0 \quad \text{and} \quad \frac{\partial \ln \left(\gamma_{\varphi} u_{\varphi}^2\right)}{\partial \ln x} + \frac{\partial \ln \rho_h}{\partial \ln x} + 2 - \frac{\partial \ln \alpha}{\partial \ln x} + \frac{\partial \ln \alpha}{\partial \ln x} + 2 - \frac{\partial \ln \alpha}{\partial \ln x} + \frac{\partial \ln \alpha}{\partial \ln x} + 2 - \frac{\partial \ln \alpha}{\partial \ln x} + \frac{\partial \ln \alpha}{\partial \ln x} + 2 - \frac{\partial \ln \alpha}{\partial \ln x} + \frac{\partial \ln \alpha}{\partial \ln x} + 2 - \frac{\partial \ln \alpha}{\partial \ln x} + \frac{\partial \ln \alpha}{\partial \ln x} + 2 - \frac{\partial \ln \alpha}{\partial \ln x} + \frac{\partial \ln \alpha}{\partial \ln x} + \frac{\partial \ln \alpha}{\partial \ln x} + 2 - \frac{\partial \ln \alpha}{\partial \ln x} + \frac{\partial \ln \alpha}{\partial \ln x} + 2 - \frac{\partial \ln \alpha}{\partial \ln x} + \frac{\partial \ln \alpha}{\partial \ln x} + 2 - \frac{\partial \ln \alpha}{\partial \ln x} + \frac{\partial \ln \alpha}{\partial \ln x} + \frac{\partial \ln \alpha}{\partial \ln x} + 2 - \frac{\partial \ln \alpha}{\partial \ln x} + \frac{\partial \ln \alpha}{\partial \ln x} + \frac{\partial \ln \alpha}{\partial \ln x} + 2 - \frac{\partial \ln \alpha}{\partial \ln x} + \frac{\partial \ln \alpha}{\partial \ln x} + 2 - \frac{\partial \ln \alpha}{\partial \ln x} + \frac{\partial \ln \alpha}{\partial \ln x} + 2 - \frac{\partial \ln \alpha}{\partial \ln x} + \frac{\partial \ln \alpha}{\partial \ln x} + 2 - \frac{\partial \ln \alpha}{\partial \ln x} + \frac{\partial \ln \alpha}{\partial \ln x} + 2 - \frac{\partial \ln \alpha}{\partial \ln x} + \frac{\partial \ln \alpha}{\partial \ln x} + 2 - \frac{\partial \ln \alpha}{\partial \ln x} + \frac{\partial \ln \alpha}{\partial \ln x} + 2 - \frac{\partial \ln \alpha}{\partial \ln x} + \frac$$

The coupling function reflects the coupling between axial-dispersion and spin-dispersion

Two anisotropy parameters are related:

Pacific

$$\beta_{h1} = \frac{1 - \alpha_a}{1 + \sigma_{r0}^2 / (\gamma_{\varphi} u_{\varphi}^2)} \qquad \qquad \alpha_a = \frac{(\alpha_{\varphi} + \beta_{\varphi} + 1)}{2\gamma_{\varphi}}$$

For virialized "small" halos with slow mass accretion (late stage), the axial- and spin-dispersions are decoupled. Axial-dispersion is dominant to balance gravity.

For "large" halos with fast mass accretion (early stage), the axial- and spin-dispersions are decoupled. Spin-dispersion is dominant to balance gravity.

$$F_a(r,t) \approx -\frac{\partial \phi_r}{\partial r}$$
 and σ_r^2

sion:

 $F_a(r,t) = 0$ and $\sigma_{r0}^2 \gg \gamma_{\varphi} u_{\varphi}^2 \Rightarrow \beta_{h1} \approx 0$

Pacific Northwest National Laboratory Two limiting situations: "small" and "large" halos

We still require a clear definition of "small" and "large" halos.

 $m_r(r,t) = m_h(t) \frac{F(x)}{F(c)} \qquad \qquad \rho_h(r,t) = \frac{m_h(t)}{4\pi r_c^3} \frac{F'(x)}{x^2 F(c)}$

Enclose mass within radius r

Halo density

The ratio of core mass to halo mass:

$$C_F = \frac{F(1)}{F(c)} = \frac{\pi}{F(c)}$$

Peak height:	From spherical collapse model	σ is (root mean square) flut the smoothed density
$\nu = \delta_{cr} / \sigma(m_h, z)$	$\delta_{cr} \approx 1.68$	At same redshift z, large hald

Properties of "large" halos:

- Early stage of halo life with high peak height v
- Extremely fast mass accretion
- A growing core with scale radius $r_s \sim t$
- Growing halo size $r_h \sim t$ and halo mass $m_h \sim t$
- Constant halo concentration $c\approx 3.5$ (limiting c)

Properties of "small" halos:

- Late stage of halo life with low peak height v
- Extremely slow mass accretion
- A stable core, constant scale radius r_s, and constant core-to-halo mass ratio C_F
- Increasing concentration $c \sim t^{2/3} \sim a$ and $m_h \sim F(c)$

ss to halo mass: $\frac{m_r(r_s,t)}{m_h(t)}$

uctuation of

os has higher v

Pacific Northwest Solutions for "small" halos at late stage

Coupling Mean flow: Velocity dispersions: function: $F_a(r,t) = 0 \quad \mathcal{U}_r = \mathcal{U}_{\theta} = 0 \quad \sigma_{rr}^2 = \sigma_{\varphi\varphi}^2 = \sigma_{\theta\theta}^2 + u_{\phi}^2$ Anisotropy parameters : $\alpha_a = 1$ $\beta_{\mu_1} = 0$ $\alpha_{\rho} = 1$ Angular exponent : = 2

$$+ \alpha_{\varphi} = \beta_{\varphi} = \gamma_{\varphi} \qquad \alpha_{\varphi} = 1 \quad \beta_{\varphi} = \gamma_{\varphi}$$

Properties of "small" halos (continued):

- Virialized and bound with vanishing radial flow
- Incompressible (proper velocity) with $\nabla \cdot \mathbf{v} = 0$
- More spherical and isotropic
- Axial-dispersion dominant over spin-dispersion
- Azimuthal flow u_{o} strongly dependent on polar angle θ
- Negligible surface energy

The variation of mean flow and velocity dispersions from N-body simulation

Pacific **Energy equipartition along three directions** Northwest

Table 2. Velocity dispersions for rotating and non-rotating halos

 $\mathcal{F}_{\alpha}^{2} = \sigma^{2} + \partial \mathcal{I}_{\alpha}^{2}$

		Radial (r)	Azimuthal (φ)	Polar (θ)	•
Rotating halo	Random	$\sigma_{rr}^2 = \sigma_{r0}^2 + 2u_{\varphi}^2$	$\sigma_{\varphi\varphi}^2 = \sigma_{r_0}^2 + 2u_{\varphi}^2$	$\sigma_{\theta\theta}^2 = \sigma_{r_0}^2 + u_{\varphi}^2$	
(Eq. (9))	Mean flow	0	u_{φ}^2	0	1
Non-rotating halo	Random	$\sigma_{rr}^2 = \sigma_r^2 = \sigma_{r0}^2$	$\sigma^2_{\varphi\varphi}=\sigma^2_{r0}$	$\sigma_{\theta\theta}^2 = \sigma_{r0}^2$	
(Eq. (50))	Mean flow	0	0	0	-

- Due to finite spin, kinetic energy is not equipartitioned along each direction with the greatest energy along the azimuthal direction and the smallest along the polar direction.
- Different from usual objects, halos are hotter with faster spin due to energy transfer between mean flow and random motion.

$\alpha_{\omega}, \beta_{\omega}, \text{ and } \gamma_{\omega}$

Pacific

Northwest Solutions for "large" halos at early stage

Properties of "large" halos (continued):

- Non-virialized with non-zero self-similar radial flow
- Spin-dispersion dominant over axial-dispersion
- Azimuthal flow u_{ω} is less dependent on polar angle θ
- Non-zero surface energy

The variation of mean flow and velocity dispersions from N-body simulation

Pacific Northwest Solutions for "large" halos at early stage Radial flow: $u_h(x) = u_r(r) \frac{t}{r_s(t)} = x - \frac{F(x)}{F'(x)}$ -From NFW Profile _____n=[100 500] _n_=[4 10] ____n_=[500 1000] Azimuthal flow: $u_{\varphi}(r,\theta,t) = u_{\varphi}(x,\theta) = \alpha_{f}\omega_{h}(t)r_{s}(t)\frac{F(x)}{r_{s}}$ _n [=[10 100] 10^{2} flow: Axial-dispersion: $\sigma_{r0}^{2}(x) = \frac{v_{cir}^{2}x^{2}}{4\pi^{2}c^{2}F'(x)} \left\{ \frac{F'(x)}{x^{2}F'(x)} \right|_{x}^{\infty} - \int_{x}^{\infty} \left[\frac{2F(x)}{x^{2}} - \frac{2F'(x)}{F'(x)x^{3}} \right] dx = \frac{10^{10}}{10^{10}}$ Angular velocity: $\omega_h = \left(\frac{3}{2\alpha_h} - \frac{1}{2}\right) \frac{c^2}{F(c)\alpha_f} H \propto t^{-1}$ and $\alpha_f = \frac{16c^2}{3\pi F(c)} \gamma_g^2$ Dispersion parameter: $\gamma_{\varphi}(x) = \frac{x^4}{F^2(x)F'(x)} \left[18 \int_x^{\infty} \frac{F^2(y)F'(y)}{y^5} dy + \lambda_f \int_x^{\infty} \frac{F(y)F'(y)}{y^4} dy \right]$ 10^{0} 10^{-2} 10⁻¹ $\lambda_f = \frac{9\pi^2 F(c)}{\left(3/(2\alpha_h) - 1/2\right)^2 c} \qquad \beta_{\varphi} = \alpha_{\varphi} + 1 \quad \text{and} \quad \gamma_{\varphi} \approx \alpha_{\varphi} + 10$ r (Mpc/h) The variation of azimuthal flow from Deformation Anisotropic parameters: $\alpha_a = \frac{(\alpha_{\varphi} + \beta_{\varphi} + 1)}{2\nu}$ $\beta_{h1} = \frac{1 - \alpha_a}{1 + \sigma_{r0}^2 / (\gamma_{\varphi} u_{\varphi}^2)}$ N-body simulation and comparison parameter: α_h

Pacific Northwest National Laboratory Angular exponent and anisotropic parameters

Northwest Halo momentum and energy in terms of F(x)

Moment of inertia:

Mean square radius:

$$r_{g}^{2} = \frac{1}{m_{h}} \int_{0}^{r_{h}} 4\pi r^{2} \rho_{h}(r) r^{2} dr = r_{h}^{2} \left[1 - \frac{2}{c^{2}F(c)} \int_{0}^{c} xF(x) dx \right] = \gamma_{g}^{2} r_{h}^{2}$$

$$I_{\omega} = \frac{2}{3} m_{h} r_{g}^{2}$$

$$(physical)$$

$$radial linear L_{h} = \frac{1}{m_{h}} \int_{0}^{r_{h}} 4\pi r^{2} \rho_{h} u_{r} dr = \frac{3}{2} \left(1 - \frac{2}{cF(c)} \int_{0}^{c} F(x) dx \right) Hr_{h}$$

$$(peculiar)$$

$$radial linear L_{hp} = \frac{1}{m_{h}} \int_{0}^{r_{h}} 4\pi r^{2} \rho_{h} u_{rp} dr = \frac{1}{2} \left(1 - \frac{4}{cF(c)} \int_{0}^{c} F(x) dx \right) Hr_{h}$$

$$(physical)$$

$$(physical)$$

$$radial linear L_{hp} = \frac{1}{m_{h}} \int_{0}^{r_{h}} 4\pi r^{2} \rho_{h} u_{rp} dr = \frac{1}{2} \left(1 - \frac{4}{cF(c)} \int_{0}^{c} xF(x) dx \right) Hr_{h}$$

$$(physical)$$

$$radial kinetic K$$

$$(peculiar)$$

$$radial vinetic K$$

$$(peculiar)$$

$$radial quantity:$$

$$G_{hp} = \frac{1}{m_{h}} \int_{0}^{r_{h}} 4\pi r^{3} \rho_{h} u_{rp} dr = \frac{1}{2} \left[1 - \frac{5}{c^{2}F(c)} \int_{0}^{c} xF(x) dx \right] Hr_{h}^{2}$$

$$(peculiar)$$

$$radial kinetic K$$

$$energy:$$

$$(peculiar)$$

$$radial kinetic K$$

$$energy:$$

Angular momentum

Pacific

$$H_{h} = \left(\frac{1}{\alpha_{h}} - \frac{1}{3}\right) \frac{c^{2}}{F(c)\alpha_{f}} \left(G_{h} - G_{hp}\right) = \left(\frac{1}{\alpha_{h}} - \frac{1}{3}\right) \frac{c^{2}}{F(c)\alpha_{f}} Hr_{g}^{2}$$

energy:

Angular momentum: $H_h = \frac{2}{2}\omega_h r_g^2$

ntum tensor:

 $K_{r} = \frac{1}{2m_{r}} \int_{0}^{r_{h}} u_{r}^{2}(r,a) 4\pi r^{2} \rho_{h}(r,a) dr$

 $K_{rp} = \frac{1}{2m_{L}} \int_{0}^{r_{h}} u_{rp}^{2} 4\pi r^{2} \rho_{h}(r,a) dr$

Rotational kinetic $K_a = \frac{1}{m_h} \int_0^{r_h} 2\pi r^3 \rho_h(r) \left(\int_0^{\pi} \frac{1}{2} u_{\varphi}^2 \sin \theta d\theta \right) dr$

Pacific Northwest NATIONAL LABORATORY Halo spin parameters in terms of F(x)

Two definitions of spin parameters:

$$\lambda_{p} = \frac{H_{h} |E_{h}|^{v_{2}}}{Gm_{h}} \quad \text{and} \quad \lambda_{p}^{'} = \frac{H_{h}}{\sqrt{2}v_{cir}r_{h}} \qquad \text{Mean square} \qquad r_{g} = \gamma_{g}r_{h} = \gamma_{g}a \left(\frac{2}{2}\right)$$
Halo (specific) energy and angular momentum:

$$E_{h} = \Phi_{h} + K_{h} \quad \text{and} \quad H_{h} = \gamma_{H}Hr_{h}^{2} \qquad \text{Virial} \qquad \sigma_{v}^{2} = -\Phi_{h}\frac{\gamma_{v}}{3} = \frac{1}{3}\gamma_{\Phi}$$
Halo (specific) potential energy:

$$\Phi_{h} = -\gamma_{\Phi}\frac{Gm_{h}}{r_{h}} = -\frac{1}{m_{h}}\int_{0}^{r_{h}}4\pi r^{2}\rho_{h}(r,a)\frac{Gm_{r}}{r}dr = -\frac{1}{2}\gamma_{\Phi}\Delta_{c}H^{2}r_{h}^{2} \qquad \text{and} \qquad \gamma_{\Phi} = \left(\frac{c}{F^{2}(c)}\right)$$
Halo (specific) kinetic energy and rotational kinetic energy:

$$K_{h} = 3/2\sigma_{v}^{2} = (n_{e}/2)\Phi_{h} \quad \text{and} \quad K_{a} \approx \frac{1}{2}|\mathbf{H}_{h}|\omega_{h} = \frac{3}{4}(|\mathbf{H}_{h}|/r_{g})^{2} \qquad \text{Circular } v_{cir} = \frac{\lambda_{p}}{v_{elocity}} \times c_{cir} = \frac{\lambda_{p}}{2}\gamma_{\Phi}\gamma_{g}\sqrt{\frac{4}{3}\left(1+\frac{n_{e}}{2}\right)\frac{K_{a}}{|\Phi_{h}|}} = \frac{2}{3}\gamma_{\Phi}\gamma_{g}\sqrt{\gamma_{v}\left(1-\frac{\gamma_{v}}{2}\right)\frac{K_{a}}{\sigma_{v}^{2}}} \implies \lambda_{p} = \frac{\gamma_{H}}{3\pi}\sqrt{\gamma_{\Phi}\left(1+\frac{n_{e}}{2}\right)} \approx 0.031$$

$$\lambda_{p}^{'} = \gamma_{g}\sqrt{\frac{2\gamma_{\Phi}K_{a}}{3|\Phi_{h}|}} = \frac{1}{3}\gamma_{g}\sqrt{2\gamma_{\Phi}\gamma_{v}\frac{K_{a}}{\sigma_{v}^{2}}} \qquad \lambda_{p}^{'} = \frac{\gamma_{H}}{3\pi\sqrt{2}} \approx 0.038$$

 $\frac{2Gm_h}{\Delta_c H_0^2}\right)^{1/3}$ $\gamma_{\Phi}\gamma_{\nu}\left(\frac{\Delta_{c}}{2}\right)^{1/3}\left(Gm_{h}H_{0}\right)^{2/3}a^{-1}$

 $\frac{1}{2}\int_{0}^{c} \frac{F(x)F'(x)}{x} dx \approx 1$

 $\sqrt{\Delta_c/2}Hr_h = 3\pi Hr_h$

Spin parameters reflects the ratio between rotational and virial kinetic energy

Energy, momentum and spin parameter for NFW Pacific Northwest and isothermal halos

Table 3. Relevant parameters for two different density profiles

Table 3. Relevant parameters for two different density profiles

Symbol	Physical meaning	Equation	Isothermal profile with $\alpha_{\theta} = 1$	NFW profile with $\alpha_{\theta} = 0$ and $c = 3.5$	Symbol	Physical meaning	Equation	Isothermal profile with $\alpha_{\theta} = 1$	NFW profile with $\alpha_{\theta} = 0$ and $c = 3.5$
F(x)	Function for density ρ_h	Eq. (33)	x/c	$\ln(1+x) - x/(1+x)$	G_h	Specific virial quantity	Eq. (102)	0	$-0.027 Hr_h^2$
$\alpha_{\rm h}$	Deformation parameter	Eq. (66)	1.0	0.833	G_{hp}	Peculiar virial quantity	Eq. (103)	$-Hr_h^2/3$	$-0.348Hr_{h}^{2}$
ν.	Deformation rate parameter	Eq. (69)	0	1/2	${H}_h$	Specific angular momentum	Eq. (105)	$Hr_h^2/3$	$0.511 H r_h^2$
<i>n</i>	Constant for function $E_{(x)}$	Eq. (77)	$\frac{1}{2} a^2/2$	9.20	ω_h	Angular velocity	Eq. (81)	1.5 <i>H</i>	2.38H
$\frac{u_f}{2}$	Constant for equation for x	$\frac{\text{Eq.}(02)}{\text{Eq.}(02)}$	20 15	10 805	K_r	Radial kinetic energy	Eq. (108)	0	$0.0062H^2r_h^2$
λ_f	Constant for equation for γ_{φ}	Eq. (92)	$9\pi^2/c$	10.895	K _{rn}	Peculiar radial kinetic energy	Eq. (109)	$H^2 r_{\rm h}^2 / 6$	$0.1937H^2r_b^2$
γ_H	Coefficient for H_h	Eq. (106)	1/3	0.511	K	Rotational kinetic energy	Eq. (110)	$\frac{H^2r^2}{3}$	$0.7658 H^2 r^2$
γ_{Φ}	Coefficient for potential Φ_h	Eq. (113)	1	0.936		Hala notantial anaras	Eq. (110)	$\frac{11}{h}$	$0.703011 r_h$
γ	Virial ratio	Eq. (115)	1.5	1.3	Φ_h	Halo potential energy	Eq. (112)	$-9\pi^2H^2r_h^2$	$-8.424\pi^{2}H^{2}r_{h}^{2}$
- ¹ v - ² - ² / ²	Patia of two halo sizes	$E_{a}(72)$	1/2	0.2214	λ_{p}	First halo spin parameter	Eq. (119)	0.018	0.031
$\gamma_g = r_g / r_h$	Katio of two fiato sizes	ЕЧ. (75)	1/3	0.5214	λ'_{n}	Second halo spin parameter	Eq. (119)	0.025	0.038
L_h	Specific radial momentum	Eq. (100)	0	0	F				
L_{hp}	Peculiar radial momentum	Eq. (101)	$-Hr_h/2$	$-0.501Hr_h$					

The energy transfer between mean flow and Pacific Northwest random flow in "large" high v halos

Two contributions for change of halo momentum /energy:

S1: Bulk contribution from internal exchange between mean flow and random flow S2: Surface contribution from mass cascade

Example:

$$\frac{\partial \overline{L}_{h}}{\partial t} = \frac{m_{h}r_{h}}{t^{2}} \left[\underbrace{\left(1 - \frac{1}{\alpha_{h}}\right)}_{S_{2}} + \underbrace{\left(\frac{1}{\alpha_{h}} - \frac{2}{cF(c)}\int_{0}^{c}F(x)dx\right)}_{S_{1}} \right]$$

- For angular momentum, all contributions from S2, i.e. mass cascade.
- For radial kinetic energy, two contributions are comparable.
- For rotational kinetic energy, contribution from S2 is dominant, i.e. mass cascade.
- In addition, local energy transfer can be two-way. S1<0 for entire halo, one-way net kinetic energy is transferred from mean flow to random motion to enhance halo entropy.

Table 4. The rate of change of halo momentum and energy for two different density profiles

Symbol	Physical meaning	Isothermal	NFW profile
2		with $\alpha_{\theta} = 0$	$\alpha_{\theta} = 0$; $c = 3.5$
$\partial \overline{L}_h / \partial t$	radial momentum	0	0
S_1	Bulk contribution	0	$0.2m_hr_h/t^2$
S_2	Surface contribution	0	$-0.2m_{h}r_{h}/t^{2}$
$\partial \overline{H}_{h} / \partial t$	angular momentum	$\pi m_h H r_h^2$	$\pi m_h H r_h^2 \begin{pmatrix} 3 & 1 \end{pmatrix}$
		$\frac{1}{4}$ t	$\overline{4} t \left(\overline{2\alpha_h} - \overline{2} \right)$
S_1	Bulk contribution	0	0
S_2	Surface contribution	$\pi m_h H r_h^2$	$\pi m_h H r_h^2 \begin{pmatrix} 3 & 1 \end{pmatrix}$
		$\frac{1}{4}$ t	$\overline{4} t \left(\overline{2\alpha_h} - \overline{2} \right)$
$\partial \overline{K}_{r} / \partial t$	radial kinetic energy	0	$0.0062H^2r_h^2m_h/t$
S_1	Bulk contribution	0	$-0.0391H^2r_h^2m_h/t$
S_2	Surface contribution	0	$0.0453H^2r_h^2m_h/t$
$\partial \overline{K}_{rp} / \partial t$	peculiar radial kinetic energy	$H^2 r_h^2 m_h / (6t)$	$0.1937 H^2 r_h^2 m_h/t$
S_1	Bulk contribution	$-H^2r_h^2m_h/(3t)$	$-0.6525H^2r_h^2m_h/t$
S_2	Surface contribution	$H^2 r_h^2 m_h / (2t)$	$0.8462 H^2 r_h^2 m_h/t$
$\partial \overline{K}_a / \partial t$	rotational kinetic energy	$H^2 r_h^2 m_h / (2t)$	$0.7661H^2r_h^2m_h/t$
S_1	Bulk contribution	0	$-0.0801H^2r_h^2m_h/t$
S_2	Surface contribution	$H^2 r_h^2/2$	$0.8462 H^2 r_h^2 m_h/t$

98

Pacific Northwest National Laboratory Halo relaxation (stretching) from early to late stages

- Two-parameter Einasto profile for relaxation
- The path of evolution in c- α space (shape parameter vs. concentration)
- Contour for constant core/halo mass ratio C_F
- Evolution path from N-body simulation (green)
- Simplified path for analytical calculation (blue) Blue segment 1 (BS1): constant c≈3.5 Blue segment 2 (BS2): constant α≈0.2
- Path to composite halos with $\alpha \approx 0.7$ (red) follows a constant $C_F = 0.27$; Adiabatic process
- Goal: explore the continuous variation of halo shape, density profile, mean flow, momentum, and energies during halo relaxation.

Pacific Northwest NATIONAL LABORATORY Decomposition of radial flow

Extend key function F(x) to two-parameter function $F(x,\alpha)$, where α is a shape parameter: $\rho_h(r,t) = \frac{1}{4\pi r^2} \frac{\partial m_r(r,a)}{\partial r} = \frac{m_h(t)}{4\pi r^3} \frac{F(x,\alpha)}{x^2 F(c,\alpha)} \quad \text{Enclosed mass:} \quad m_r(r,t) = m_h(t) \frac{F(x,\alpha)}{F(c,\alpha)}$ equation)

- s and $u_{\rm h}=0$;

$$\frac{\partial \rho_{h}(r,a)}{\partial t} = \frac{1}{4\pi r^{2}} \frac{\partial^{2} m_{r}(r,a)}{\partial r \partial t} \qquad \frac{\partial m_{r}(r,a)}{\partial t} = -4\pi r^{2} u_{r}(r,a) \rho_{h}(r,a)$$
(From continuity e

$$u_{h} = u_{hm} + u_{hc} + u_{h\alpha}$$
From mass
cascade:

$$u_{hm} = x \frac{\partial \ln r_{s}}{\partial \ln t} - \frac{F(x,\alpha)}{F'(x,\alpha)} \frac{\partial \ln m_{h}}{\partial \ln t}$$
= Late stage "sr
flows vanishe
From conc.
change:

$$u_{hc} = \frac{\partial \ln c}{\partial \ln t} \frac{F(x,\alpha)}{F'(x,\alpha)} \frac{\partial \ln F(c,\alpha)}{\partial \ln c}$$
= Late stage "sr
flows vanishe
From shape
change:

$$u_{h\alpha} = \frac{\partial \ln \alpha}{\partial \ln t} \frac{F(x,\alpha)}{F'(x,\alpha)} \left[\frac{\partial \ln F(c,\alpha)}{\partial \ln \alpha} - \frac{\partial \ln F(x,\alpha)}{\partial \ln \alpha} \right]$$

$$u_{h\alpha}$$

arge" halos: $u_{hc}=0$ and $u_{hq}=0$ cascade u_{hm} is dominant;

mall" halos: all three radial

r halo "relaxation" from early to e stage (BS2), we expect a nstant r_s , constant α , $m_h \sim F(c, \alpha)$, =0, and $u_{hm}+u_{hc}=0$

Density profile from early to late stages Northwest

Pacific

- During BS1 with constant c≈3.5 and constant C_{F} , decreasing α involves significant change of density in halo core, i.e. steeper density slope and increasing core mass.
- During BS2 with constant $\alpha \approx 0.2$, increasing c involves a stable core (constant scale radius r_s , constant core mass, and core density ρ_c) and extending halo skirt ("halo stretching" vs. "vortex stretching" in turbulence).
- Vortex stretching: anisotropic, volume conserving, constant density, and decreasing momentum of inertia.
- Halo stretching: isotropic, increasing volume, varying density, and increasing momentum of inertia.

Pacific Northwest NATIONAL LABORATORY MOMENT of inertia from early to late stage

Moment of
inertia:
$$I_{\omega} = \frac{2}{3}m_{h}r_{g}^{2} = \frac$$

- Red path is adiabatic with constant halo mass, with both angular momentum and rotational energy conserved.
 - Green path from simulation shows significant increase in moment of inertia from halo "stretching".
- Simplified blue path with constant r_s and core mass shows the increase in moment of inertia that plateaus at large c.

 $\frac{2}{3}m_h r_s^2 F_\omega(\alpha,c)$ $F_{\omega}(c)$ $rac{\Gamma\left(5/lpha\,,2c^{lpha}/lpha
ight)}{\Gamma\left(3/lpha\,,2c^{lpha}/lpha
ight)}$

Northwest Variation of mass, moment, energy during relaxation

Pacific

Specific rotational $K_a = \frac{1}{2} |\mathbf{H}_h| \omega_h = \frac{3}{4} (|\mathbf{H}_h|/r_g)^2$ kinetic energy: $\left|\mathbf{H}_{h}\right| = \frac{2}{3}\omega_{h}r_{g}^{2}$ Specific angular momentum: For early stage "large" halos: $\lambda_p \approx 0.031 \quad m_h \propto t \quad \left| \mathbf{H}_{\mathbf{h}} \right| \propto t \quad \left| K_a \propto t^0 \right|$ Spin-dispersion $\dot{C}_{F} = 0.27$ $r_{g} \propto t$ $\omega_{h} \propto t^{-1}$ $\Phi_{h} \propto t^{0}$ For late stage "small" halos:
$$\begin{split} \lambda_p &\approx 0.124 \ m_h \propto t^0 \ \left| \mathbf{H_h} \right| \propto t^0 \ \overline{K_a \propto t^0} \\ C_F &= 0.083 \ r_g \propto t^0 \ \omega_h \propto t^0 \ \Phi_h \propto t^0 \end{split} \text{Axial-dispersion dominant}$$

- Halo "relaxation" (via BS2): with constant $\alpha \approx 0.2$, increasing c, constant r_s, core mass, and core density
- Specific rotational kinetic energy is relatively conserved
- $|\mathbf{H}_{\mathbf{h}}| \propto r_g \quad \omega_h \propto r_g^{-1}$
- Spin-dispersion dominant to axial-dispersion dominant 103

 λ_{p} : spin parameter

dominant

Pacific Northwest Summary and keywords

Early stage "large" halos	Late stage "small" halos	Core mass ratio	ŀ
Vortex stretching	Halo stretching	Fictitious stress	
Path of halo evolution "relaxation"	Radial flow decomposition	Energy transfer	

- Review one-way energy transfer via vortex stretching in turbulence;
- Halos enable a two-way energy transfer between mean flow and random motion;
- Analytical solutions of mean flow, velocity dispersion, and anisotropy parameters for halos at their early stage and late stage using decomposition of velocity dispersion.
- "Early-stage" halos have their mass, size, kinetic/potential/rotational energy, and the specific angular momentum all increase linearly with time via continuous mass acquisition. Halo core spins faster than the outer region.
- "Late-stage" halos are more spherical in shape, incompressible, and isotropic. Due to finite halo spin, kinetic energy is not equipartitioned along each direction with the greatest energy along the azimuthal direction. Halos are hotter with faster spin.
- Identify the path of relaxation via halo stretching for halos relaxing from early to late stage involving continuous variation of shape, density profile, mean flow, momentum, and energy.
- Might extend to consider effect of black hole at halo center on radial flow

Axial dispersion Spin dispersion