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Abstract 

Accumulating evidence indicates that nutrition can modulate the immune system through metabolites, 
either produced by host digestion or by microbiota metabolism. In this review, we focus on dietary 
metabolites that are agonists of the Aryl hydrocarbon Receptor (AhR). AhR is a ligand-activated 
transcription factor, initially characterized for its interaction with xenobiotic pollutants. Numerous 
studies have shown that AhR also recognizes indoles and tryptophan catabolites originating from 
dietary compounds and commensal bacteria. Here, we review recent work employing diet manipulation 
to address the impact of nutritional AhR agonists on immune responses, both locally in the intestine 
and at distant sites. In particular, we examine the physiological role of these metabolites in immune 
cell development and functions (including T lymphocytes, innate-like lymphoid cells, and 
mononuclear phagocytes) and their effect in inflammatory disorders.  

1 Introduction 

Food represents not only a source of nutrients for the maintenance of essential biological 
functions, but also contains dietary components that regulate immune cell populations. These include 
microbiota-derived short-chain fatty acids, polyamines, and indoles derivatives, which are ligands of 
the Aryl Hydrocarbon Receptor (AhR) (1).  

AhR is a ligand-activated transcription factor residing in the cytosol. Upon binding to an agonist, 
AhR translocates to the nucleus where it forms an active heterodimer with ARNT and promotes the 
transcription of genes that are under its control. AhR is expressed in multiple immune cells such as 
myeloid cells, innate lymphoid cells, B lymphocytes and certain subtypes of T cells. AhR activation 
has an overall anti-inflammatory and immunoregulatory role in innate and adaptative immunity, both 
in steady-state or in inflammatory scenarios such as autoimmunity or infection (2). However, a number 
of these observations were made in vitro or in vivo by injecting AhR agonists in non-physiological 
routes or concentrations. Some studies have also used AhR ligands of xenobiotic origin, which are 
known to induce aberrant AhR signaling (3). This has led to some contradictory findings, in particular 
in T cell biology (4).  

In this review, we examine the physiological role of nutritional AhR ligands in immune cells and 
immune responses by focusing on experimental results obtained by direct intestinal exposure or diet 
manipulation. 
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2 What are the nutritional AhR ligands ? 

AhR was initially described as a receptor for xenobiotic pollutants, mostly aromatic 
hydrocarbons. However, over the years, physiological ligands have been identified. There are other 
exhaustive reviews of AhR agonists (5–7), here we focus on nutritional AhR ligands (Figure 1 and 
Table 1). 

AhR ligands are present in the diet, as natural compounds in food. Flavonoids derived from fruits 
and vegetables such as quercertin and resveratrol have been identified as AhR ligands based on in vitro 
assays, but their physiological relevance is unclear (8–10). The main class of dietary AhR ligands is 
indoles, including Indole-3-acetonitrile, Indole-3-carbinole (I3C), 3,3'-diindolylmethane (DIM) and 
Indolo(3,4)bicarbazole, which are found mainly in cruciferous vegetables like broccoli or Brussel 
sprouts (11). After consumption, I3C is converted in the stomach by acid-mediated condensation into 
various byproducts, including high affinity AhR ligands DIM and indole[3,2-b] carbazole (ICZ) (11).  

Another source of nutritional AhR ligands is microbiota metabolism, particularly tryptophan 
catabolism. Some species of bacteria such as Lactobacillus can use tryptophan instead of glucose as a 
source of energy, and produce AhR ligands such as indole-3-acetic acid (IAA), tryptamine (TA) and 
3-methyl indole (12,13). A well-described example is Lactobacillus reuteri, producing the AhR ligand 
indole-3-aldehyde (IAld) (13). Moreover, Tryptophanase-expressing bacteria, which are mostly 
ampicillin-sensitive and vancomycin-resistant, degrade tryptophan into indole that is further 
metabolized by host liver cells into AhR ligands, such as indoxyl-3-sulfate (I3S) and indole-3-
propionic acid (IPA) (14). In addition, it has been reported that butyrate and other short-chain fatty 
acids (SCFA), which originate from the fermentation of dietary fibers by the microbiota, can activate 
AhR signaling in reporter cell lines (15). Whether this observation holds true in other cell types remains 
to be confirmed. In particular, another study failed to detect AhR activation in B cells upon in vitro 
exposure to butyrate, while 5-hydroxyindole-3-acetic acid (5-HIAA), a serotonin metabolite, activated 
AhR signaling in B cells in vitro and in vivo (16).  

3 What is the biodistribution of nutritional AhR ligands ? 

Dietary AhR ligands are released locally in the digestive track but also distributed to other sites 
via the blood. After oral administration, the biodistribution of I3C and its acid condensation products 
has been analyzed by high-performance liquid chromatography. I3C is absorbed from the gut and 
distributed systemically into a number of well-perfused tissues (17). I3C level peaks at 15min and 
decreases considerably 1h after administration in the plasma, liver, kidney, lung, heart and brain. 
However, I3C products DIM, LTR1 and HI-IM are detectable in these organs from 15 min and persist 
after 6h, and up to 24h in the liver. ICZ, another product from I3C, was also identified in the liver, but 
not in plasma or other organs, at 6h and 24h after I3C administration (17). In line with those 
observations, I3C was detected in serum 15 min after gavage, but not when administered as supplement 
in the chow diet. By contrast, DIM was detectable in the serum of mice fed with I3C-supplemented 
chow diet (18). In a study carried out in women given a single oral I3C dose, DIM, but not I3C itself, 
was detected in plasma peaking at 2h and returning to basal levels 24h after administration (19). These 
observations suggest that I3C is rapidly cleared from the circulation, while its condensation products 
can reach distant organs and exert longer lasting effects.  

It has also been proposed that nutritional AhR ligands can cross the blood-brain barrier. After 
intra-peritoneal injection, I3S was detected in the brain (20), however oral administration was not 
examined.  
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Finally, microbiota-derived AhR ligands have been detected in breastmilk. After gavage of 
pregant mice with radiolabelled E.Coli, a species which expresses Tryptophanase, labelled AhR 
ligands were detected in maternal milk, including indole-3-lactic acid, showing the transfer from 
maternal intestinal microbiota to milk (21).  

4 Do nutritional AhR ligands influence microbiota composition? 

Tryptophan content in the diet shapes significantly the microbiota composition. Tryptophan 
supply relies exclusively on the diet since the host cannot synthetize it. After 2 or 3 weeks of dietary 
intervention, mice fed with a tryptophan-deprived diet display an increase in fecal Actinobacteria and 
Proteobacteria, and lower relative abundance of Bacteroidetes and bacteria belonging to Firmicutes 
phylum such as Lactobacillus and Staphylococcus (22,23). In addition, after 4 weeks of tryptophan-
low diet, the abundance of Lactobacillus reuteri is also decreased in the stomach (13). Of note, 
tryptophan is metabolised in the gut not only into AhR ligands by microbiota, but also through the 
serotonine and kynurenine pathways by host cells (5,24). Whether the observed alterations in 
microbiota composition are entirely dependent on changes in AhR ligands availibity remains to be 
confirmed. In addition, caution should be exercised when interpreting in vivo experiments employing 
tryptophan-low diets, as modification in microbiota diversity by itself may impact the outcome.  

By contrast, I3C content in the diet only causes a relatively minor change in intestinal microbiota 
composition. Normal chow contains phytochemicals that can act as precursors of AhR ligands. 
Switching from normal chow to a synthetic diet alters fecal microbiota diversity (25,26). Mice fed with 
a AhR ligand-free synthetic diet show a decreased abundance in fecal Bacteroidetes and increased 
abundance in Actinobacteria and Firmicutes compared to mice fed with the same diet supplemented 
with I3C (25,26). Relative change observed in Erysipelotrichaceae is inconsistant between studies 
(25,26). Importantly, most of these alterations in fecal microbiome composition were also observed in 
AhR-deficient mice, showing that this occurs independently of AhR signaling (26). In a study 
employing a synthetic diet supplemented with DIM, no difference were observed in fecal microbiota 
between groups (27). However, mice fed with the synthetic diet had increased Bacteroidetes and 
decreased Firmicutes abundance in the small intestine compared to mice fed with the DIM-
supplemented synthetic diet. These differences in microbiota diversity induced by DIM 
supplementation were abrogated in AhR-deficient mice (27). 

These results highlight a complex interplay between microbiota composition and the supply of 
dietary AhR ligands, with tryptophan having a more pronounced effect than single AhR ligands.   

5 What is the impact of nutritional AhR ligands on intestinal immunity ?  

Nutritional AhR ligands are essential for the maintenance of intestinal intraepithelial 
lymphocytes (IELs) and type 3 innate lymphoid cells (ILC3).  

Small intestine IELs are a specialized population of T cells composed of several subsets (TCRgd, 
CD4-CD8αα+ TCRαβ and CD4+CD8αα+ TCRαβ). Mice fed with a AhR ligand-free synthetic diet have 
lower numbers of  TCRgd and CD4-CD8αα+ TCRαβ IELs compared to mice on I3C-supplemented 
synthetic diet (28,29). However, these IELs can develop normally in AhR-deficient, indicating that 
dietary AhR ligands are required for their maintenance rather than differentiation (29). In addition, 
CD4+CD8αα+ TCRαβ IELs are decreased in the intestine of mice fed with a tryptophan-low synthetic 
diet compared to standard diet and tryptophan-high diet (30). Lactobacillus reuteri was identified as 
essential for CD4+CD8αα+ TCRαβ IELs development. However, a tryptophan-high diet in conjunction 
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with L.reuteri colonization was not sufficient to induce these IELs in germ-free mice, suggesting the 
participation of additional factors (30). 

ILC3 produce lymphotoxin, controling the development of intestinal lymphoid follicles. Mice 
fed with a AhR ligand-free synthetic diet display decreased ILC3 and intestinal lymphoid follicles 
numbers compared to mice fed on I3C-supplemented synthetic diet (28,31). Of note, I3C 
supplementation had no impact when given to AhR-deficient mice (31). In addition, development of 
ILC3 and intestinal lymphoid follicles are normal in germ-free mice (32), suggesting that dietary AhR 
ligands, produced independently of microbiota metabolism, are sufficient for ILC3 differentiation or 
maintenance. ILC3 are the main producers of intestinal IL22, which is critical for the secretion of 
antimicrobial peptides by intestinal epithelial cells and the defense against intestinal infections (33). 
Consistant with decreased ILC3 numbers, mice fed on a AhR ligand-free synthetic diet express lower 
levels in the intestine of antimicrobial peptides such as C-type lectin regenerating islet-derived protein 
3 (RegIII) (29,34), and are more susceptible to infections with Citrobacter Rodentium (35) or 
Clostridium difficile (28). 

AhR has been proposed to control Treg differentiation. Tregs in the gut express higher levels of 
AhR than other Tregs in the body (36). AhR expression is necessary for Treg gut homing and function, 
and is independent of microbiota, since it is not affected in antibiotics-treated mice or germ-free mice. 
Whether nutritional AhR ligands play a role is unclear, as feeding mice with an AhR ligand-free 
synthetic diet was reported to be inconclusive regarding Treg development (36).  

Lack of dietary AhR ligands worsens the symptoms of intestinal inflammation. In the model of 
DSS-induced colitis, mice on a synthetic AhR ligand-free diet show more severe symptoms, such as 
weight loss and tissue damage, compared to mice fed with a synthetic diet supplemented with I3C 
(26,29) or with tryptophan (34). Tryptophan supplementation did not modify the severity of symptoms 
in AhR-deficient mice, confirming the dependency on AhR activation (34). Consistent with these 
observations, symptoms of DSS-induced colitis were mildly ameliorated when mice fed on normal 
chow were given tryptophan supplementation in the drinking water (37) or I3C by oral gavage (38). In 
mice fed on AhR ligand-free synthetic diet, increased epithelial damage may be due to the lack of IL22 
production in response to DSS-induced inflammation (26,34). Importantly, AhR activation in intestinal 
epithelial cells is also involved in barrier repair during colitis (39).   

Finally, in a model of oral tolerance to ovalbumin, mice fed with I3C-enriched chow diet have 
lower levels of  serum anti-ovalbumin IgG1 antibodies, indicating better induction of oral tolerance 
(18). This was correlated with increased expression in the small intestine of retinaldehyde 
deshydrogenase, a molecule known to promote Treg differentiation, but the target cells of dietary AhR 
ligands in this model remain unclear.   

Collectively, these observations show an essential role for nutritional AhR ligands in maintaining 
intestinal lymphoid populations and homeostasis (Figure 2). 

6 What is the impact of nutritional AHR ligands on immune responses at distant sites ? 

Nutritional AhR ligands can also modulate the differentiation of immune cells outside of the 
intestinal mucosa, as shown for monocytes. Monocytes circulate in the blood and are recruited to 
tissues where they differentiate into dendritic cells or macrophages. In mice fed with a synthetic AhR 
ligand-free diet, monocyte differentiation into dendritic cells is reduced in the skin, compared to mice 
on an I3C-supplemented diet (40). This is consistent with in vitro observations that AhR activation 
skews monocyte differentiation from macrophages to dendritic cells by controling the expression of 
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the transcription factors Irf4 and Blimp-1. In addition, monocyte differentiation into dendritic cells in 
the peritoneum is impaired in antibiotics-treated mice and could be restored by I3C diet 
supplementation (40), suggesting a role for microbiota-derived AhR ligands in physiological 
conditions (Figure 3).   

Deficit in dietary AhR ligands increases the severity of inflammation in the central nervous 
system, as evidenced in the experimental autoimmune encephalomyelitis (EAE) model. After induction 
of EAE, mice placed on a synthetic tryptophan-free diet display worse disease scores and delayed 
recovery compared to mice fed with tryptophan-supplemented diet (20,41). This difference was 
abolished in mice deficient for AhR specifically in astrocytes or in microglia, showing that dietary AhR 
ligands can exert their effect on brain-resident populations. Lack of dietary tryptophan results in the 
increased expression of pro-inflammatory molecules in the brain such as Ccl2, Nos2 and Tnfa (20,41). 
Treatment with ampicillin also delays disease recovery and increases Ccl2 and Nos2 expression, which 
could be reverted by diet supplementation with IPA, IAld, indole or Tryptophanase (20), suggesting a 
major role in this phenomenon for microbiota-derived AhR ligands.  

AhR ligands from microbiota metabolism also influence the differentiation of IL-10 producing 
regulatory B cells, which are found in lymphoid organs. Gavage with 5-HIAA increases the expression 
of Il10 in spleen B cells and reduces the severity of joint swelling in a model of antigen-induced arthritis 
(16). This effect is abolished in mice deficient for AhR in B cells, confirming the role of AhR signaling. 

These observations indicate that AhR ligands participate in the communication between gut, 
microbiota and distant tissues such as brain and skin. 

7 Conclusion and Perspectives 

There is accumulating evidence that nutritional AhR ligands play an essential role in the 
maintenance of intestinal immune homeostasis and the control of intestinal inflammation. Several 
studies also suggest a similar role in distant tissues such as skin and brain. Whether dietary AhR ligands 
impact other organs or mucosal sites remains to be investigated.  

Circadian rhythms regulate some essential aspects of immune activity, such as leukocyte 
trafficking or inflammatory cytokine secretion (42). AhR has been reported to interact with circadian 
clock proteins and suppress their transcriptional activity (43). In addition, the supply of nutritional AhR 
ligands fluctuates across time with feeding behavior, as does microbiota mass and the release of 
nutritional metabolites (44). It will be important to decipher the possible connection between AhR, 
circadian rhythms and immune cells. 

Impaired production of AhR ligands has been observed in the intestinal microbiota of patients 
suffering from inflammatory bowel disease (45) and celiac disease (46). Given the critical impact of 
dietary AhR ligands on ILC3 numbers and the maintenance of barrier integrity, diet supplementation 
with AhR ligands, or AhR ligand-producing bacteria, is an attractive strategy to improve the treatment 
of inflammatory gastrointestinal diseases (24). However, a better understanding of the role of 
nutritional AhR ligands on the immune homeostasis of distant tissues and on myeloid cells will be 
essential to optimize these therapeutic approaches. 
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Figure legends 

Figure 1. Sources of nutritional AhR ligands. Nutritional AhR ligands are derived either from the 
breakdown of food components or from tryptophan catabolism by intestinal microbiota. Several types 
of indoles are present in cruciferous vegetables. In particular, indole-3-carbinol (I3C) is converted in 
the stomach into high affinity AhR ligands Diindolylmethane (DIM) and indole[3,2-b]carbazole 
(ICZ). Tryptophan is metabolised by Lactobacillus bacteria into indole-3-acetic acid (IAA), 
tryptamine (TA) and 3-methyl indole. In addition, tryptophanase-expressing bacteria degrade 
tryptophan into indole, which is metabolised by host liver cells into indoxyl-3-sulfate (I3S) and 
indole-3-proprionic acid (IPA). 
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Figure 2. Nutritional AhR ligands in intestinal immunity. Nutritional AhR ligands are involved in 
the maintenance of intestinal intra-epithelial lymphocytes (IEL) and type  innate-like lymphoid cells 
(ILC3). ILC3 are the main producers of IL22, which acts on intestinal epithelial cells to induce the 
secretion of antimicrobial peptides. In the absence of dietary AhR ligands, IEL and ILC3 are reduced, 
and microbiota diversity is altered.  
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Figure 3. Nutritional AhR ligands in monocyte differentiation. Nutritional AhR ligands modulate 
monocyte differentiation in the skin. AhR activation from dietary agonists favors monocyte 
differentiation towards In the absence of AhR signaling, monocytes differentiate preferentially into 
macrophages.dendritic cells via the induction of the transcription factors Irf4 and Blimp-1.  
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Table 1. Nutritional AhR ligands classification. Reported nutritional AhR agonists classified based 
on their origin. 

 

 

Compound Abbrevations Source Reference 
Quercertin   

 
Dietary ligands 

8-10 
Resveratrol  

Indole-3-acetonitrile IAN  
 

11 
Indolo(3,4)bicarbazole  

Indole-3-carbinole  I3C 
3,3'-diindolylmethane DIM  

 
Host metabolism from food components 

Indole[3,2-b] carbazole  
Linear trimer, [2-(indol-3-ylmethyl)-indol-3-yl]indol-3-ylmethane LTR1 15 

1-(3-hydroxymethyl)-indolyl-3-indolylmethane HI-IM 
5-hydroxyindole-3-acetic acid 5-HIAA 16 

Indole-3-acetic acid  IAA  
 

Microbiota metabolism from food 
components 

 

 
12-13 Tryptamine  TA 

3-methyl indole  
Indole-3-aldehyde  IAld 13 

Butyrate  15 
Indoxyl-3-sulfate  I3S Host metabolism from tryptophan 

catabolites from microbiota 
 

14 Indole-3-propionic acid IPA 
 
 
 


