Motivating the Gauss sum proof of the quadratic reciprocity

Pierre-Yves Gaillard

1 Introduction

As the title indicates we try to motivate the Gauss sum proof of the quadratic reciprocity.

First recall the definition of the **Legendre symbol**. Let p be a prime, a an integer and n(a, p) the number of distinct solutions of the equation $x^2 = a$ in the field $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$. Then the Legendre symbol $\left(\frac{a}{p}\right)$ is equal to n(a, p) - 1. Equivalently $\left(\frac{a}{p}\right)$ is characterized by the conditions: $\left(\frac{a}{p}\right) \in \{-1, 0, 1\}$ and $\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \mod p$. A proof of this equivalence is given in Proposition 6 p. 5. Note that it implies $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$ for all a, b.

Consider the question:

Question 1. Given an odd prime q, is there an integer q^* such that

$$\left(\frac{q^*}{p}\right) = \left(\frac{p}{q}\right) \tag{1}$$

for all odd prime p not equal to q?

An answer will be given by the quadratic reciprocity law: see Theorem 3 p. 4 below.

2 The main argument

Let p and q be distinct odd primes.

Convention 2. Let ℓ be a prime number. In this section and the next two ones, unless otherwise indicated, an equality between integers (or between an integer and an element of \mathbb{F}_{ℓ}) will be regarded as an equality in \mathbb{F}_{ℓ} , where ℓ is clear from the context. We have $\ell = p$ in this section and the next one, and $\ell = q$ in Section 4.

Clearly (1) can be stated as

$$(q^*)^{(p-1)/2} = \left(\frac{p}{q}\right) \tag{2}$$

Monday 13^{th} June, 2022
 09:02

(equality in \mathbb{F}_p). To handle this equation it will be convenient to embed \mathbb{F}_p in a larger ring A. Then A will be a nonzero \mathbb{F}_p -algebra¹. One of the main features of an \mathbb{F}_p -algebra is a canonical endomorphism, called the *Frobenius endomorphism*, defined by $a \mapsto a^p$.

The first item on our agenda is to express Equality (2) in terms of the Frobenius endomorphism of some \mathbb{F}_{p} -algebra A.

Suppose we have an integer q^* and an \mathbb{F}_p -algebra A with an element $a \in A$ such that the equality

$$a^2 = q^* \tag{3}$$

holds in \mathbb{F}_p (see Convention 2). If q^* is prime to p then a is invertible and we can rewrite (2) as

$$a^p = \left(\frac{p}{q}\right)a,\tag{4}$$

an equality which does involve the Frobenius endomorphism of A.

In view of (2), this shows that, to answer our question, it suffices to find an integer q^* prime to p and a nonzero \mathbb{F}_p -algebra A with an element $a \in A$ satisfying the quadratic equation (3) and the **linear** equation (4).

Our strategy will be as follows:

Step 1: Find an \mathbb{F}_p -algebra A and a nonzero solution $a \in A$ of (4).

Step 2: Find an integer q^* prime to p and a scalar $\lambda \in \mathbb{F}_p$ such that $\lambda^2 a^2 - q^*$ is not invertible in A.

Then the quotient of A by the ideal generated by $\lambda^2 a^2 - q^*$ will be a nonzero \mathbb{F}_p -algebra in which (3) and (4) hold (for the image of λa in this quotient).

3 Step 1

Let A be an \mathbb{F}_p -algebra. We will make some assumptions to make Equation (4) in A as simple as possible.

Our first simplifying assumption is that A is finite dimensional over \mathbb{F}_p . Let $(b(x))_{x \in X}$ be an \mathbb{F}_p -basis of A. We can express an arbitrary element $a \in A$ as $a = \sum_x f(x) b(x)$ with $f(x) \in \mathbb{F}_p$, and (4) becomes

$$\sum_{x} f(x) b(x)^{p} = \sum_{y} \left(\frac{p}{q}\right) f(y) b(y).$$

¹Recall that an \mathbb{F}_p -algebra is a ring A equipped with a morphism $\mathbb{F}_p \to A$. (In this text all rings and all algebras are associative, commutative and have an element 1.)

Of course in general $b(x)^p$ will be a linear combination of the b(y), but our second simplifying assumption is that each $b(x)^p$ is just "another" basis vector, which we denote by b(p * x). To make things even simpler we suppose that the map $x \mapsto p * x$, $X \to X$, is *bijective*. The above display becomes

$$\sum_{x} f(x) b(p * x) = \sum_{y} \left(\frac{p}{q}\right) f(y) b(y),$$

that is

$$f(p * x) = \left(\frac{p}{q}\right)f(x)$$

for all x.

This suggests the following attempt: $X = \mathbb{F}_q$, p * x = px (where the second p is viewed as an element of \mathbb{F}_q , see Convention 2 p. 1), $f(x) = \left(\frac{x}{q}\right)$. (Recall that we want a *nonzero* solution of (4).)

So far A is only an \mathbb{F}_p -vector space with a basis indexed by \mathbb{F}_q , and our problem becomes: Can we find an \mathbb{F}_p -algebra multiplication on A such that $b(x)^p = b(xp)$ for all x?

It suffices to define the products b(x) b(y), and we see immediately that the formula b(x) b(y) = b(x + y) does the job.

We prefer the notation b^x to b(x), so that we get

$$b^x b^y = b^{x+y}, \quad (b^x)^p = b^{xp}, \quad b^0 = 1$$

and

$$a = \sum_{x \in \mathbb{F}_q} \left(\frac{x}{q}\right) b^x.$$

(The \mathbb{F}_p -algebra A is called the \mathbb{F}_p -algebra of the additive group \mathbb{F}_q .)

4 Step 2

We must compute a^2 . In the lines below the subscripts x, y, z run over \mathbb{F}_q ; for instance $\sum_{x\neq 0}$ means that x runs over $\mathbb{F}_q^* := \mathbb{F}_q \setminus \{0\}$. We have

$$a^{2} = \sum_{x,y} \left(\frac{xy}{q}\right) b^{x+y} = \sum_{x \neq 0} \sum_{y} \left(\frac{xy}{q}\right) b^{x+y}.$$

Setting $z := x^{-1}y \in \mathbb{F}_q^*$ we get y = xz and thus

$$a^{2} = \sum_{x \neq 0} \sum_{z} \left(\frac{z}{q}\right) b^{x+xz} = \sum_{z} \left(\frac{z}{q}\right) \sum_{x \neq 0} b^{(1+z)x} = \sum_{z} \left(\frac{z}{q}\right) \left(\sum_{x} b^{(1+z)x} - 1\right)$$

Monday 13^{th} June, 2022 09:02

$$= \sum_{z} \left(\frac{z}{q}\right) \sum_{x} b^{(1+z)x} - \sum_{z} \left(\frac{z}{q}\right) = \sum_{z} \left(\frac{z}{q}\right) \sum_{x} b^{(1+z)x}.$$

If we set $s = \sum_{x \in \mathbb{F}_q} b^x$ we can continue the above chain of equalities as follows (see Convention 2 p. 1):

$$\sum_{z} \left(\frac{z}{q}\right) \sum_{x} b^{(1+z)x} = \left(\frac{-1}{q}\right) q + s \sum_{z \neq -1} \left(\frac{z}{q}\right)$$
$$= (-1)^{(q-1)/2} q + s \left(\sum_{z} \left(\frac{z}{q}\right) - \left(\frac{-1}{q}\right)\right) = (-1)^{(q-1)/2} q - (-1)^{(q-1)/2} s$$

so that at the end we get

$$a^{2} = (-1)^{(q-1)/2} q - (-1)^{(q-1)/2} s,$$

which suggests to set

$$q^* := (-1)^{(q-1)/2} q.$$

To make sure that this answers Question 1, it suffices to check that $q^* - a^2$, or equivalently that s, is not invertible in A. But the obvious equality $b^x s = s$ for all x implies $cs \in \mathbb{F}_q s$ for all $c \in A$. (The scalar $\lambda \in \mathbb{F}_p$ mentioned in the description of Step 2 given at the end of Section 2 is equal to 1.)

We have proved the **quadratic reciprocity law**:

Theorem 3 (Quadratic Reciprocity). If p and q are distinct odd primes, then we have

$$\left(\frac{q^*}{p}\right) = \left(\frac{p}{q}\right)$$

with $q^* := (-1)^{(q-1)/2} q$, or equivalently

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(p-1)(q-1)/4}.$$

5 Additional proofs

To make this short text more self-contained we add a couple of proofs.

For any positive integer n let C_n be the group $\mathbb{Z}/n\mathbb{Z}$, for any group G let G(n) be the cardinality of the set of elements of order n in G, and set $\phi(n) = C_n(n)$. (Usually ϕ is called Euler's totient function.) **Proposition 4.** In the above setting we have for any group G of finite order n:

- (a) G(k) = 0 if k does not divide n,
- (b) $\sum_{d} G(d) = n$ where the sum runs either over the divisors of n or over all positive integers,
- (c) $C_n(d) = \phi(d)$ if d divides n,
- (d) $\sum_{d} \phi(d) = n$ where the sum runs over the divisors of n.

Proof. Part (c) follows from the fact that C_n contains a unique group of order d whenever d divides n. The proof of the other statements is straightforward.

Theorem 5. Let G be a finite subgroup of the multiplicative group K^* of a field K. Then G is cyclic.

Proof. Let n be the order of G and let the above notation be in force. We claim $G(d) = \phi(d)$ for every divisor d of n. This will imply that $G(n) = \phi(n) \ge 1$, and thus that G is cyclic. Let d be a divisor of n. In view of Parts (b) and (d) of Proposition 4 it suffices to prove $G(d) \le \phi(d)$. We can assume $G(d) \ge 1$. Let $g \in G$ be of order d, let $g^{\mathbb{Z}}$ be the subgroup of G generated by g, and let H be the subgroup of K^* (the multiplicative group of K) consisting in all the solutions of the equation $x^d = 1$. We claim

$$G(d) \le K^*(d) = H(d) = g^{\mathbb{Z}}(d) = \phi(d).$$

To prove $H(d) = g^{\mathbb{Z}}(d)$ note that we have $g^{\mathbb{Z}} \subset H$, that $g^{\mathbb{Z}}$ has order d, and that H has order at most d (because the polynomial $X^d - 1$ cannot have more than d roots in K). This implies $g^{\mathbb{Z}} = H$. The other statements are clear.

Proposition 6. Let p be an odd prime and a a nonzero element of the field \mathbb{F}_p . Then a is a square in \mathbb{F}_p if and only if $a^{(p-1)/2} = 1$.

Proof. Let g be a generator of the multiplicative group \mathbb{F}_p^* of \mathbb{F}_p (see Theorem 5) and set n = (p-1)/2. Note that $g^n = -1$ because $(g^n)^2 = 1$ and $g^n \neq 1$. If $a = g^{2k}$ for some integer k, then $a^n = g^{(p-1)k} = 1$. If $a = g^{2k+1}$ for some integer k, then $a^n = g^{(p-1)k+n} = g^n = -1$. \Box