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Preface
Dark matter, if exists, accounts for five times as much as ordinary baryonic 
matter. Therefore, dark matter flow might possess the widest presence in 
our universe. The other form of flow, hydrodynamic turbulence in air and 
water, is without doubt the most familiar flow in our daily life. During the 
pandemic, we have found time to think about and put together a systematic 
comparison for the connections and differences between two types of flow, 
both of which are typical non-equilibrium systems. 

The goal of this presentation is to leverage this comparison for a better 
understanding of the nature of dark matter and its flow behavior on all 
scales. Science should be open. All comments are welcome.

Thank you!
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Data repository and relevant publications 
Structural (halo-based) approach: Statistics (correlation-based) approach:

0. Data https://dx.doi.org/10.5281/zenodo.6569898

1. The statistical theory of dark matter flow for velocity, density, 
and potential fields 
https://doi.org/10.48550/arXiv.2202.00910

2. The statistical theory of dark matter flow and high order 
kinematic and dynamic relations for velocity and density 
correlations https://doi.org/10.48550/arXiv.2202.02991

3. The scale and redshift variation of density and velocity 
distributions in dark matter flow and two-thirds law for 
pairwise velocity https://doi.org/10.48550/arXiv.2202.06515

4. Dark matter particle mass and properties from two-thirds law 
and energy cascade in dark matter flow 
https://doi.org/10.48550/arXiv.2202.07240

5. The origin of MOND acceleration and deep-MOND from 
acceleration fluctuation and energy cascade in dark matter 
flow https://doi.org/10.48550/arXiv.2203.05606

6. The baryonic-to-halo mass relation from mass and energy 
cascade in dark matter flow 
https://doi.org/10.48550/arXiv.2203.06899

0. Data https://dx.doi.org/10.5281/zenodo.6541230

1. Inverse mass cascade in dark matter flow and effects on halo mass 
functions https://doi.org/10.48550/arXiv.2109.09985

2. Inverse mass cascade in dark matter flow and effects on halo deformation, 
energy, size, and density profiles https://doi.org/10.48550/arXiv.2109.12244

3. Inverse energy cascade in self-gravitating collisionless dark matter flow and 
effects of halo shape https://doi.org/10.48550/arXiv.2110.13885

4. The mean flow, velocity dispersion, energy transfer and evolution of rotating 
and growing dark matter halos https://doi.org/10.48550/arXiv.2201.12665

5. Two-body collapse model for gravitational collapse of dark matter and 
generalized stable clustering hypothesis for pairwise velocity 
https://doi.org/10.48550/arXiv.2110.05784

6. Evolution of energy, momentum, and spin parameter in dark matter flow and 
integral constants of motion https://doi.org/10.48550/arXiv.2202.04054

7. The maximum entropy distributions of velocity, speed, and energy from 
statistical mechanics of dark matter flow 
https://doi.org/10.48550/arXiv.2110.03126

8. Halo mass functions from maximum entropy distributions in collisionless 
dark matter flow https://doi.org/10.48550/arXiv.2110.09676

https://dx.doi.org/10.5281/zenodo.6569898
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Structural (halo-based) 
approach for dark matter flow
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Effect of mass cascade on halo 
energy, size, and density profile

Xu Z., 2021, arXiv:2109.12244v1 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2109.12244

https://doi.org/10.48550/arXiv.2109.12244
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Introduction

“Eddy” is not a well-defined object in turbulence literature. However, “halo” are well-defined dynamical 
objects, whose abundance and internal structure have been extensively studied over several decades. 

 Goal 1: Explore effects of inverse mass cascade on halo energy, 
momentum, halo size and internal structure (density) evolution.

 Goal 2: Explore the dynamic evolution of halo size (geometric 
Brownian motion)

 Goal 3: Explore the random walk of particle in halos with a randomly 
evolution size. This leads to a universal halo density profile.

Review: In hydrodynamic turbulence, “Energy cascade” involves the energy transfer from large 
eddies to small eddies with a scale-independent rate of energy cascade. No mass cascade!

“Little halos have big halos, That feed on their mass; And big halos have greater halos, And so on to growth”
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Halo mass accretion, deformation, and radial flow

Schematic plot of halo mass 
accretion and deformation

 Halo grows with a new layer of particles of thickness rp
formed due to halo mass accretion (mass cascade)

 Original halo (dash line) deforms in size (shrinks to 
green) by rp

’ due to gravity of new layer 

 The net change in halo size is rp - rp
’

 Halo deformation at halo surface induces a non-zero 
inward radial flow ur

 What about the radial flow at halo center??
 Must be outwards if no blackhole considered

'1h p pr rα = −Halo deformation 
parameter

1hα =Isothermal profile (vanishing radial flow, no time to 
relax or deform due to extremely fast mass accretion):
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Effect of radial flow on halo density profile
Reduced spatial/ 

temporal coordinate: 
( ) ( ) ( )

,
s h

r crx r a
r a r a

= =

( ) ( ) ( )
( )

,r h

F x
m r a m a

F c
=Function F(x) for 

enclosed mass at given r: 

( ) ( ) ( ) ( )
( )

3 '

2 3 2

,1,
4 4

r h
h

h

m r a m a c F x
r a

r r r x F c
ρ

π π
∂

= =
∂

Halo 
density: 

F(x) Radial flow uh(x)Density ρh

 Outward flow in core and inward flow in outer region

 Radial flow creates a new length scale for any halo 
density: the scale radius rs

 Vanishing radial flow for isothermal: extremely fast 
mass accretion and no time for halo to deform

( ) ( ) ( )2

2

, ,, 1 0h rh r r a u r ar a
t r r

ρρ  ∂∂  + =
∂ ∂

Radial 
continuity 
equation:

( ) ( )
( )'

ln
ln

h
h

F x ru x x
F x t

  ∂
= −  ∂ 

Radial flow 
equation:

Mass 
cascade

( ) ( ) ( )ln 1 1F x x x x= + − +NFW:
( ) ( ) ( )3 3 ,2F x xαα α α= Γ −ΓEinasto: ( )F x x c=

Isothermal:
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Radial flow and angle of incidence 

( )'lnln 2 2
ln ln 1

h h

h

F x u x
x x u x
ρ ∂∂ ∂ ∂

= − = −
∂ ∂ −

ln 2
ln

h

x
ρ∂

= −
∂

0hu
x

∂
=

∂

Logarithmic slope of density: 

and ( ) 1 1 1cot
2 3

p
vr

cir h

u
v

θ
π α
 

= = − 
 

At r=rs

Radial flow is at 
its maximum at 
scale radius rs

 Single mergers merging with halo at an angle: angle of incidence
 Neither perpendicular nor tangential
 Angle of incidence determined by peculiar radial flow up and 

circular velocity vcir

1hα =Deformation parameter 
for Isothermal profile: 

( ) 1 2cot
3vr

c

θ
π

= =
∆

 Determine critical halo density Δc , 
(two-body collapse model)

 Determine the rate of energy cascade
 No energy cascade if tangential
 Maximum cascade if perpendicular

 Understand the critical MOND 
acceleration a0

( )
2

2

2 18
cotc

vr

π
θ

∆ = =

and 
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Radial flow from simulation Einasto profile is better than NFW for 
massive halos (high peak height ν), why?

Radial flow from simulation
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Radial flow ur and pressure around halo center
Radial flow at halo center:

 Term 1 from mass cascade usually neglected

 The radial flow should vanish for virialized 
small halos with extremely slow mass 
accretion (late stage); gravity exactly balances 
pressure; stable clustering hypothesis (SCH)

 The radial flow should be the Hubble flow for 
large halos with extremely fast mass accretion 
(early stage).

 In spherical collapse model, the initial velocity 
of mass shells is simply the Hubble flow 

( ) ( ) ( )2

2

1

, ,1 h r h rr r
r

h

r a Gm r au uu
t r r r r

ρ σ φ
ρ

∂ ∂∂ ∂
+ + = − = −

∂ ∂ ∂ ∂


( )


2 2
2 2

2
3

1 2

ln ln ln1
ln ln ln

h r s h s s
r h h c

r u r rx x u u v
x t x t t

ρ σ
σ

∂ ∂ ∂ ∂    = − + − −    ∂ ∂ ∂ ∂    




Jeans’ equation: 

1: from pressure; 2: from radial flow; 3: from gravity 

( ) ( ) ( ) ( ) ( )
( )

2 2
2 2

2

0
0

2
h cir

h h r h
h

x v
p x x x p x x

a c
ρ

ρ σ
ρ

=
≡ = = −

Parabolic pressure around halo center:

( )
( )

( )2 0
0

h r
c

h cir

a c
x

v
ρ σ
ρ

=( ) 0h cp x =
Define a halo core size xc :

0h h x
u xγ

=
= ∂ ∂

Define a halo 
deformation rate:

xc

ph
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Double power-law for halo density 

( ) ( ) ( )3 2 1h h
h sr r r γ γρ − −< ∝

( )
( )

0

1
2hc

c x
h sr r r

α

ρ
−

−
−> ∝

( )'lnln 2 2
ln ln 1

h h

h

F x u x
x x u x
ρ ∂∂ ∂ ∂

= − = −
∂ ∂ −

F(x) Radial flow uh(x)Density ρh

Density 
profiles

Concentration c Deformation 
parameter αh

Deformation rate 
parameter γh

𝜌𝜌ℎ 𝑟𝑟 < 𝑟𝑟𝑠𝑠

Isothermal 3.5 1 0 r-2

NFW 3.5 0.8329 1/2 r-1

Einasto (α=0.2) 3.5 0.8371 2/3 r0

3/4 r1

( ) ( ) ( )
( )

''

'2
hu x F x F x
x F x

∂
=

∂

( )
( )

'

h

F c
c

F c
α =

 Double power-law is a natural result due to radial flow 
in outer and inner regions

 Halo deformation parameter from mass cascade controls 
density in outer region

 Halo deformation parameter controls density in inner 
region

 The larger deformation rate at center, the larger 
logarithmic slope 
(baryonic feedback for core-cusp?)

0h h x
u xγ

=
= ∂ ∂

Double power-law: 
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The limiting concentration c for large halos 
and radial momentum and kinetic energy 

( ) ( ) ( ) ( ) ( ) ( )( )2

0 0
, 4 , 2

2
hr ch cir

hr r h
m vL a u r a r r a dr cF c F x dx
cF c

π ρ
π

= = −∫ ∫

( ) ( )
0

2
c

cF c F x dx= ∫ 3.5c =

Vanishing radial Linear momentum (halos at turn-around):

Zhao etc.., 2009, Astrophys. J., 707, 354

for NFW 
profile

Limiting 
concentration 
for large halos

Limiting c~4 
from 

simulation
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Effect of radial flow on velocity dispersion

 Radial flow usually neglected for
virialized halos;

 Effect of radial flow can be significant
for halos in their early life before fully
virialized (high peak height v);

 The radial flow tends to enhance the
radial random motion and is only
significant in the halo outer region.
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Mass cascade induced halo surface energy

( ) ( ) ( ) ( )2 2 2

2 2

,1 0h r h rh r r
h

r uu Gm r a
t r r r r

ρ ρ σρ
ρ

∂ ∂∂
+ + + =

∂ ∂ ∂

6 2h h u uK I K S Sσ σ+Φ = − + +

Jeans’ equation for isotropic growing halos 
with non-zero radial flow:  

Integrating Jeans’ Equation leads to a 
generalized virial theorem for growing
halos with fast mass accretion:

6 0hK nσ − Φ =

Standard virial theorem for static halos with a 
vanishing radial flow (Kσ is 1D kinetic energy):

( )eh uS S Sσ= +

6 0e hK nσ − Φ =

1n = −Potential 
exponent

Rewrite to introduce effective exponent ne:

and

Halo surface energy:

Halo surface tension:

( )2th eh hS S A= 24h hA rπ=
Young–Laplace equation relates the pressure jump 
across halo surface to halo radius or curvature; 

22 0.1th eh
h h cir

h h h

S SP v
r A r

ρ∆ = = ≈

2 1
th st sur h hS G r rα ρ −= ∝

1 1.3 1eh
e

Sn ≈ − + ≈ − ≠ −
Φ

,

Surface area:

Halo surface mass 
density: ρsur ~rh

-1

Mass cascade (fast mass accretion) leads to finite 
halo surface energy, surface tension, surface mass 
density, and an effective potential exponent ne~-1.3, 
confirmed by N-body simulation.

21 h u u
e

I K S Sn σ− + +
= − +

Φ

mean 
flow
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Halo size evolution from theory of mass cascade

( ) ( )
( ) ( ) ( )2ph

p h
g h

m tm t
D m t

t m
ξ

ς
τ

∂
= =

∂

1D Random walk of halos in mass space:

( ) ( ) ( ) ( )3
2

h
h h rh

dr t
Hr t Hr t t

dt
ξ= +

1D Random walk of halos in size space 
(Geometric Brownian motion):

( ) ( ) ( )' '2rh rh rht t D t t Hξ ξ δ= −

( )
( )

( ) ( ) ( )( )
( )

2
0ln 1 2 3 ln1, exp
8 ln 38 ln 3

h h rh i
rh h

rh ih rh i

r r D t t
P r t

D t tr D t tπ

 − − = − 
  

ti t Solution leads to a lognormal probability distribution of halo size:rh0

Covariance:
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Particle distribution in halos: a review of Brownian motion

( ) ( ) ( )* 2t
h t h t B

dr u x u x D t
dt

ξ = + + 

( ) ( ) ( )* *2t
h t h t B

dr u x u x D t
dt

ξ = − + 

( )1 1
6 6

B BB B B
h

B B B B B B

k TFu
a a x x

ρµ
πη πη ρ ρ

∂∂Π
= = − ⋅ = −

∂ ∂

* ln B
h Bu D

x
ρ∂

=
∂

Osmotic velocity 
from diffusion flux:

Quick review of standard Brownian motion in viscous liquid:

Current velocity from stokes law:

( ) ( ) ( )( )
2

*
2

,r r
h h r B

P x t Pu x u x P D
t x x

∂ ∂∂  = − + + ∂ ∂ ∂

( ) ( ) ( )( )
2

*
2

,r r
h h r B

P x t Pu x u x P D
t x x

∂ ∂∂  = − − − ∂ ∂ ∂

*
h hu u= − B B BD k Tµ=

The Einstein relation:A simple closure: 

( ) 2

2

,r r
B

P x t PD
t x

∂ ∂
=

∂ ∂

Stochastic equations for Brownian 
motion (forward and backward):

Diffusion equation for 
density distribution:

Fokker-Planck equations  
(forward and backward):

* ln r
h h B

Pu u D
x

∂
= − =

∂
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Particle distribution in halos: formulation
Brownian motion of particle in halos with stochastically (lognormal) growing size:

 Due to long-range interaction, 

Stochastic equations for Brownian motion (forward and backward):

Fokker-Planck equations  (forward and backward):

( ) ( ) ( ) ( ) ( ) ( )*

2
1

st
h t h t t s rh

r tdr u x u x x r t H t
dt t

σ ξ = + + 



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2

* 2 2
2
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h h r s rh r
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u x u x P r t HD x P

t t r r
σ

∂ ∂ ∂ = − + + ∂ ∂ ∂

( ) ( ) ( ) ( )( ) ( ) ( )( )
2

* 2 2
2
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h h r s rh r

P r t r t
u x u x P r t HD x P
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σ

∂ ∂ ∂ = − − − ∂ ∂ ∂

( )r
h r

Px u x P
x x

∂ ∂
=   ∂ ∂

( ) ( ) ( ) ( )* 2 2lnh r ru x d x x P x
x

σ σ∂  =  ∂

Multiplicative noise 
(dependent on rt itself) 
due to random varying 

halo size!! 

 Key is to find a simple closure to close 
equation! (an example in ref.)

( ) ( )
( )

( )2 2
* r h
h r

h

d x xuu x d
x u x x x
σ σ∂∂

= +
− ∂ ∂

Exact relation between current 
and osmotic velocities:

*
h hu u≠ −Radial 

flow
Osmotic 

flow

( )t tx xσ With expected

https://arxiv.org/abs/2109.12244
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To derive halo density, adopting a 
simple model of osmotic velocity :

( ) 1* r
h r ru x x x αγ β += −

Particle distribution in halos: halo density profile

( ) ( )( )
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r r r r
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a a b
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Two-parameter particle distribution function:

Three-parameter halo density profile:

Two-parameter Einasto:

3 2r ra b =

( )
( )( )
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( )( )
( )

1 1

0

, ,
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r r r ra b a b
x r r r rr
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r m a a

γ− −Γ 
= = = = − =  Γ Γ 

∫

Two-parameter cumulative distribution function:

Density of 
composite halos of 

different mass
has a central core 

and universe 
density profile!!

( ) ( )
2
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h

F x
x

x x
ρ

∂
∝

∂
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Particle distribution in halos and halo density profile
Constructing composite halo for a halo group 
including all halos of the same mass:

Halo #1

Halo #2

Halo #3

……

Composite 
Halo

 Composite halo reflects complete statistics of 
particle distribution resulting from particle random-
walk in dynamic halos;

 All composite halos have a central core (no cusp)
 The density profile of composition halo (α=[1.2 

0.7]) can be different from individual halo (α≈0.2);

 Fitted ar/br=3/2 for all size of halo groups 
(implies an Einasto profile) 
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Equation of state for relative pressure and density

( ) ( )
2

0 1 rb
h h rx b xρ ρ

 
≈ −  

 
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2 exp rb
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0
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2
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b
bh cir

h h h hb
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v
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ρ
ρ ρ

ρ

−
  − = −      

( ) rb
h s hp K ρ∆ = ∆

Equation of state (EoS) for relative pressure and 
relative density (relative to the center of halo):

with

For small x (halo center)

Cancel x in both Equations:

 EoS is good for entire range of relative P and ρ
 Why? might because of halo grows from center

Parabolic pressure at halo center:



65

Summary and key words

 Mass cascade induced nonzero radial flow (outwards and inwards).
 Self-similar solution to relate halo density profile with radial flow.
 Radial flow leads to an extra length scale (the scale radius rs).
 Limiting halo concentration c=3.5 for fast growing halos at their early stage, with a Hubble flow 

at halo center leading to a central core.
 Composite halos from N-body simulation always have a central core.
 Radial flow enhances velocity dispersion in outer region. 
 Radial flow leads to a nonzero halo surface energy/tension.
 Random walk of halo size is a geometric Brownian process with log-normal distribution
 Random walk of particles in halo with varying size leads to analytical particle probability 

distribution (i.e. the halo density profile).
 Equation of state for relative pressure and relative density (relative to halo center)

Radial flow & scale 
radius

Halo surface 
energy/tension

Current velocity Mean flow& 
random motion

Deformation 
parameter αh

Deformation rate 
parameter γh

Osmotic velocity Limiting 
concentration

Angle of incidence Random walk Fokker-Planck Equation of state
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