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1 Introduction

As the title indicates we try to motivate the Gauss sum proof of the quadratic reciprocity.

First recall the definition of the Legendre symbol. Let p be a prime, a an integer and
n(a, p) the number of distinct solutions of the equation x2 = a in the field Fp := Z/pZ. Then the
Legendre symbol

(
a
p

)
is equal to n(a, p)− 1. Equivalently

(
a
p

)
is characterized by the conditions:(

a
p

)
∈ {−1, 0, 1} and

(
a
p

)
≡ a(p−1)/2 mod p. A proof of this equivalence is given in Proposition 6

p. 5. Note that it implies
(
ab
p

)
=
(
a
p

)(
b
p

)
for all a, b.

Consider the question:

Question 1. Given an odd prime q, is there an integer q∗ such that(
q∗

p

)
=

(
p

q

)
(1)

for all odd prime p not equal to q?

An answer will be given by the quadratic reciprocity law: see Theorem 3 p. 4 below.

2 The main argument

Let p and q be distinct odd primes.

Convention 2. Let ` be a prime number. In this section and the next two ones, unless otherwise
indicated, an equality between integers (or between an integer and an element of F`) will be
regarded as an equality in F`, where ` is clear from the context. We have ` = p in this section and
the next one, and ` = q in Section 4.

Clearly (1) can be stated as

(q∗)(p−1)/2 =

(
p

q

)
(2)
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(equality in Fp). To handle this equation it will be convenient to embed Fp in a larger ring A.
Then A will be a nonzero Fp-algebra1. One of the main features of an Fp-algebra is a canonical
endomorphism, called the Frobenius endomorphism, defined by a 7→ ap.

The first item on our agenda is to express Equality (2) in terms of the Frobenius endomorphism
of some Fp-algebra A.

Suppose we have an integer q∗ and an Fp-algebra A with an element a ∈ A such that the
equality

a2 = q∗ (3)

holds in Fp (see Convention 2). If q∗ is prime to p then a is invertible and we can rewrite (2) as

ap =

(
p

q

)
a, (4)

an equality which does involve the Frobenius endomorphism of A.

In view of (2), this shows that, to answer our question, it suffices to find an integer q∗ prime
to p and a nonzero Fp-algebra A with an element a ∈ A satisfying the quadratic equation (3) and
the linear equation (4).

Our strategy will be as follows:

Step 1: Find an Fp-algebra A and a nonzero solution a ∈ A of (4).

Step 2: Find an integer q∗ prime to p and a scalar λ ∈ Fp such that λ2a2 − q∗ is not invertible in
A.

Then the quotient of A by the ideal generated by λ2a2 − q∗ will be a nonzero Fp-algebra in
which (3) and (4) hold (for the image of λa in this quotient).

3 Step 1

Let A be an Fp-algebra. We will make some assumptions to make Equation (4) in A as simple as
possible.

Our first simplifying assumption is that A is finite dimensional over Fp. Let (b(x))x∈X be an
Fp-basis of A. We can express an arbitrary element a ∈ A as a =

∑
x f(x) b(x) with f(x) ∈ Fp,

and (4) becomes ∑
x

f(x) b(x)p =
∑
y

(
p

q

)
f(y) b(y).

1Recall that an Fp-algebra is a ring A equipped with a morphism Fp → A. (In this text all rings and all
algebras are associative, commutative and have an element 1.)
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Of course in general b(x)p will be a linear combination of the b(y), but our second simplifying
assumption is that each b(x)p is just “another” basis vector, which we denote by b(p ∗ x). To make
things even simpler we suppose that the map x 7→ p ∗ x, X → X, is bijective. The above display
becomes ∑

x

f(x) b(p ∗ x) =
∑
y

(
p

q

)
f(y) b(y),

that is
f(p ∗ x) =

(
p

q

)
f(x)

for all x.

This suggests the following attempt: X = Fq, p ∗ x = px (where the second p is viewed as an
element of Fq, see Convention 2 p. 1), f(x) =

(
x
q

)
. (Recall that we want a nonzero solution of (4).)

So far A is only an Fp-vector space with a basis indexed by Fq, and our problem becomes: Can
we find an Fp-algebra multiplication on A such that b(x)p = b(xp) for all x?

It suffices to define the products b(x) b(y), and we see immediately that the formula b(x) b(y) =
b(x+ y) does the job.

We prefer the notation bx to b(x), so that we get

bxby = bx+y, (bx)p = bxp, b0 = 1

and
a =

∑
x∈Fq

(
x

q

)
bx.

(The Fp-algebra A is called the Fp-algebra of the additive group Fq.)

4 Step 2

We must compute a2. In the lines below the subscripts x, y, z run over Fq; for instance
∑

x 6=0

means that x runs over F∗q := Fq \ {0}. We have

a2 =
∑
x,y

(
xy

q

)
bx+y =

∑
x 6=0

∑
y

(
xy

q

)
bx+y.

Setting z := x−1y ∈ F∗q we get y = xz and thus

a2 =
∑
x 6=0

∑
z

(
z

q

)
bx+xz =

∑
z

(
z

q

)∑
x 6=0

b(1+z)x =
∑
z

(
z

q

)(∑
x

b(1+z)x − 1

)
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=
∑
z

(
z

q

)∑
x

b(1+z)x −
∑
z

(
z

q

)
=
∑
z

(
z

q

)∑
x

b(1+z)x.

If we set s =
∑

x∈Fq
bx we can continue the above chain of equalities as follows (see Convention 2

p. 1): ∑
z

(
z

q

)∑
x

b(1+z)x =

(
−1
q

)
q + s

∑
z 6=−1

(
z

q

)

= (−1)(q−1)/2 q + s

(∑
z

(
z

q

)
−
(
−1
q

))
= (−1)(q−1)/2 q − (−1)(q−1)/2 s,

so that at the end we get
a2 = (−1)(q−1)/2 q − (−1)(q−1)/2 s,

which suggests to set
q∗ := (−1)(q−1)/2 q.

To make sure that this answers Question 1, it suffices to check that q∗ − a2, or equivalently
that s, is not invertible in A. But the obvious equality bxs = s for all x implies cs ∈ Fq s for all
c ∈ A. (The scalar λ ∈ Fp mentioned in the description of Step 2 given at the end of Section 2 is
equal to 1.)

We have proved the quadratic reciprocity law:

Theorem 3 (Quadratic Reciprocity). If p and q are distinct odd primes, then we have(
q∗

p

)
=

(
p

q

)
with q∗ := (−1)(q−1)/2 q, or equivalently(

p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4.

5 Additional proofs

To make this short text more self-contained we add a couple of proofs.

For any positive integer n let Cn be the group Z/nZ, for any group G let G(n) be the cardinality
of the set of elements of order n in G, and set φ(n) = Cn(n). (Usually φ is called Euler’s totient
function.)
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Proposition 4. In the above setting we have for any group G of finite order n:

(a) G(k) = 0 if k does not divide n,

(b)
∑

dG(d) = n where the sum runs either over the divisors of n or over all positive integers,

(c) Cn(d) = φ(d) if d divides n,

(d)
∑

d φ(d) = n where the sum runs over the divisors of n.

Proof. Part (c) follows from the fact that Cn contains a unique group of order d whenever d
divides n. The proof of the other statements is straightforward.

Theorem 5. Let G be a finite subgroup of the multiplicative group K∗ of a field K. Then G is
cyclic.

Proof. Let n be the order of G and let the above notation be in force. We claim G(d) = φ(d) for
every divisor d of n. This will imply that G(n) = φ(n) ≥ 1, and thus that G is cyclic. Let d be a
divisor of n. In view of Parts (b) and (d) of Proposition 4 it suffices to prove G(d) ≤ φ(d). We
can assume G(d) ≥ 1. Let g ∈ G be of order d, let gZ be the subgroup of G generated by g, and
let H be the subgroup of K∗ (the multiplicative group of K) consisting in all the solutions of the
equation xd = 1. We claim

G(d) ≤ K∗(d) = H(d) = gZ(d) = φ(d).

To prove H(d) = gZ(d) note that we have gZ ⊂ H, that gZ has order d, and that H has order
at most d (because the polynomial Xd − 1 cannot have more than d roots in K). This implies
gZ = H. The other statements are clear.

Proposition 6. Let p be an odd prime and a a nonzero element of the field Fp. Then a is a
square in Fp if and only if a(p−1)/2 = 1.

Proof. Let g be a generator of the multiplicative group F∗p of Fp (see Theorem 5) and set
n = (p− 1)/2. Note that gn = −1 because (gn)2 = 1 and gn 6= 1. If a = g2k for some integer k,
then an = g(p−1)k = 1. If a = g2k+1 for some integer k, then an = g(p−1)k+n = gn = −1.
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