

A comparative study of dark matter flow & hydrodynamic turbulence and its applications

May 2022

Zhijie (Jay) Xu

Multiscale Modeling Team Computational Mathematics Group Physical & Computational Science Directorate <u>Zhijie.xu@pnnl.gov; zhijiexu@hotmail.com</u>

PNNL is operated by Battelle for the U.S. Department of Energy

Dark matter, if exists, accounts for five times as much as ordinary baryonic matter. Therefore, dark matter flow might possess the widest presence in our universe. The other form of flow, hydrodynamic turbulence in air and water, is without doubt the most familiar flow in our daily life. During the pandemic, we have found time to think about and put together a systematic comparison for the connections and differences between two types of flow, both of which are typical non-equilibrium systems.

The goal of this presentation is to leverage this comparison for a better understanding of the nature of dark matter and its flow behavior on all scales. Science should be open. All comments are welcome.

Thank you!

Inp-st

place

Pacific Northwest Dat

Data repository and relevant publications

Structural (halo-based) approach:

- 0. Data <u>https://dx.doi.org/10.5281/zenodo.6541230</u>
- 1. Inverse mass cascade in dark matter flow and effects on halo mass functions <u>https://doi.org/10.48550/arXiv.2109.09985</u>
- 2. Inverse mass cascade in dark matter flow and effects on halo deformation, energy, size, and density profiles <u>https://doi.org/10.48550/arXiv.2109.12244</u>
- 3. Inverse energy cascade in self-gravitating collisionless dark matter flow and effects of halo shape <u>https://doi.org/10.48550/arXiv.2110.13885</u>
- 4. The mean flow, velocity dispersion, energy transfer and evolution of rotating and growing dark matter halos <u>https://doi.org/10.48550/arXiv.2201.12665</u>
- 5. Two-body collapse model for gravitational collapse of dark matter and generalized stable clustering hypothesis for pairwise velocity <u>https://doi.org/10.48550/arXiv.2110.05784</u>
- 6. Evolution of energy, momentum, and spin parameter in dark matter flow and integral constants of motion <u>https://doi.org/10.48550/arXiv.2202.04054</u>
- The maximum entropy distributions of velocity, speed, and energy from statistical mechanics of dark matter flow https://doi.org/10.48550/arXiv.2110.03126
- 8. Halo mass functions from maximum entropy distributions in collisionless dark matter flow <u>https://doi.org/10.48550/arXiv.2110.09676</u>

Statistics (correlation-based) approach: 0. Data https://dx.doi.org/10.5281/zenodo.6569898

0. Data <u>https://dx.doi.or</u>			
	1.	The statistical theory of da and potential fields <u>https://doi.org/10.48550/ar</u>	
	2.	The statistical theory of da kinematic and dynamic relations <u>https://doi.org/</u>	
	3.	The scale and redshift vari distributions in dark matter pairwise velocity <u>https://do</u>	
	4.	Dark matter particle mass and energy cascade in dar https://doi.org/10.48550/ar	
	5.	The origin of MOND acceleration fluctuation and flow <u>https://doi.org/10.4855</u>	
	6.	The baryonic-to-halo mass cascade in dark matter flow https://doi.org/10.48550/ar	

irk matter flow for velocity, density,

Xiv.2202.00910

ark matter flow and high order ations for velocity and density /10.48550/arXiv.2202.02991

iation of density and velocity flow and two-thirds law for <u>i.org/10.48550/arXiv.2202.06515</u>

and properties from two-thirds law rk matter flow

Xiv.2202.07240

eration and deep-MOND from d energy cascade in dark matter <u>50/arXiv.2203.05606</u>

s relation from mass and energy

Xiv.2203.06899

Structural (halo-based) approach for dark matter flow

Effect of mass cascade on halo energy, size, and density profile

Xu Z., 2021, arXiv:2109.12244v1 [astro-ph.CO] https://doi.org/10.48550/arXiv.2109.12244

Review: In hydrodynamic turbulence, "Energy cascade" involves the energy transfer from large eddies to small eddies with a scale-independent rate of energy cascade. No mass cascade!

"Little halos have big halos, That feed on their mass; And big halos have greater halos, And so on to growth"

"Eddy" is not a well-defined object in turbulence literature. However, "halo" are well-defined dynamical objects, whose abundance and internal structure have been extensively studied over several decades.

- Goal 1: Explore effects of inverse mass cascade on halo energy, momentum, halo size and internal structure (density) evolution.
- Goal 2: Explore the dynamic evolution of halo size (geometric **Brownian motion**)
- Goal 3: Explore the random walk of particle in halos with a randomly evolution size. This leads to a universal halo density profile.

Northwest Halo mass accretion, deformation, and radial flow

Pacific

Schematic plot of halo mass accretion and deformation

- Halo grows with a new layer of particles of thickness r_p formed due to halo mass accretion (mass cascade)
- Original halo (dash line) deforms in size (shrinks to green) by r_p due to gravity of new layer
- The net change in halo size is $r_p r_p'$
- Halo deformation at halo surface induces a non-zero inward radial flow u_r
- What about the radial flow at halo center?? Must be outwards if no blackhole considered

Halo deformation parameter

Isothermal profile (vanishing radial flow, no time to $\alpha_h = 1$ relax or deform due to extremely fast mass accretion):

 $\alpha_h = 1 - r_p'/r_p$

Effect of radial flow on halo density profile Northwest

Pacific

- Outward flow in core and inward flow in outer region
- Radial flow creates a new length scale for any halo density: the scale radius r_s
- Vanishing radial flow for isothermal: extremely fast mass accretion and no time for halo to deform

Reduced spatial/ temporal coordinate:

Function F(x) for enclosed mass at given *r*:

Halo density:

Radial continuity equation:

Radial flow equation:

 $u_{h}(x) = \begin{bmatrix} x - \frac{F(x)}{F'(x)} & \frac{\partial \ln r_{h}}{\partial \ln t} & \text{Mass} \\ cascade \end{bmatrix}$

Density ρ_h F(x) NFW: $F(x) = \ln(1+x) - x/(1+x)$ Einasto: $F(x) = \Gamma(3/\alpha) - \Gamma(3/\alpha, 2x^{\alpha}/\alpha)$ F(x) = x/c

 $x(r,a) = \frac{r}{r_s(a)} = \frac{cr}{r_h(a)}$ $m_r(r,a) = m_h(a) \frac{F(x)}{F(c)}$

 $\rho_h(r,a) = \frac{1}{4\pi r^2} \frac{\partial m_r(r,a)}{\partial r} = \frac{m_h(a)}{4\pi r_h^3} \frac{c^3 F'(x)}{x^2 F(c)}$

51

Pacific Northwest National Laboratory Radial flow and angle of incidence

Logarithmic slope of density:

-Isothermal

1.5

NFW

0.5

-Einasto

-1

-1.5

0

its maximum at

scale radius r_s

2.5

3.5

- Single mergers merging with halo at an angle: angle of incidence
- Neither perpendicular nor tangential

• Angle of incidence determined by peculiar radial flow u_p and circular velocity v_{cir}

 $\cot\left(\theta_{vr}\right) = \frac{u_p}{v_{cir}} = \frac{1}{2\pi} \left(\frac{1}{\alpha_{\mu}} - \frac{1}{3}\right)$ Deformation parameter for Isothermal profile: $\Box \left(\alpha_{h} - 3 \right) \quad \text{for Isothe}$ $\Box \left(\alpha_{h} - 3 \right) = \frac{1}{3\pi} = \sqrt{\frac{2}{\Delta}} \quad \Delta_{c} = \frac{2}{\cot^{2}(\theta_{vr})} = 18\pi^{2}$ $\cot(\theta_{vr}) = \frac{1}{3\pi} = \sqrt{\frac{2}{\Delta}} \quad 2\pi^{-1}$

- Determine critical halo density Δ_c , (two-body collapse model)
- Determine the rate of energy cascade
 - No energy cascade if tangential
 - Maximum cascade if perpendicular
- Understand the critical MOND <u>acceleration a₀</u>

Pacific Northwest NATIONAL LABORATORY Radial flow from simulation

Klypin A. etc., 2016, Mon. Not. R. Astron. Soc., 457, 4340

Figure 8. Density profiles of haloes with mass $M_{200} \approx 1.2 \times 10^{14} h^{-1} M_{\odot}$ at z = 1.5 (full curves). Left (right) panels show relaxed (all) haloes. Dot-dashed curves show Einasto fits, which have the same virial mass as haloes in the simulation. The NFW profiles (dashed curves) do not provide good fits to the profiles and significantly depend on what part of the density profile is chosen for fits.

Einasto profile is better than NFW for massive halos (high peak height v), why?

Northwest National Laboratory Radial flow u_r and pressure around halo center

Radial flow at halo center:

Pacific

- Term 1 from mass cascade usually neglected
- The radial flow should vanish for virialized small halos with extremely slow mass accretion (late stage); gravity exactly balances pressure; stable clustering hypothesis (SCH)
- The radial flow should be the Hubble flow for large halos with extremely fast mass accretion (early stage).
- In spherical collapse model, the initial velocity of mass shells is simply the Hubble flow

Parabolic pressure around halo center: $=0)-\frac{\rho_h^2(x=0)v_{cir}^2}{2\overline{\rho}_h(a)c^2}x^2$

$$p_h(x) \equiv \rho_h(x) \sigma_r^2(x) = p_h(x)$$

Define a halo core size x_c :

 $p_h(x_c) = 0 \qquad \Longrightarrow \qquad x_c = \sqrt{\frac{2\overline{\rho}_h(a)}{\rho_h(0)}} \frac{c\sigma_r(0)}{v}$

Pacific Northwest Double power-law for halo density

Density profiles	Concentration c	Deformation parameter α_h	Deformation rate parameter γ_h	$\rho_h($
Isothermal	3.5	1	0	r -2
NFW	3.5	0.8329	1/2	r -1
Einasto (α=0.2)	3.5	0.8371	2/3	r ⁰
			3/4	r ¹

Density ρ_h F(x)

Radial flow $u_h(x)$

 $\frac{\partial \ln \rho_h}{\partial \ln x} = \frac{\partial \ln F'(x)}{\partial \ln x} - 2 = \frac{\partial u_h}{\partial x} - 2 = \frac{\partial u_h}{\partial x} - 2 = \frac{\partial u_h(x)}{\partial x} - 2 = \frac{\partial$

Double power-law:

$$\rho_h(r < r_s) \propto r^{(3\gamma_h - 2)/(1 - \gamma_h)}$$
$$\rho_h(r > r_s) \propto r^{\frac{c(\alpha_h - 1)}{c - x_0} - 2}$$

$$\gamma_h = \partial u_h / \partial x \Big|_{x=0}$$
$$E'(c)$$

$$\alpha_h = c \frac{F(c)}{F(c)}$$

- in outer and inner regions
- density in outer region
- Halo deformation parameter controls density in inner region
- The larger deformation rate at center, the larger logarithmic slope (baryonic feedback for core-cusp?)

Double power-law is a natural result due to radial flow

Halo deformation parameter from mass cascade controls

The limiting concentration c for large halos Pacific Northwest and radial momentum and kinetic energy

Vanishing radial Linear momentum (halos at turn-around):

Effect of radial flow on velocity dispersion

- Radial flow usually neglected virialized halos;
- Effect of radial flow can be significant for halos in their early life before fully virialized (high peak height *v*);
- The radial flow tends to enhance the radial random motion and is only significant in the halo outer region.

for

Mass cascade induced halo surface energy

Standard virial theorem for static halos with a vanishing radial flow (K_{σ} is 1D kinetic energy):

$$6K_{\sigma} - n\Phi_{h} = 0$$
 Potential $n = -1$
exponent $n = -1$

Pacific

Northwest

Jeans' equation for isotropic growing halos with non-zero radial flow:

 $\frac{\partial(\rho_h u_r)}{\partial t} + \frac{1}{r^2} \frac{\partial(\rho_h r^2 u_r^2)}{\partial r} + \frac{\partial(\rho_h \sigma_r^2)}{\partial r} + \rho_h \frac{Gm_r(r,a)}{r^2} = 0$ Integrating Jeans' Equation leads to a generalized virial theorem for growing mean halos with fast mass accretion: flow $6K_{\sigma} + \Phi_h = I_h - 2K_u + S_{\sigma}$ Rewrite to introduce effective exponent n.: $6K_{\sigma} - n_e \Phi_h = 0 \text{ and } n_e = -1 + \underbrace{I_h - 2K_u + S_u + S_{\sigma}}_{u}$

Halo surface energy:

$$S_{eh} = (S_u + S_\sigma), \quad n_e \approx$$

Halo surface tension:

$$S_{th} = S_{eh} / (2A_h)$$
 Sur

Young–Laplace equation relates the pressure jump across halo surface to halo radius or curvature;

$$\Delta P_h = \frac{2S_{th}}{r_h} = \frac{S_{eh}}{A_h r_h} \approx 0.1 \overline{\rho}_h v_{cir}^2$$
$$S_{th} = \alpha_{st} G \rho_{sur}^2 r_h \propto r_h^{-1}$$

Mass cascade (fast mass accretion) leads to finite halo surface energy, surface tension, surface mass density, and an effective potential exponent $n_e \sim -1.3$, confirmed by N-body simulation.

$-1 + \frac{S_{eh}}{\Phi} \approx -1.3 \neq -1$

rface area: $A_{h} = 4\pi r_{h}^{2}$

Halo surface mass density: $\rho_{sur} \sim r_{h}^{-1}$

Pacific Halo size evolution from theory of mass cascade Northwest

1D Random walk of halos in mass space:

$$\frac{\partial m_{h}(t)}{\partial t} = \frac{m_{p}\xi(t)}{\tau_{g}(m_{h})} = \sqrt{2D_{p}(m_{h})}\varsigma(t)$$

1D Random walk of halos in size space (Geometric Brownian motion):

$$\frac{dr_{h}(t)}{dt} = \frac{3}{2}Hr_{h}(t) + Hr_{h}(t)\xi_{rh}(t)$$

Covariance:

$$\left\langle \xi_{rh}\left(t\right)\xi_{rh}\left(t'\right)\right\rangle = 2D_{rh}\,\delta\left(t-t'\right)/H$$

Solution leads to a **lognormal** probability distribution of halo size:

$$P_{rh}(r_{h},t) = \frac{1}{r_{h}\sqrt{8\pi D_{rh}\ln(t/t_{i})/3}} \exp\left\{-\frac{\left(\ln(r_{h}/r_{h0})\right)}{8}\right\}$$

Pacific Northwest NATIONAL LABORATORY Particle distribution in halos: a review of Brownian motion

Quick review of standard Brownian motion in viscous liquid:

A spherical particle of radius a_B moving at a constant velocity u_h in a fluid of viscosity η_B subject to a force F_B . Local steady-state velocity u_h can be determined by the driving force F_B , i.e., the gradient of the osmotic pressure $\Pi_B = \rho_B k_B T$, which is a localized short-range force.

Current velocity from stokes law:

$$u_{h} = \frac{F_{B}}{6\pi\eta_{B}a_{B}} = -\frac{1}{6\pi\eta_{B}a_{B}} \cdot \frac{1}{\rho_{B}} \frac{\partial\Pi_{B}}{\partial x} = -\frac{\mu_{B}}{\rho_{B}} \frac{\partial(\rho_{B}k_{B}T)}{\partial x}$$
A simple closure:

$$u_{h} = D_{B} \frac{\partial\ln\rho_{B}}{\partial x}$$
A simple closure:

$$u_{h} = -u_{h}^{*}$$
Stochastic equations for Brownian
motion (forward and backward):

$$\frac{dr_{i}}{dt} = \left[u_{h}(x_{i}) + u_{h}^{*}(x_{i})\right] + \sqrt{2D_{B}}\xi(t)$$

$$\frac{\partial P_{r}(x,t)}{\partial t} = -\frac{\partial}{\partial x}\left[\left(u_{h}(x) + u_{h}^{*}(x)\right)P_{r}\right] + D_{B} \frac{\partial^{2}P_{r}}{\partial x^{2}}$$

$$\frac{\partial P_{r}(x,t)}{\partial t} = -\frac{\partial}{\partial x}\left[\left(u_{h}(x) - u_{h}^{*}(x)\right)P_{r}\right] - D_{B} \frac{\partial^{2}P_{r}}{\partial x^{2}}$$

The Einstein relation: $D_B = \mu_B k_B T$

Diffusion equation for density distribution:

60

Particle distribution in halos: formulation Northwest

Brownian motion of particle in halos with stochastically (lognormal) growing size:

Stochastic equations for Brownian motion (forward and backward):

$$\frac{dr_{t}}{dt} = \frac{r_{s}(t)}{t} \left[u_{h}(x_{t}) + u_{h}^{*}(x_{t}) \right] + \sigma(x_{t})r_{s}(t)H\xi_{rh}(t)$$

$$\frac{dr_{t}}{dt} = \frac{r_{s}(t)}{t} \left[u_{h}(x_{t}) - u_{h}^{*}(x_{t}) \right] + \sigma(x_{t})r_{s}(t)H\xi_{rh}^{*}(t)$$
Radial Osmotic flow flow

Fokker-Planck equations (forward and backward):

Multiplicative noise (dependent on r_t itself) due to random varying halo size!!

- Due to long-range interaction, $u_h \neq -u_h$
- Key is to find a simple closure to close equation! (an example in ref.)

$$\frac{\partial P_r(r,t)}{\partial t} = -\frac{r_s(t)}{t} \frac{\partial}{\partial r} \Big[(u_h(x) + u_h^*(x)) P_r \Big] + r_s^2(t) HD_{rh} \frac{\partial^2}{\partial r^2} (\sigma^2(x) P_r) \qquad \Rightarrow \qquad x \frac{\partial P_r}{\partial x} = \frac{\partial}{\partial x} \Big[u_h(x) P_r \Big] \\ \frac{\partial P_r(r,t)}{\partial t} = -\frac{r_s(t)}{t} \frac{\partial}{\partial r} \Big[(u_h(x) - u_h^*(x)) P_r \Big] - r_s^2(t) HD_{rh} \frac{\partial^2}{\partial r^2} (\sigma^2(x) P_r) \qquad \Rightarrow \qquad x \frac{\partial P_r}{\partial x} = \frac{\partial}{\partial x} \Big[u_h(x) P_r \Big] \\ u_h^*(x) = d_r \sigma^2(x) \frac{\partial}{\partial x} \ln \Big[\sigma^2(x) P_r(x) \Big] \\ \text{Exact relation between current and osmotic velocities:} \qquad u_h^*(x) = \frac{d_r \sigma^2(x)}{x - u_h(x)} \frac{\partial u_h}{\partial x} + d_r \frac{\partial \sigma^2(x)}{\partial x} \qquad \qquad \text{With } \sigma(x_t) \sim x_t \text{ expected } e^{-\frac{\partial}{\partial x}} \Big]$$

Northwest Particle distribution in halos: halo density profile

To derive halo density, adopting a simple model of osmotic velocity :

$$u_h^*(x) = \gamma_r x - \beta_r x^{1+\alpha_r}$$

Pacific

Two-parameter particle distribution function:

$$P_r(x) = \frac{b_r^{a_r}}{\Gamma(a_r)(a_r - b_r)} \exp\left(-b_r x^{\frac{1}{a_r - b_r}}\right) x^{\frac{b_r}{a_r - b_r}}$$

Three-parameter halo density profile:

$$\rho_h(x) = \frac{m_h P_r(x)}{4\pi r_s^3 x^2} = \rho_s e^{b_r} \exp\left(-b_r x^{\frac{1}{a_r - b_r}}\right) x^{\frac{3b_r - 2a_r}{a_r - b_r}}$$

$$\blacklozenge \quad a_r / b_r = 3/2$$

Two-parameter Einasto: $\rho_h(r) = \rho_s e^{2/\alpha} \exp\left[-\frac{2}{\alpha} x^\alpha\right] = \rho_s e^{2/\alpha} \exp\left[-\frac{2}{\alpha} \left(\frac{r}{r_s}\right)^\alpha\right]$

Two-parameter cumulative distribution function:

$$F_r\left(x=\frac{r}{r_s}\right) = \int_0^x P_r(y) dy = \frac{m_r}{m_h} = 1 - \frac{\Gamma\left(a_r, b_r x^{1/2}\right)}{\Gamma\left(a_r\right)}$$

 $\frac{\gamma(a_r-b_r)}{\gamma} = \frac{\gamma(a_r,b_r x^{1/(a_r-b_r)})}{\Gamma(a_r)}$

62

Pacific **Particle distribution in halos and halo density profile** Northwest

Constructing composite halo for a halo group including all halos of the same mass:

- Composite halo reflects complete statistics of particle distribution resulting from particle randomwalk in dynamic halos;
- All composite halos have a central core (no cusp) The density profile of composition halo ($\alpha = [1.2]$ 0.7]) can be different from individual halo ($\alpha \approx 0.2$);

Fitted $a_r/b_r=3/2$ for all size of halo groups (implies an Einasto profile)

Pacific Northwest National LABORATORY Equation of state for relative pressure and density

$$\rho_{h}(r) = \rho_{s}e^{2/\alpha} \exp\left(-b_{r}x^{\frac{2}{b_{r}}}\right) \text{ with } b_{r} = 2/\alpha$$

For small x (halo center)
$$\rho_{h}(x) \approx \rho_{h}(0)\left(1-b_{r}x^{\frac{2}{b_{r}}}\right)$$

Parabolic pressure at halo center:

$$p_{h}(x) = \rho_{h}(x)\sigma_{r}^{2}(x) = p_{h}(x=0) - \frac{1}{2}\frac{\rho_{h}^{2}(0)v_{cir}^{2}}{\overline{\rho}_{h}c^{2}}x^{2}$$

Cancel x in both Equations:
$$\left[p_{h}(0) - p_{h}(x)\right] = \frac{\left[\rho_{h}(0)\right]^{2-b_{r}}v_{cir}^{2}}{2(b_{r})^{b_{r}}\overline{\rho}_{h}c^{2}}\left[\rho_{h}(0) - \rho_{h}(x)\right]^{b}$$

Equation of state (EoS) for relative pressure and relative density (relative to the center of halo):

$$\Delta p_h = K_s \left(\Delta \rho_h \right)^b$$

- EoS is good for entire range of relative P and ρ
- Why? might because of halo grows from center

of relative P and ρ o grows from center

Northwest

Summary and key words

Radial flow & scale radius	Halo surface energy/tension	Current velocity	Mea rando
Deformation parameter α _h	Deformation rate parameter γ _h	Osmotic velocity	Li conc
Angle of incidence	Random walk	Fokker-Planck	Equati

- Mass cascade induced nonzero radial flow (outwards and inwards).
- <u>Self-similar solution</u> to relate halo density profile with radial flow.
- Radial flow leads to an extra length scale (<u>the scale radius r_s </u>).
- Limiting halo concentration c=3.5 for fast growing halos at their early stage, with a Hubble flow at halo center leading to a central core.
- <u>Composite halos from N-body simulation always have a central core</u>.
- Radial flow enhances velocity dispersion in outer region.
- Radial flow leads to a nonzero halo surface energy/tension.
- Random walk of halo size is a geometric Brownian process with log-normal distribution
- Random walk of particles in halo with varying size leads to analytical particle probability distribution (i.e. the halo density profile).
- Equation of state for relative pressure and relative density (relative to halo center)

an flow& om motion imiting centration ion of state