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Preface
Dark matter, if exists, accounts for five times as much as ordinary baryonic 
matter. Therefore, dark matter flow might possess the widest presence in 
our universe. The other form of flow, hydrodynamic turbulence in air and 
water, is without doubt the most familiar flow in our daily life. During the 
pandemic, we have found time to think about and put together a systematic 
comparison for the connections and differences between two types of flow, 
both of which are typical non-equilibrium systems. 

The goal of this presentation is to leverage this comparison for a better 
understanding of the nature of dark matter and its flow behavior on all 
scales. Science should be open. All comments are welcome.

Thank you!



3

Data repository and relevant publications 
Structural (halo-based) approach: Statistics (correlation-based) approach:

0. Data https://dx.doi.org/10.5281/zenodo.6569898

1. The statistical theory of dark matter flow for velocity, density, 
and potential fields 
https://doi.org/10.48550/arXiv.2202.00910

2. The statistical theory of dark matter flow and high order 
kinematic and dynamic relations for velocity and density 
correlations https://doi.org/10.48550/arXiv.2202.02991

3. The scale and redshift variation of density and velocity 
distributions in dark matter flow and two-thirds law for 
pairwise velocity https://doi.org/10.48550/arXiv.2202.06515

4. Dark matter particle mass and properties from two-thirds law 
and energy cascade in dark matter flow 
https://doi.org/10.48550/arXiv.2202.07240

5. The origin of MOND acceleration and deep-MOND from 
acceleration fluctuation and energy cascade in dark matter 
flow https://doi.org/10.48550/arXiv.2203.05606

6. The baryonic-to-halo mass relation from mass and energy 
cascade in dark matter flow 
https://doi.org/10.48550/arXiv.2203.06899

0. Data https://dx.doi.org/10.5281/zenodo.6541230

1. Inverse mass cascade in dark matter flow and effects on halo mass 
functions https://doi.org/10.48550/arXiv.2109.09985

2. Inverse mass cascade in dark matter flow and effects on halo deformation, 
energy, size, and density profiles https://doi.org/10.48550/arXiv.2109.12244

3. Inverse energy cascade in self-gravitating collisionless dark matter flow and 
effects of halo shape https://doi.org/10.48550/arXiv.2110.13885

4. The mean flow, velocity dispersion, energy transfer and evolution of rotating 
and growing dark matter halos https://doi.org/10.48550/arXiv.2201.12665

5. Two-body collapse model for gravitational collapse of dark matter and 
generalized stable clustering hypothesis for pairwise velocity 
https://doi.org/10.48550/arXiv.2110.05784

6. Evolution of energy, momentum, and spin parameter in dark matter flow and 
integral constants of motion https://doi.org/10.48550/arXiv.2202.04054

7. The maximum entropy distributions of velocity, speed, and energy from 
statistical mechanics of dark matter flow 
https://doi.org/10.48550/arXiv.2110.03126

8. Halo mass functions from maximum entropy distributions in collisionless 
dark matter flow https://doi.org/10.48550/arXiv.2110.09676
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Structural (halo-based) 
approach for dark matter flow
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Energy cascade in dark 
matter flow

Xu Z., 2021, arXiv:2110.13885v1 [astro-ph.GA]
https://doi.org/10.48550/arXiv.2110.13885

https://doi.org/10.48550/arXiv.2110.13885
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Introduction

“Eddy” is not a well-defined object in turbulence literature. However, 
“halo” are well-defined dynamically growing and rotating objects 
with nonuniform density, whose abundance and internal structure 
have been extensively studied over several decades. 

Review: In hydrodynamic turbulence, “Energy cascade” involves the energy 
transfer from large eddies to small eddies with a scale-independent rate of 
energy cascade (direct cascade). No mass cascade!
Vortex stretching is a major mechanism for energy cascade in turbulence. 

“Little halos have big halos, That feed on their mass; 
And big halos have greater halos, And so on to growth”

“Big whorls have little whorls, That feed on their velocity; 
And little whorls have lesser whorls, And so on to viscosity.”

 Goal 1: Identify and formulate kinetic/potential energy cascade
 Goal 2: Identify a constant scale-independent rate of energy cascade
 Goal 3: Explore the effect of halo shape on energy cascade

Eddy
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Decomposition of kinetic energy

2 2 2
h vσ σ σ= +

'
p h p= +v v v

Decompose particle velocity into halo 
velocity and velocity fluctuation 
(“Reynolds decomposition”)

Similarly, decompose velocity 
dispersion into halo velocity dispersion 
and halo virial dispersion

Halo group 
temperature

Halo
temperature

Halo group temperature is 
independent of halo size

( )2 ' 2 3varv p hmσ = ∝v

( )2 varhσ = hv

Variation with halo size for redshifts z 
= 0, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, and 3.0

( )2 2
0h ha au aσσ β≈ ∝

( ) ( )2 32 1 2 1 2 3
0,v h v h p hm a a u m m a mσσ β − −≈ ∝
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(Kinetic) energy flux functions

( ) ( ) ( ) ( )
0

, , ,h

h

m

m h h M mm
m a M a f m a dm T m a dm

t
∞∂  Π = − =  ∂ ∫ ∫ ( ) ( ) ( ),,

, g hm h
m h

h p

m m am a
T m a

m m t
∂∂Π

= =
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( )hM a

Equipartition 
requires:

Mass flux function:
total mass flux from 
all halos below mh

Mass transfer function: rate of 
mass transfer for halos of mass mh

Halo mass: hm

Energy flux function for halo kinetic energy σh
2:

Energy flux function for virial kinetic energy σv
2:

( ) ( ) ( ) ( )2 2, , , ,
h

kv h m v m h vm
m a T m a m a dm m aσ σ

∞
Π = − ≠ Π∫

( ) ( ) ( ) ( )2 2, , , ,
h

kh h m h m h hm
m a T m a m a dm m aσ σ

∞
Π = − ≈ Π∫

mh

Пu

Tm

Halo mass function: ( ),Mf m a

 Direct energy cascade 
in hydrodynamic 
turbulence through the 
change of vortex shape

( ) ( )2 * 2

0
, ,h M h h h h hf m m m a dm aσ σ

∞
= ∝∫

Mean (specific) halo kinetic energy:

( ) ( )2 * 2

0
, ,v M h h v h hf m m m a dm aσ σ

∞
= ∝∫

Mean (specific) virial kinetic energy:

 In dark matter flow, inverse
energy cascade is facilitated by 
the inverse mass cascade through 
mass transfer function Tm

2 2 21
2h vσ σ σ≈ =

Total mass of all halos:

Dispersion of all particles: 2u

Energy flow across
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(Kinetic) energy flux functions πkh and πkv

The variation of energy flux function πkv with 
the size of halo groups. 

The variation of energy flux function πkh with 
the size of halo groups. 
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(Potential) energy flux functions
Decompose particle potential into inter-halo 
potential (due to interaction with particles from 
other halos) and intra-halo potential (due to 
interaction with particles in the same halo):

h vφ φ φ= +

Intra-halo 
potential

Inter-halo potential is relatively 
independent of halo size

Inter-halo 
potential

Variation with halo size for redshifts z 
= 0, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, and 3.0

The virial ratios:
23v v vγ σ φ= −
23h h hγ σ φ= −Inter-halo: 

Intra-halo: 

1.3vγ ≈For large halos:
due to halo surface energy
Direct cascade for potential 
energy from large to small
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Redshift evolution of halo mass and virial ratio

The variation of total halo mass Mh, out-of-halo 
mass Mo and virial ratios with scale factor a. 

 Mass flux from out-of-halo to halos sustains the total 
halo mass growing as Mh(a)~a1/2, as predicted from 
mass cascade.

 ~ 60% of total mass are in halos and ~40% in out-of-
halo (single merges)

 For the motion of halos, virial ratio (yellow) takes 
longer time to reach equilibrium due to weak gravity 
between halos.

 For motion in halos, virial equilibrium is established 
much faster with virial ratio ≈1.3 (yellow). 

 Virial ratio≈2 (green) for out-of-halo particles(single 
mergers). The out-of-halo sub-system is energy 
conserved (no virilization), i.e. KE+PE = 0.
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Variation of three kinetic energies for halo and out-
of-halo particles with scale factor a

Redshift evolution of kinetic energies
 Total total kinetic energy of entire N-body 

system (green line: 1+2+3) grows ∝ t. 

 Total kinetic energy in out-of-halo sub-
system (magenta: 3) is time-invariant. 

 The total kinetic energy of halo sub-system 
(red: 1+2) becomes dominant over out-of-
halo sub-system grows ∝ t. 

 A cross-over can be found at around a=0.5. 

 A constant and scale-independent rate of 
energy cascade can be identified: 

2 2 21
2h vσ σ σ≈ =

22 2
2 70

0 0 3
0

3 3 9 4.6 10
2 2 4u

uu mH u
t t s

ε −= − = − = − ≈ − ×
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Rate of mass and kinetic energy cascade

( ) ( ) 2 050,
2kv kv h h vm a M a H aε σ= Π → = − ∝

( ) ( )2 2 010,
2kh kh h m h h hm a M a H aε ε σ σ= Π → = = − ∝

( ) ( ) 110,
2m m h hm a M a H aε −= Π → = − ∝

2 2 2 11
2h v aσ σ σ≈ = ∝

( )
( )

( ) ( ) 2
23 9 3

2 4 2
kh kv h h

u
h tot tot

M a M a uH
M a M M t
ε ε

ε σ
+

= = − ≈

The rate of mass cascade:

The rate of cascade of halo kinetic energy σh
2:

The rate of cascade of virial kinetic energy σv
2 :

The rate of cascade of total kinetic energy:

 Total mass in N-body system: Mtot
 Total halo mass in all halos: Mh
 Total mass in out-of-halo: Moh
 One-dimensional velocity 

dispersion in N-body system: u2

 One-dimensional velocity 
dispersion in all halos: <σ2>

 One-dimensional halo velocity 
dispersion in all halos: <σh

2>
 One-dimensional halo virial 

dispersion in all halos: <σv
2>

 Hubble parameter: H
 Physical time: t
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Inverse cascade of halo radial and rotational 
kinetic energy

Variation with halo size for different redshifts 
z = 0, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, and 3.0. 

( ) 1 2
hp G h gG f m a Hr−≈ −

( ) 0.5 2
h H h gf m a Hr≈H

2'

1

pn

g p p
p

r n
=

= ∑ x

'
p h p= +x x x

( )' '

1

1 pn

hp p p
ip

G
n =

= ⋅∑ x u( )' '

1

1 pn

h p p
ipn =

= ×∑H x u

'
p h p= +u u u

( )
( )

( )
( )

3 2,
,

hp h G h
G

H hh h

G m a a f m
f mm a

γ
−

= =
H

Decompose halo particle position and velocity

xh
X’p

Define the mean square radius rg: 

(peculiar) virial quantity 
(radial momentum):Angular momentum:

(Next slides)
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Modeling halo angular and radial momentum
1 3

2
0

2 h
g g h g

c

Gmr r a
H

γ γ
 

= =  ∆ 

1 3

130.28
2.27 10

g hr ma
Mpc h M h

 
≈  × 

The variation of two coefficients fG, fH and ratio γGThe variation of mean square radius rg
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Halo angular velocity and kinetic energy from 
coherent motion (mean flow)

( ) ( )
2 3

2 22 3 021 1
2 2

h
rp hp g g G h

c

Gm HK G r a f mγ −  
= =      ∆ 

( ) ( )
2 3

2 22 021 3 3
2 4 4

h
a h h h g g H h

c

Gm HK r f mω γ
 

= = =      ∆ 
H H

The variation of halo angular velocity, rotational 
kinetic energy and radial kinetic energy

ω=2H
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The effect of halo shape on energy cascade

' '
, ,

1

pn

ij p i p j
p

I x x
=

=∑
Assuming ellipsoid shape, 3x3 inertia tensor for every halo:

1 2 3r r rλ λ λ≤ ≤

Vortex Stretching (shape changing) responsible for energy cascade in turbulence. 
What about the shape change of halo?

2 2 2 2
1 2 3gr r r rλ λ λ= + +

Three eigenvalues
(length of 

semimajor axis)

Mean square radius:

2 1
1

3 2
r

r r
r r
λ λ

λ λ

λ −
=

− ( )

2 2
3 2

2 2 3
1 2 32r

r r
r r r
λ λ

λ λ λ

λ +
=

Define two critical ratios: 

2 1rλ =

Moment of inertia 
for ellipsoid

Moment of inertia 
for sphere

1 0.5rλ ≈ [ ]2 1.55,2rλ =

Same 
volume

for small halos, a 
unique path of shape 
evolution (green);

for sphere;
Simulated halos:

0.5

Change of halo shape 
should not play a significant 

role in energy cascade. 
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Various halo shape parameters

( )
3 1

1 2 32e
r rh

r r r
λ λ

λ λ λ

−
=

+ +

( )
3 2 1

1 2 3

2
2p
r r rh

r r r
λ λ λ

λ λ λ

− +
=

+ +

2 2
3 2
2 2
3 1

t
r rh
r r
λ λ

λ λ

−
=

−

Prolate:Oblate:

1th =

0th =

oblatep eh h= −

p eh h= prolate

1 2 3r r rλ λ λ< =
1 2 3r r rλ λ λ= <

From wiki

oblate

prolate
Triaxiality parameter:

Ellipticity & prolateness parameters: 

The variation of halo shape 
parameters with halo size at z=0



80

Two-dimension he-hp mapping of halo shape 
 All three-body halos have planar structure (blue 

line) with mean values of 1/8 and 3/8.

 The mean shape parameters for all halo groups 
(black circles). Green circles highlight the halos 
in range of np=[3 200]. Halos are more prolate. 

 With increasing size, the shape of halos evolves 
consistently toward sphere along a unique path 
(green line) before a “V” turn. Path required 
λr1=0.5. 

 Red line with arrow pointing to low peak height 
indicates the evolution path of simulated halo 
shape from early stage (ν=5) to late stage (ν=0.5).

100.098log 0.094eh ν= +

100.079log 0.025ph ν= +

( ),cr hm zν δ σ=Peak height: [5 to 0.5]

Vortex 
stretching
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Summary and keywords

 Establish connections of energy cascade in turbulence and dark matter flow 
 Direct energy cascade in hydrodynamic turbulence is facilitated by the vortex stretching 

(shape changing) along its axis of rotation 
 Inverse cascade of kinetic energy from small to large mass scales in dark matter flow 
 Direct cascade of potential energy from large to small mass scales
 A constant scale-independent rate of energy cascade εu~a0 and a is scale factor
 Energy cascade in dark matter flow is mostly facilitated by the mass cascade of halos
 The shape change of halos does not play the major role.
 A unique evolution path of halo shape that gradually approaches spherical shape with 

increasing halo size

Inverse energy cascade Direct energy cascade Halo inertia tensor 
Energy flux function Energy transfer function Halo mean square radius

Prolate & oblate Ellipticity & prolateness Halo moment of inertia
Halo virial/velocity 

dispersion
Intra- and inter-halo 

potential
Halo radial & angular 

momentum
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