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ABSTRACT
Statistical theory for self-gravitating collisionless dark matter flow is not fully developed because of 1) intrinsic complexity
involving constant divergence flow on small scale and irrotational flow on large scale; 2) lack of self-closed description for
peculiar velocity; and 3) mathematically challenging. To better understand dark matter flow, kinematic and dynamic relations
among different statistical measures of velocity must be developed for different types of flow. In this paper, a compact derivation
is presented to formulate general kinematic relations on any order for incompressible, constant divergence, and irrotational flow.
Results are validated by N-body simulation. Dynamic relations can only be determined from self-closed description of velocity
evolution. On large scale, we found i) third order velocity correlation can be related to density correlation or pairwise velocity;
ii) effective viscosity in adhesion model originates from velocity fluctuations; iii) negative viscosity is due to inverse energy
cascade; iv) 𝑞th order velocity correlations follow ∝ 𝑎 (𝑞+2)/2 for odd 𝑞 and ∝ 𝑎𝑞/2 for even 𝑞; v) overdensity is proportional to
density correlation on the same scale, 〈𝛿〉 ∝ 〈𝛿𝛿′〉; vi) (reduced) velocity dispersion is proportional to density correlation on the
same scale. On small scale, self-closed description for velocity evolution is developed by decomposing velocity into motion in
halo and motion of halos. Vorticity, enstrophy, and energy evolution can all be derived from self-closed equation for velocity.
Dynamic relation is derived to relate second and third order correlations. Third moment of pairwise velocity is determined by
energy cascade rate 𝜖𝑢 or 〈(Δ𝑢𝐿)3〉 ∝ 𝜖𝑢𝑎𝑟. Finally, combined kinematic and dynamic relations determines the exponential and
one-fourth power law velocity correlations on large and small scales, respectively.
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1 INTRODUCTION

The statistics of cosmic velocity field is valuable to probe large scale
structure formation and density fluctuation and constrain cosmology
parameters (Ma et al. 2015). The statistical analysis is mostly ap-
plied to the pairwise velocity, i.e. the velocity difference of a mass
pair along the direction of their separation or the difference between
two longitudinal velocities (Xu 2022f). The pairwise velocity was
originally introduced to describe the dynamic evolution of a system
of self-gravitating particles (Davis & Peebles 1977) and was later
applied to probe the cosmological density parameter (Ferreira et al.
1999; Juszkiewicz et al. 2000). The lower-order moments of pairwise
velocity was also proposed as a diagnostic tool for laws of gravity
on large scale (Hellwing et al. 2014). Another common statistical
measure is the two-point second order velocity correlation functions
that was introduced in 1980s to quantify the cosmic velocity field
(Gorski 1988). It was later applied to real dataset of local Super-
clusters samples (Gorski et al. 1989) and SFI catalog of peculiar
velocities (Borgani et al. 2000).
Directly measuring velocity correlations from real samples is still

very challenging in practice since only the radial velocity component
can be directly observed. On the other side, N-body simulation is
an invaluable tool to study the dynamics of collisionless dark mat-
ter flow on different scales, capture the very complex gravitational
collapse and many other effects beyond standard Newtonian approx-
imations (Angulo et al. 2012; Springel 2005; Peebles et al. 1989;
Efstathiou et al. 1985). The peculiar velocity from N-body simula-
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2 Z. Xu

tions is relatively accessible with large amount of simulation data
available. In addition, tremendous amount of knowledge on the na-
ture of self-gravitating collisionless dark matter flow (SG-CFD) can
be obtained from this practice. Some results for second order statis-
tics were already discussed previously (Xu 2022f) and this paper will
generalize these results to high order statistics.
Traditionally, two approaches can be applied to study the veloc-

ity field in N-body system. The first one is a halo-based approach.
All particles in entire system are divided into particles in halos and
out-of-halo particles. The density, velocity, and acceleration distribu-
tions of halo and out-of-halo particles evolve in different ways, which
can be studied separately (Xu 2022h,j). Our previous study primar-
ily falls into this category, of which the inverse mass and energy
cascade and halo mass functions can be rigorously developed (Xu
2021a,b,f, 2022g). The maximum entropy distributions of dark mat-
ter particle velocity and energy were also formulated (Xu 2021c,e).
Relevant applications of mass/energy cascade theory in dark matter
flow are also presented for dark matter particle mass and proper-
ties (Xu 2022i), MOND (modified Newtonian dynamics) theory (Xu
2022j), and baryonic-to-halo mass relation (Xu 2022k).
A different alternative strategy (correlation-based approach) of

statistical analysis works with statistical measures of velocity field.
The correlation, structure, dispersion, and spectrum functions are
among the most important statistical measures to quantify the pecu-
liar velocity field (Xu 2022f). In this approach, the scale and redshift
variation of these statistical measures can be studied in detail (Xu
2022h; Kitaura et al. 2016; Pueblas & Scoccimarro 2009). Halo
structure is not explicitly involved in this approach. However, on
small scale, most pairs of particles are from the same halo. While
on large scale, pairs of particles are from different halos. Therefore,
effect of halo structure on statistics can be clearly identified through
the scale dependence of these statistical measures. Statistical analysis
by projecting velocity field onto structured grids may involve infor-
mation loss. In this paper, we directly compute statistical measures
of different order that contain the most complete information of a
N-body system at different scales and redshifts.
In principle, both halo-based and correlation-based approaches

have their own strength and weakness, while in this paper we pri-
marily focus on the correlation-based statistical analysis of velocity
field that was originally developed in the theory of incompressible
homogeneous turbulence (Batchelor 1953). The velocity correlation
functions, firstly introduced by Taylor in 1930s (Taylor 1935, 1932),
play a central role in the statistical theory of turbulence. Other sta-
tistical measures are related to correlation functions and describing
how energy and enstrophy are distributed on different scales.
The statistical theory of stochastic flow is mostly concerned about

two types of relations: i) the kinematic relations between statistical
measures of the same order; and ii) the dynamic relations between
statistical measures of different orders. The kinematic relations can
be developed for a given nature of flow (incompressible, constant
divergence, or irrotational) under the assumption of translational
and rotational symmetry. However, the dynamic relations can only
be developed from self-closed dynamic equations for evolution of
velocity field, such as the Burgers’ or Navier-Stokes equation. In fact,
the celebrated Kolmogorov’s four-fifth law is an exact result of the
dynamic relations derived from Navier-Stokes equation (de Karman
& Howarth 1938; Kolmogoroff 1941a,b).
By contrast, the statistical theory for self-gravitating collisionless

dark matter flow (SG-CFD) is not completely developed and far from
satisfactory due to several reasons:

(i) SG-CFD flow is intrinsically much more complex with different

nature of flow on different scales, i.e. a constant divergence flow on
small scale and an irrotational flow on large scale (Xu 2022f). The
kinematic and dynamic relations need to be developed separately for
both types of flow on different scales.
(ii) Dynamic equations of velocity (Jeans’ equation) on small scale
are not self-closed. No dynamic relations can be derived without a
self-closed dynamics for velocity evolution.
(iii) Existing work mostly focus on the first and second order veloc-
ity statistics, while the peculiar velocity field contains much richer
information beyond the second order. One example is the third order
velocity correlations that is intimately related to the energy cascade
and transfer across sales (Eqs. (128) and (192)). However, it is very
challenging to explore high order statistics, as that inherently involves
tensors and vector calculus of great complexity.

The primary purpose of this paper is to establish the formal lan-
guage of statistical theory for collisionless dark matter flow by in-
troducing basic notations, putting in place necessary equations, and
laying down the fundamental rules. The theory itself is intrinsically
complex due to stochasticity, nonlinearity, and multiscale nature,
while we are still able to appreciate the beauty of nature as evidenced
by the hidden symmetry in kinematic and dynamic relations. From
this practice, we are able to demonstrate that on large scale,

(i) The third order correlation determines the rate of energy cascade;
(ii) The effective viscosity originates from velocity fluctuations and
negative viscosity 𝜈 (𝑎) reflects the inverse energy cascade;
(iii) The 𝑞th order correlation functions scale as ∝ 𝑎 (𝑞+2)/2 for odd
order q and scale as ∝ 𝑎𝑞/2 for even order q;
(iv) Mean overdensity on a given scale r is proportional to the density
correlation on the same scale, i.e. 𝑓 (Ω𝑚)〈𝛿〉 ≈ 〈𝛿𝛿′〉. The existence
of low density void region can be related to the negative density
correlation 〈𝛿𝛿′〉 < 0 on that scale;
(v) (Reduced) velocity dispersion on a given scale is proportional to
the density correlation on the same scale, i.e. 〈𝑢2〉/(3𝑢2)−1 ∝ 〈𝛿𝛿′〉.
Low density void region has relatively small velocity dispersion;
(vi) The exponential velocity correlation originates from a combined
kinematic and dynamic relations on large scale;

While on small scale, a self-closed description for velocity evolu-
tion is developed along with the associated dynamic relations. The
third order correlation and structure functions on small scale can be
directly related to the constant rate of energy cascade 𝜀𝑢 .
There is tremendous amount of knowledge that can be learned

from this practice, much more than what we can present here. With
the second order statistics presented in (Xu 2022f), this paper is
organized as follows: Section 2 introduces the N-body simulation
data used, followed by the third order statistical measures in Section
3. The general kinematic relations are presented in Section 4 with
results from N-body simulations for comparison and validation in
Section 5. Finally, the dynamic relations are formulated on large and
small scales in Sections 6 and 7, respectively.

2 N-BODY SIMULATIONS AND NUMERICAL DATA

The numerical data are public available and generated from N-body
simulations carried out by the Virgo consortium. A comprehensive
description of the data can be found in (Frenk et al. 2000; Jenkins
et al. 1998). As the first step, current study uses simulation runs
withW = 1 and the standard CDM power spectrum (SCDM) to focus
on the matter-dominant gravitational flow. Similar analysis can be
extended to other model with different assumptions and parameters
in the future. Current simulation includes 17 million particles with
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Table 1. Numerical parameters of N-body simulation

Run Ω0 Λ ℎ Γ 𝜎8
L

(Mpc/h) 𝑁
𝑚𝑝

𝑀�/ℎ
𝑙𝑠𝑜 𝑓 𝑡

(Kpc/h)
SCDM1 1.0 0.0 0.5 0.5 0.51 239.5 2563 2.27×1011 36

particle mass of 2.27×1011 𝑀�/ℎ. The simulation box sizes around
240 Mpc/h, where h is the reduced Hubble constant. The same set
of data has been widely used in a number of studies from cluster-
ing statistics (Jenkins et al. 1998) to formation of cluster halos in
large scale environment (Colberg et al. 1999), and test of models for
halo abundances and mass functions (Sheth et al. 2001). Some key
numerical parameters of N-body simulation are listed in Table 1.
Two relevant datasets from this N-boby simulation, i.e. halo-based

and correlation-based statistics of dark matter flow, can be found at
Zenodo.org (Xu 2022a,b), along with the accompanying presentation
slides, "A comparative study of dark matter flow & hydrodynamic
turbulence and its applications" (Xu 2022c). All data files are also
available on GitHub (Xu 2022d).

3 THIRD AND HIGH ORDER VELOCITY STATISTICS

The real-space two-point second order statistical measures have been
introduced for density, velocity, and potential fields along with the
kinematic relations developed for different types of flow (Xu 2022f).
In this section, two-point third order statistical measures are intro-
duced alongwith the kinematic relations. The SG-CFDflow is of con-
stant divergence on small scale and irrotational on large scale. The
constant divergence flow and incompressible flow share the same
kinematic relations for even order statistical measures, while they
can be different for odd order statistics (Xu 2022f). Same as previous
discussion for second order statistics, we restrict our discussion to
homogeneous and isotropic flow that will significantly simplify ve-
locity correlation tensors and the development of theory. Third order
statistical measures for a specific type of flow, i.e. incompressible,
constant divergence, or irrotational flow, are all discussed in detail.

3.1 Third order velocity correlation tensor

Due to homogeneous and isotropic symmetry, the two-point third
order velocity correlation tensor can be generally defined as

𝑄𝑖 𝑗𝑘 (x, r) = 𝑄𝑖 𝑗𝑘 (r) = 𝑄𝑖 𝑗𝑘 (𝑟)

=

〈
𝑢𝑖 (x) 𝑢 𝑗 (x) 𝑢𝑘

(
x
′ )〉

=

〈
𝑢𝑖𝑢 𝑗𝑢

′
𝑘

〉 (1)

for velocity field u at two different locations separated by a distance
r, where x′

= x + r (Fig. 1). The prime notation indicates the field
evaluated at location x′ , with 𝑢𝐿 and 𝑢𝑇 standing for the longitudinal
and transverse velocities in Fig. 1.
For third order isotropic tensor 𝑄𝑖 𝑗𝑘 (𝑟), symmetry requires

𝑄𝑖 𝑗𝑘 (−𝑟) =
〈
𝑢
′
𝑖𝑢

′
𝑗𝑢𝑘

〉
= −

〈
𝑢𝑖𝑢 𝑗𝑢

′
𝑘

〉
= −𝑄𝑖 𝑗𝑘 (𝑟) . (2)

The most general form of the isotropic third order correlation tensor
can be written as,
𝑄𝑖 𝑗𝑘 (𝑟) = 𝐴3 (𝑟) 𝑟𝑖𝑟 𝑗𝑟𝑘 + 𝐵3 (𝑟) 𝑟𝑖𝛿 𝑗𝑘

+ 𝐶3 (𝑟) 𝑟 𝑗𝛿𝑘𝑖 + 𝐷3 (𝑟) 𝑟𝑘𝛿𝑖 𝑗 ,
(3)

where 𝐴3 (𝑟), 𝐵3 (𝑟), 𝐶3 (𝑟) and 𝐷3 (𝑟) are all symmetric regular
functions of scale r. Because of the symmetry about indexes i and j
(using definition in (1)),

𝑄𝑖 𝑗𝑘 (𝑟) = 𝑄 𝑗𝑖𝑘 (𝑟) leads to 𝐵 (𝑟) = 𝐶 (𝑟) . (4)

Figure 1. A schematic plot for the longitudinal (𝑢𝐿 and 𝑢
′
𝐿
) and transverse

(𝑢𝑇 and 𝑢
′
𝑇
) velocities for a particle pair separated by a distance of r.

The final form of third order correlation tensor simply reads

𝑄𝑖 𝑗𝑘 (𝑟) = 𝐴3 (𝑟) 𝑟𝑖𝑟 𝑗𝑟𝑘+𝐵3 (𝑟)
(
𝑟𝑖𝛿 𝑗𝑘 + 𝑟 𝑗𝛿𝑘𝑖

)
+𝐷3 (𝑟) 𝑟𝑘𝛿𝑖 𝑗 , (5)

which is fully determined by three scalar functions 𝐴3, 𝐵3 and 𝐷3.
Using contraction in index, the longitudinal triple (third order)

correlation function is defined as

𝐿3 (𝑟) = 𝑄𝑖 𝑗𝑘𝑟𝑖𝑟 𝑗𝑟𝑘 =

〈
𝑢2𝐿𝑢

′
𝐿

〉
= 𝐴3𝑟

3 + (2𝐵3 + 𝐷3) 𝑟, (6)

where 𝑟𝑖 = 𝑟𝑖/𝑟 is the normalized Cartesian components of vector
r satisfying 𝑟𝑖𝑟𝑖 = 1. Einstein summation is employed. Here 𝑢𝐿 =

u · r = 𝑢𝑖𝑟𝑖 is the longitudinal velocity in Fig. 1. Two total third order
correlation functions can be defined as,

𝑅3 (𝑟) =
1
2
𝑄𝑖 𝑗𝑘

(
𝛿𝑖𝑘𝑟 𝑗 + 𝛿 𝑗𝑘𝑟𝑖

)
=

〈
𝑢𝐿u · u

′〉
= 𝐴3𝑟

3 + (4𝐵3 + 𝐷3) 𝑟,
(7)

𝑅31 (𝑟) = 𝑄𝑖 𝑗𝑘𝛿𝑖 𝑗𝑟𝑘 =

〈
u · u𝑢

′
𝐿

〉
= 𝐴3𝑟

3 + (2𝐵3 + 3𝐷3) 𝑟. (8)

The transverse third-order correlation function can be defined as,

𝑇3 (𝑟) =
〈
𝑢𝐿u𝑇 · u

′
𝑇

〉
/2 = (𝑅3 − 𝐿3) /2 = 𝐵3𝑟, (9)

with transverse velocity perpendicular to vector r (Fig. 1),

u𝑇 = − (u × r × r) = u − (u · r) r. (10)

All third order correlation functions satisfy the odd symmetry
𝑓 (−𝑟) = − 𝑓 (𝑟).
Next, the divergence and curl of third-order correlation tensor are

formulated. Some tensor/vector algebra are involved and only the
final results are presented here for later use. The divergence reads

𝑄𝑖 𝑗𝑘,𝑘 =
𝜕𝑄𝑖 𝑗𝑘 (𝑟)
𝜕𝑟𝑘

=

𝜕

〈
𝑢𝑖𝑢 𝑗𝑢

′
𝑘

〉
𝜕𝑟𝑘

=

(
5𝐴3 +

𝜕𝐴3
𝜕𝑟

𝑟 + 2
𝑟

𝜕𝐵3
𝜕𝑟

)
𝑟𝑖𝑟 𝑗 +

(
2𝐵3 +

𝜕𝐷3
𝜕𝑟

𝑟 + 3𝐷3
)
𝛿𝑖 𝑗 ,

𝑄𝑖𝑖𝑘,𝑘 = 𝑄𝑖 𝑗𝑘,𝑘𝛿𝑖 𝑗

=

(
5𝐴3 +

𝜕𝐴3
𝜕𝑟

𝑟 + 2
𝑟

𝜕𝐵3
𝜕𝑟

)
𝑟2 + 3

(
2𝐵3 +

𝜕𝐷3
𝜕𝑟

𝑟 + 3𝐷3
)
,

(11)

and

𝑄𝑖 𝑗𝑘,𝑖 =
𝜕𝑄𝑖 𝑗𝑘 (𝑟)

𝜕𝑟𝑖
=

(
5𝐴3 +

𝜕𝐴3
𝜕𝑟

𝑟 + 1
𝑟

𝜕𝐵3
𝜕𝑟

+ 1
𝑟

𝜕𝐷3
𝜕𝑟

)
𝑟 𝑗𝑟𝑘

+
(
4𝐵3 +

𝜕𝐵3
𝜕𝑟

𝑟 + 𝐷3
)
𝛿 𝑗𝑘 .

(12)
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Other derivatives can be derived from Eq. (12),

𝑄𝑖 𝑗𝑘,𝑖 𝑗 =
𝜕𝑄𝑖 𝑗𝑘 (𝑟)
𝜕𝑟𝑖𝜕𝑟 𝑗

=

(
𝑟2
𝜕2𝐴3
𝜕𝑟2

+ 10𝑟 𝜕𝐴3
𝜕𝑟

+20𝐴3 + 2
𝜕2𝐵3
𝜕𝑟2

+ 8
𝑟

𝜕𝐵3
𝜕𝑟

+ 𝜕
2𝐷3
𝜕𝑟2

+ 4
𝑟

𝜕𝐷3
𝜕𝑟

)
𝑟𝑘 ,

(13)

𝑄𝑖𝑘𝑖,𝑘 = 𝑄𝑖𝑘𝑘,𝑖 = 𝑄𝑖 𝑗𝑘,𝑖𝛿 𝑗𝑘

= 5𝐴3𝑟2 +
𝜕𝐴3
𝜕𝑟

𝑟3 + 12𝐵3 + 4𝑟
𝜕𝐵3
𝜕𝑟

+ 3𝐷3 + 𝑟
𝜕𝐷3
𝜕𝑟

,
(14)

where symmetry condition (Eq. (4)) is used for deriving Eq. (14).
With definition of correlation functions 𝑅3 and 𝑅31 in Eqs. (7) and
(8), Eqs. (11) and (14) can be concisely written as

𝑄𝑖𝑘𝑖,𝑘 = 𝑄𝑖 𝑗𝑘,𝑖𝛿 𝑗𝑘 = 𝑄𝑖𝑘𝑘,𝑖 =
1
𝑟2

(
𝑟2𝑅3

)
,𝑟

and

𝑄𝑖𝑖𝑘,𝑘 =
1
𝑟2

(
𝑟2𝑅31

)
,𝑟
.

(15)

Similarly, the curl of third order velocity correlation tensor reads

∇ ×𝑄𝑚𝑛𝑖 (𝑟) = 𝜀𝑖 𝑗𝑘𝑄𝑚𝑛𝑘, 𝑗

=

(
𝐴3 −

1
𝑟

𝜕𝐵3
𝜕𝑟

)
(𝜀𝑖𝑚𝑘𝑟𝑛𝑟𝑘 + 𝜀𝑖𝑛𝑘𝑟𝑚𝑟𝑘 ) .

(16)

where 𝜀𝑖 𝑗𝑘 is the standard Levi-Civita symbol.

3.1.1 Kinematic relations for incompressible flow

This section formulates the kinematic relations for incompressible
flow following the classical approach in the theory of turbulence. A
new and more compact formulation is presented in Appendix A that
facilitates the generalization to arbitrary order. First, the divergence
free requirement in Eq. (11) leads to two separate relations

5𝐴3𝑟 +
𝜕𝐴3
𝜕𝑟

𝑟2 + 2 𝜕𝐵3
𝜕𝑟

= 0, (17)

2𝐵3 +
𝜕𝐷3
𝜕𝑟

𝑟 + 3𝐷3 = 0. (18)

Differentiating Eq. (18) and subtracting Eq. (17) leads to(
𝜕𝐷3
𝜕𝑟

𝑟

)
,𝑟

+ 3 𝜕𝐷3
𝜕𝑟

= 𝑟2
𝜕𝐴3
𝜕𝑟

+ 5𝐴3𝑟 =
(
𝐴3𝑟

2
)
,𝑟
+ 3𝐴3𝑟. (19)

From Eqs.(18) and (19)), we should have

𝐴3 =
1
𝑟

𝜕𝐷3
𝜕𝑟

and 𝐴3𝑟
2 + 2𝐵3 + 3𝐷3 = 0. (20)

Equation (18) can be analytically solved (using Eqs. (6) and (20)),

𝐵3 = − 𝑟
2
𝜕𝐷3
𝜕𝑟

− 3
2
𝐷3 and 𝐷3 = −𝐿3/(2𝑟). (21)

With all scalar functions 𝐴3 ,𝐵3, and 𝐷3 expressed in terms of the
longitudinal correlation 𝐿3 (𝑟), the third order correlation tensor can
be expressed as (prime denotes the derivative with respect to r)

𝑄𝑖 𝑗𝑘 (𝑟) =
𝐿3 − 𝑟𝐿

′
3

2
𝑟𝑖𝑟 𝑗𝑟𝑘

+
2𝐿3 + 𝑟𝐿

′
3

4
(
𝑟𝑖𝛿 𝑗𝑘 + 𝑟 𝑗𝛿𝑘𝑖

)
− 𝐿3
2
𝑟𝑘𝛿𝑖 𝑗 .

(22)

From Eqs. (13), (17) and (18), we have𝑄𝑖 𝑗𝑘,𝑖 𝑗 = 0. Since the first

order isotropic tensor for incompressible flow must be zero (see Xu
2022f, Section 3.1), we should have

𝑄𝑖 𝑗𝑘,𝑖 𝑗 = 𝑄𝑖 𝑗𝑘,𝑖𝑘 = 𝑄𝑖 𝑗𝑘, 𝑗𝑘 = 0. (23)

Multiplying Eq. (22) by 𝛿 𝑗𝑘 and taking the divergence,

𝑄𝑖𝑘𝑖,𝑘 = 𝑄𝑖 𝑗𝑘,𝑖𝛿 𝑗𝑘 = 𝑄𝑖𝑘𝑘,𝑖

=
1
𝑟2

(
𝑅3𝑟

2
)
,𝑟

=
1
2𝑟2

𝜕

𝜕𝑟

(
1
𝑟

𝜕

𝜕𝑟

(
𝑟4𝐿3

))
,

(24)

with the following identity used

(𝑟𝑖), 𝑗 =
1
𝑟

(
𝛿𝑖 𝑗 − 𝑟𝑖𝑟 𝑗

)
=
(
𝑟 𝑗
)
,𝑖
and (𝑟𝑖),𝑖 =

2
𝑟
. (25)

The kinematic relations between third-order correlations can be
easily obtained by contraction in index notation from Eq. (22) (using
definitions (7) and (9)) such that

𝑅3 =
1
2𝑟3

(
𝑟4𝐿3

)
,𝑟
, 𝑇3 =

1
4𝑟

(
𝑟2𝐿3

)
,𝑟
,

and

𝑟2
(
𝑟2𝑅3

)
,𝑟

= 2
(
𝑟4𝑇3

)
,𝑟
.

(26)

These kinematic relations will be generalized to higher order in
Section 4 with a new method of derivation. From Eqs. (20) and (8),
the total correlation function 𝑅31 vanishes for incompressible flow,

𝑅31 (𝑟) =
〈
u · u𝑢

′
𝐿

〉
= 0. (27)

The same correlation 𝑅31 does not vanish for dark matter flow, i.e.
two types of flow are different in odd order correlations (Fig. 8).

3.1.2 Kinematic relations for constant divergence on small scale

The kinematic relations for constant divergence flow are different
from incompressible flow for odd order correlations. The peculiar
radial flow 𝑢𝑟 in virialized halos satisfies u𝒓 = −𝐻𝑎r from stable
clustering hypothesis (Xu 2021d). The divergence of peculiar ve-
locity ∇ · u = −3𝐻𝑎 (in local spherical coordinate), i.e. a spatially
constant divergence (see Xu 2022e, Eq.(60)). Without loss of gener-
ality, let’s assume ∇ · u = 𝜃 (𝑡), where 𝜃 is a constant in space. The
divergence of third order correlation tensor simply reads

𝑄𝑖 𝑗𝑘,𝑘 = ∇
′
·
〈
𝑢𝑖 (x) 𝑢 𝑗 (x) 𝑢𝑘

(
x
′ )〉

=

〈
𝑢𝑖 (x) 𝑢 𝑗 (x)

𝜕𝑢𝑘

(
x′
)

𝜕𝑥
′
𝑘

〉
= 𝜃

〈
𝑢𝑖𝑢 𝑗

〉
,

(28)

where the prime stands for taking derivative at location x′ . The
constant divergence requires (Eq. (11)),

𝑄𝑖 𝑗𝑘,𝑘 =
〈
𝑢𝑖𝑢 𝑗

〉
𝜃 =

(
5𝐴3 +

𝜕𝐴3
𝜕𝑟

𝑟 + 2
𝑟

𝜕𝐵3
𝜕𝑟

)
𝑟𝑖𝑟 𝑗

+
(
2𝐵3 +

𝜕𝐷3
𝜕𝑟

𝑟 + 3𝐷3
)
𝛿𝑖 𝑗 .

(29)

Multiplying 𝑟𝑖𝑟 𝑗 on both sides of Eq. (29) gives〈
𝑢2𝐿

〉
𝜃 =

(
5𝐴3 +

𝜕𝐴3
𝜕𝑟

𝑟 + 2
𝑟

𝜕𝐵3
𝜕𝑟

)
𝑟2+

(
2𝐵3 +

𝜕𝐷3
𝜕𝑟

𝑟 + 3𝐷3
)
. (30)

Using definitions of correlation functions in Eqs. (6) and (7), an exact
kinematic relation can be obtained between correlation functions,
longitudinal dispersion 〈𝑢2

𝐿
〉 and divergence 𝜃,

𝑅3 +
1
2

〈
𝑢2𝐿

〉
𝜃𝑟 =

1
2𝑟3

(
𝑟4𝐿3

)
,𝑟

(31)
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Similarly, multiplying 𝛿𝑖 𝑗 on both sides of Eq. (29) leads to〈
𝑢2

〉
𝜃 =

(
5𝐴3 +

𝜕𝐴3
𝜕𝑟

𝑟 + 2
𝑟

𝜕𝐵3
𝜕𝑟

)
𝑟2 + 3 𝜕𝐷3

𝜕𝑟
𝑟 + 6𝐵3 + 9𝐷3. (32)

An exact relation for 𝑅31 and total velocity dispersion 〈𝑢2〉 on scale
𝑟 can be obtained from Eqs. (11) and (15),〈
𝑢2

〉
𝜃 =

1
𝑟2

(
𝑟2𝑅31

)
,𝑟
. (33)

With 〈𝑢2〉 ≈ 3〈𝑢2
𝐿
〉 (see Xu 2022h, Fig. 20) that is exact on both

small and large scales, the kinematic relation between three third
order correlation functions finally reads,

𝑅3 +
1
6𝑟

(
𝑟2𝑅31

)
,𝑟

=
1
2𝑟3

(
𝑟4𝐿3

)
,𝑟
. (34)

For small r with velocity dispersion 〈𝑢2
𝐿
〉 independent of r , solution

of 𝑅31 from Eq. (33) is

𝑅31 = 𝜃
〈
𝑢2𝐿

〉
𝑟. (35)

In particular, with 𝜃 = 0, kinematic relations Eqs. (31), (33), and (34)
reduce to Eqs. (26) and (27) for incompressible flow, as expected.

3.1.3 Kinematic relations for irrotational flow on large scale

Darkmatter flow is irrotational on large scale. The curl free condition
from Eq. (16) leads to the following requirement on large scale,

1
𝑟

𝜕𝐵3
𝜕𝑟

= 𝐴3. (36)

The kinematic relations between velocity correlations can be simi-
larly found from Eqs. (6)-(9),

(𝑟𝑅3),𝑟 + 𝑅31 =
1
𝑟3

(
𝑟4𝐿3

)
,𝑟
, 3𝑅3 − 𝑅31 =

2
𝑟3

(
𝑟4𝑇3

)
,𝑟
,

and
3𝐿3 − 𝑅31 = 2 (𝑟𝑇3),𝑟 .

(37)

All kinematic relations developed for constant divergence flow on
small scale and irrotational flow on large scale can be validated by
N-body simulations and presented in Section 5.

3.2 Third and higher order velocity structure functions

Structure functions are statistical measures to describe how the sys-
tem energy is distributed and transferred across scales. Third order
longitudinal velocity structure function is defined as

𝑆
𝑙 𝑝

3 (𝑟) =
〈
(Δ𝑢𝐿)3

〉
=

〈(
𝑢
′
𝐿 − 𝑢𝐿

)3〉
= 6𝐿3 (𝑟) − 2

〈
𝑢3𝐿

〉
, (38)

where Δ𝑢𝐿 is the pairwise velocity. More generally, the mth order
longitudinal structure function can be defined as

𝑆
𝑙 𝑝
𝑚 =

〈
(Δ𝑢𝐿)𝑚

〉
=

〈(
𝑢
′
𝐿 − 𝑢𝐿

)𝑚〉
. (39)

Models for structure functions are presented for self-gravitating
collisionless dark matter flow. On small scale, the reduced even order
structure functions follow a two-third law (seeXu 2022h, Eq. (56) and
Fig. 22). With pre-factor determined by the rate of energy production
𝜀𝑢 from inverse energy cascade (Xu 2021f), we have

𝑆
𝑙 𝑝

2𝑛 (𝑟) − 𝑆𝑙 𝑝2𝑛 (0) ∝ (−𝜀𝑢)2/3 𝑟2/3, (40)

where 𝑆𝑙 𝑝2𝑛 (0) is the (2n)th moment of limiting distribution of pair-
wise velocity Δ𝑢𝐿when 𝑟 → 0 (see Xu 2022h, Eq. (61) and Table
4). Here 𝜀𝑢 < 0 reflects the inverse mass cascade with

−𝜀𝑢 =
3
2
𝑢20
𝑡0

=
9
4
𝑢20𝐻0 ≈ 0.6345

𝑢30
𝑀𝑝𝑐/ℎ , (41)

where 𝑡0 and 𝐻0 are the present time and Hubble constant, 𝑢0 is the
one-dimensional velocity dispersion at present epoch.
On small scale, the odd order structure functions are predicted as

𝑆
𝑙 𝑝

2𝑛+1 (𝑟) = (2𝑛 + 1) 𝑆𝑙 𝑝1 (𝑟) 𝑆𝑙 𝑝2𝑛 (𝑟) (42)

from generalized stable clustering hypothesis (GSCH). This is based
on a two-body collapse model (see TBCM model Xu 2021d, Eq.
(123)). With 𝑆𝑙 𝑝1 (𝑟) = −𝐻𝑎𝑟 (see Xu 2021d, Eq. (117)),

𝑆
𝑙 𝑝

2𝑛+1 (𝑟) = − (2𝑛 + 1) 𝐻𝑎𝑟𝑆𝑙 𝑝2𝑛 (0)

= −2𝑛 (2𝑛 + 1) 𝐾2𝑛 (Δ𝑢𝐿 , 0) 𝐻𝑎𝑟𝑢2𝑛,
(43)

where 𝐾2𝑛 (Δ𝑢𝐿 , 0) is the generalized kurtosis of the distribution of
pairwise velocity Δ𝑢𝐿when 𝑟 → 0 (see Xu 2022h, Table 4).

4 KINEMATIC RELATIONS FOR VELOCITY
CORRELATIONS OF ARBITRARY ORDER

In this section, we formulate general kinematic relations of any order
(beyond second and third order) for different types of flow. This is a
very challenging task involving significant amount of tensor/vector
algebra and calculus. Readers can simply skip details of derivation
in Appendix A and directly jump to final results, i.e. Eqs. (53)-(55)
for incompressible flow, Eq. (62) for constant divergence on small
scale, and Eqs. (63)-(65) for irrotational flow on large scale.

4.1 General correlation functions on any order

The two-point velocity correlation tensor 𝑄 of arbitrary order p can
be defined as,(
(𝑝)𝑄𝑖 𝑗 𝑘..𝑚𝑛

)
=

〈
𝑢𝑖𝑢 𝑗𝑢𝑘 ...𝑢𝑚𝑢

′
𝑛

〉
. (44)

Scalar correlation functions are defined by tensor contraction of 𝑄
(similar to Eqs. (6), (7), and (8)). For even number q, the total corre-
lation functions of order (𝑝, 𝑞 + 1) is defined as

𝑅(𝑝,𝑞+1) =
〈
𝑢𝑞𝑢

𝑝−𝑞−2
𝐿

𝑢𝑖𝑢
′
𝑖

〉
=

〈
𝑢𝑞𝑢

𝑝−𝑞−2
𝐿

u · u
′〉
. (45)

For even number q, the longitudinal and transverse correlation func-
tions of order (𝑝, 𝑞) are defined as:

𝐿 (𝑝,𝑞) =
〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

𝑢
′
𝐿

〉
(46)

and

𝑇(𝑝,𝑞) =
(
𝑅(𝑝,𝑞+1) − 𝐿 (𝑝,𝑞)

)
/2. (47)

Figure 2 lists velocity correlation functions up to the sixth order.
Just like second order correlations, all these correlation functions can
be similarly computed from N-body simulations. We first identify all
particle pairs with the same separation 𝑟 , followed by a pairwised
average to compute these correlations on a given scale 𝑟 .
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Figure 2. Velocity correlation functions of different order

4.2 Correlation functions in the limit 𝑟 → 0 and 𝑟 → ∞

We first identify the limiting ratio for odd order p (see Appendix A),

lim
𝑟→0

〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

〉〈
𝑢
𝑝−1
𝐿

〉 =
𝑝

𝑝 − 𝑞 with q=0...p-1. (48)

Equation (48) is also valid for 𝑟 → ∞ where velocity distributions
are independent of scale r, i.e.

lim
𝑟→∞

〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

〉〈
𝑢
𝑝−1
𝐿

〉 =
𝑝

𝑝 − 𝑞 with q=0...p-1. (49)

Finally, using the definition of correlation functions (Eqs. (45)-(47)),
for correlation functions of odd order p,

lim
𝑟→0,∞

𝐿 (𝑝,𝑞)
𝐿 (𝑝,0)

= lim
𝑟→0,∞

〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

〉〈
𝑢
𝑝−1
𝐿

〉 =
𝑝

𝑝 − 𝑞 . (50)

Similar relations can be obtained for correlation functions of even
order p (from Eq. (49)),

lim
𝑟→0

𝑅(𝑝,𝑞+1)
𝐿 (𝑝,0)

= lim
𝑟→0

〈
𝑢𝑞𝑢

𝑝−𝑞−2
𝐿

u · u′
〉〈

𝑢
𝑝−1
𝐿

𝑢
′
𝐿

〉 =
𝑝 + 1

𝑝 − 𝑞 − 1 , (51)

and

lim
𝑟→0,∞

𝐿 (𝑝,𝑞)
𝐿 (𝑝,0)

= lim
𝑟→0,∞

〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

𝑢
′
𝐿

〉〈
𝑢
𝑝−1
𝐿

𝑢
′
𝐿

〉 =
𝑝 + 1

𝑝 + 1 − 𝑞 . (52)

4.3 General kinematic relations for different types of flow

4.3.1 Kinematic relations for incompressible flow

For incompressible flow, the general kinematic relations for correla-
tions of any order p are obtained as (see Appendix A4.3):

(𝑝 − 𝑞 − 1) 𝑅(𝑝,𝑞+1) =
1

𝑟 𝑝−𝑞

(
𝑟 𝑝−𝑞+1𝐿 (𝑝,𝑞)

)
,𝑟
, (53)

2 (𝑝 − 𝑞 − 1) 𝑇(𝑝,𝑞) =
1
𝑟

(
𝑟2𝐿 (𝑝,𝑞)

)
,𝑟
, (54)

(
𝑟2𝑅(𝑝,𝑞+1)

)
,𝑟

=
2

𝑟 𝑝−𝑞−1

(
𝑟 𝑝−𝑞+1𝑇(𝑝,𝑞)

)
,𝑟
. (55)

4.3.2 Kinematic relations for constant divergence on small scale

For constant divergence flow on small scale, a general kinematic
relation is obtained as (see Appendix A4.4):

(𝑝 − 𝑞 − 1) 𝑅(𝑝,𝑞+1) +
〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

〉
𝜃𝑟

=
1

𝑟 𝑝−𝑞

(
𝑟 𝑝−𝑞+1𝐿 (𝑝,𝑞)

)
,𝑟
.

(56)

Equation (56) reduces to Eq. (53) for incompressible flowwith 𝜃 = 0.
For correlation functions of even order p (q is always an even

number, see Eq. (56) and Fig. 2), we should have

lim
𝑟→0

〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

〉
= 0. (57)

Therefore, here we can demonstrate that kinematic relations for even
order correlations of constant divergence flow should be the same
as that of incompressible flow. Equations (53)-(55) are still valid for
correlations of even order p in constant divergence flow.
For odd order p, two special cases are considered here. With 𝑞 =

𝑝 − 1 and 𝑞 = 0 from Eq. (56), we should have relations〈
𝑢𝑝−1

〉
𝜃𝑟 =

1
𝑟

(
𝑟2𝐿 (𝑝,𝑝−1)

)
,𝑟

(58)

and

(𝑝 − 1) 𝑅(𝑝,1) +
〈
𝑢
𝑝−1
𝐿

〉
𝜃𝑟 =

1
𝑟 𝑝

(
𝑟 𝑝+1𝐿 (𝑝,0)

)
,𝑟
. (59)

For 𝑟 → 0, the correlation function 𝐿 (𝑝,𝑝−1) can be directly solved
from Eq. (58) that is proportional to 𝑟 on small scale (Eq. (48)),

𝐿 (𝑝,𝑝−1) =
𝑝

3
𝜃

〈
𝑢
𝑝−1
𝐿

〉
𝑟 =
1
3
𝜃

〈
𝑢𝑝−1

〉
𝑟. (60)

For 𝑝 = 1 and 𝑞 = 0 in Eq. (59), the mean pairwise velocity (or
first order structure function) 𝑆𝑙 𝑝1 (𝑟) = 〈Δ𝑢𝐿〉 = 〈𝑢′

𝐿
− 𝑢𝐿〉 = 2〈𝑢

′
𝐿
〉

can be directly related to the divergence 𝜃 as

𝜃 =
1
2𝑟2

(
𝑟2 〈Δ𝑢𝐿〉

)
,𝑟
. (61)

With 〈Δ𝑢𝐿〉 = −𝐻𝑎𝑟 from stable clustering hypothesis (Xu 2021d),
the divergence on small scale 𝜃 = −3𝐻𝑎/2 can be obtained. Equa-
tion (61) is an important kinematic relation derived for constant
divergence flow on small scale. However, it is actually valid for en-
tire range of scales, as shown in Eq. (108), and will be repeatedly
used in Section 6.
With Eq. (48), Eqs. (56) and (59), kinematic relations for odd order

p should finally read

(𝑝 − 𝑞 − 1) 𝑅(𝑝,𝑞+1) +
1

𝑝 − 𝑞
1
𝑟

(
𝑟2𝐿 (𝑝,𝑝−1)

)
,𝑟

=
1

𝑟 𝑝−𝑞

(
𝑟 𝑝−𝑞+1𝐿 (𝑝,𝑞)

)
,𝑟
.

(62)

4.3.3 Kinematic relations for irrotational flow on large scale

For irrotational flow, kinematic relations of arbitrary order p and even
number 0 6 𝑞 6 𝑝 − 1 are obtained as (see Appendix A4.5),(
𝑅(𝑝,𝑞+1)𝑟

)
,𝑟
+ (𝑝 − 𝑞 − 2)𝐿 (𝑝,𝑞+2)

=
1

𝑟 𝑝−𝑞

(
𝑟 𝑝−𝑞+1𝐿 (𝑝,𝑞)

)
,𝑟
,

(63)

(𝑝 − 𝑞) 𝑅(𝑝,𝑞+1) − (𝑝 − 𝑞 − 2)𝐿 (𝑝,𝑞+2)

=
2

𝑟 𝑝−𝑞

(
𝑟 𝑝−𝑞+1𝑇(𝑝,𝑞)

)
,𝑟
,
(64)
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Figure 3. Two-point third order velocity correlation functions 𝐿(3,0) , 𝑅(3,1) ,
𝐿(3,2) , 𝑇(3,0) , third moment of longitudinal velocity −〈𝑢′3

𝐿
〉 = 〈𝑢3

𝐿
〉, and

third order structure function 〈(𝑢′
𝐿
− 𝑢𝐿)3 〉 at z=0. All correlation functions

are normalized by 𝑢3, where u is the one-dimensional velocity dispersion of
entire system. Only the transverse correlation 𝑇(3,0) > 0 on small scale.

(𝑝 − 𝑞) 𝐿 (𝑝,𝑞) − (𝑝 − 𝑞 − 2) 𝐿 (𝑝,𝑞+2) = 2
(
𝑟𝑇(𝑝,𝑞)

)
,𝑟
. (65)

In Eqs. (63)-(65), terms involving correlation function 𝐿 (𝑝,𝑞+2)
should vanish if 𝑞 > 𝑝 − 2.

5 RESULTS FROM N-BODY SIMULATIONS

This section presents the two-point velocity correlation and struc-
ture functions from N-body simulations. All statistical measures are
computed in the same way as second order measures, where all par-
ticle pairs with a given separation r are identified first with particle
velocities and locations recorded. Any statistical quantity on scale r
is computed as the average of that quantity for all particle pairs with
the same separation. The kinematic relations developed in Section 4
can be systematically verified by N-body simulation.
Figure 3 plots the variation of all third order correlation/structure

functions and moment of longitudinal velocity with scale r at z=0.
All correlation functions are normalized by 𝑢3, where u is the one-
dimensional velocity dispersion of entire system. All third order
statistical measures vanish on both small and large scales and are
negative with the only exception of transverse correlation 𝑇(3,0) > 0.
Similarly, Fig. 4 presents the fourth order correlation/structure

functions andmoment at z=0 (normalized by 𝑢4). All fourth statistical
measures are positive on all scales and approaching constant in the
limit of 𝑟 → 0 (small scale).
The general solution of correlation 𝐿 (𝑝,𝑝−1) of odd order p on

small scale (from Eq. (60)) is,

𝐿 (𝑝,𝑝−1)
𝑢𝑝

=
𝑝

3
𝜃𝑟

〈
𝑢
𝑝−1
𝐿

〉
𝑢𝑝

= −2(𝑝−3)/2𝑝𝐾𝑝−1 (𝑢𝐿 , 0)
𝐻𝑎𝑟

𝑢
, (66)

where divergence 𝜃 = −3𝐻𝑎/2 and lim
𝑟→0

〈𝑢2
𝐿
〉/𝑢2 = 2 (see Xu 2022f,

Fig. 22). The generalized kurtosis 𝐾𝑝−1 (𝑢𝐿 , 𝑟 → 0) of longitudinal
velocity 𝑢𝐿 can be found for the limiting 𝑋 distribution of velocity
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Figure 4.Two-point fourth order velocity correlation functions 𝐿(4,0) ,𝑅(4,1) ,
𝐿(4,2) , 𝑅(4,3) , 𝑇(4,0) , 𝑇(4,2) , the fourth moment of longitudinal velocity
〈𝑢′4

𝐿
〉, and fourth order structure function 〈(𝑢′

𝐿
−𝑢𝐿)4 〉 at z=0. All correlation

functions are normalized by 𝑢4, where u is the one-dimensional velocity
dispersion of entire system. The transverse correlation function 𝑇(4,2) >

𝑇(4,0) > 0 on small scale.

10
-2

10
-1

10
0

10
1

10
2

r (Mpc/h)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

|L
(1,0)

|=|<u
L
' >|

|L
(3,2)

|=|<u2u
L
' >|

|L
(5,4)

|=|<u4u
L
' >|

Model

Model

Model

<0

>0

Figure 5. The variation of correlation functions 𝐿(1,0) (mean longitudinal
velocity), 𝐿(3,2) and 𝐿(5,4) at z=0 (normalized by𝑢,𝑢3, and𝑢5, respectively).
The dash line shows the model from Eq. (66) on small scale.

from entropy maximization (Xu 2021c) and presented in a separate
paper (see Xu 2022h, Table 3). Figure 5 presents the correlation
functions 𝐿 (1,0) , 𝐿 (3,2) and 𝐿 (5,4) at z=0 (normalized by 𝑢, 𝑢3, and
𝑢5, respectively). The dash lines show solutions from Eq. (66).
For correlation functions of odd order p and even number q, kine-

matic relations for constant divergence flow on small scale in Eq.
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Figure 6. The variation of functions 𝐻𝑆
(4,0) and 𝐻

𝑆
(4,2) (Eq. (68) ) on small

scale and 𝐻𝐿
(4,0) and 𝐻

𝐿
(4,2) (Eq. (69)) on large scale from N-body simulation

at z=0. Both functions are expected to be 1 from the kinematic relations for
fourth order correlation functions.

(62) can be equivalently transformed to (integrating both sides)

𝐻𝑆
(𝑝,𝑞) (𝑟) =

1
(𝑝 − 𝑞) ·

𝐿 (𝑝,𝑝−1)
𝐿 (𝑝,𝑞)

+ (𝑝 − 𝑞 − 1)
𝑟 𝑝−𝑞+1𝐿 (𝑝,𝑞)

∫ 𝑟

0

(
𝑅(𝑝,𝑞+1) −

𝐿 (𝑝,𝑝−1)
𝑝 − 𝑞

)
𝑟 𝑝−𝑞𝑑𝑟 = 1.

(67)

For correlation functions of even order p for constant divergence
flow on small scale, kinematic relations are the same as incompress-
ible flow (Eq. (56)) and can be similarly transformed to

𝐻𝑆
(𝑝,𝑞) (𝑟) =

(𝑝 − 𝑞 − 1)
𝑟 𝑝−𝑞+1𝐿 (𝑝,𝑞)

∫ 𝑟

0
𝑅(𝑝,𝑞+1)𝑟

𝑝−𝑞𝑑𝑟 = 1. (68)

Similarly, kinematic relations of any order p and even q for irrota-
tional flow on large scale (Eq. (64)) can be transformed to

𝐻𝐿
(𝑝,𝑞) (𝑟) =

1
2𝑟 𝑝−𝑞+1𝑇(𝑝,𝑞)

∫ 𝑟

0

[
(𝑝 − 𝑞) 𝑅(𝑝,𝑞+1)

− (𝑝 − 𝑞 − 2) 𝐿 (𝑝,𝑞+2)
]
𝑟 𝑝−𝑞𝑑𝑟 = 1.

(69)

Functions 𝐻𝑆
(𝑝,𝑞) and 𝐻

𝐿
(𝑝,𝑞) are defined to verify the general

kinematic relations and can be directly computed from N-body sim-
ulations. They are expected to be 1 on both small and large scales.
Figures 6 and 7 plot the variation of functions 𝐻𝑆

(𝑝,𝑞) on small scale
and 𝐻𝐿

(𝑝,𝑞) on large scale computed based on the fourth and fifth
order correlation functions from N-body simulations. Both functions
are expected to be 1 from kinematic relations for fourth and fifth or-
der correlations, as shown in both Figures. These results valid our
derivation for the general kinematic relations of any order.

6 DYNAMIC RELATIONS FROM DYNAMICS ON LARGE
SCALE

So far, we have considered only kinematic relations, i.e. relations
between correlation/structure functions of the same order (same p in
Fig. 2). However, dynamic relations between correlation functions of
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Figure 7. The variation of functions 𝐻𝑆
(5,0) and 𝐻

𝑆
(5,2) (Eq. (67)) on small

scale and 𝐻𝐿
(5,0) and 𝐻

𝐿
(5,2) (Eq. (69)) on large scale from N-body simulation

at z=0. Both functions are expected to be 1, as predicted by the kinematic
relations for fifth order correlations.

different orders can only be determined from the dynamic evolution
of velocity field, as shown in this and next sections.
The basic dynamics of self-gravitating collisionless flow (SG-

CFD) follows from the collisionless Boltzmann equations (CBE),
where the Jeans’ equations on different order can be systematically
constructed (Mo et al. 2010). However, the closure problem is well
known for Jeans’ equations which are not self-closed. The self-closed
system of dynamic equations must be introduced on small and large
scales, respectively. These dynamic equations are subsequently con-
verted into the dynamic relations between correlation functions of
different orders. This section focus on the dynamics on large scale.
Section 7 focus on the dynamics on small scale.

6.1 Statistics from dynamics and the effective viscosity

On large scale, the peculiar velocity is of irrotational nature and can
be expressed as the gradient of velocity potential. In literature, the
dynamic equation for peculiar velocity v is usually modelled via an
empirical "adhesion approximation" (Gurbatov et al. 1989; Buchert
& Dominguez 2005),

𝜕v
𝜕𝑡

+ 1
𝑎

v · ∇v = 𝑐 (𝑎) v + 𝜈 (𝑎) ∇2v, (70)

where 𝑐(𝑎) is a damping coefficient on large scale and 𝜈(𝑎) is an
"artificial" viscosity in adhesion model. This section will attempt to
elucidate the dynamic origin of "adhesion approximation" and the
origin of "artificial" viscosity 𝜈(𝑎).
By neglecting the second order terms, we have the Zeldovich

approximation on large scale from Eq. (70),

𝜕v
𝜕𝑡

= 𝑐 (𝑎) v. (71)

For matter dominant cosmology with 𝐻2 = 8𝜋𝐺𝜌0/3,

𝑐 (𝑎) =
(
4𝜋𝐺𝜌0
𝐻 𝑓 (Ω𝑚)

− 𝐻
)
=
1
2
𝐻, (72)
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where 𝜌0 (𝑎) is the mean matter density. The adhesion approxima-
tion (a phenomenological model) extends the range of Zeldovich
approximation into the weakly nonlinear regime.
The artificial ("effective") viscosity has its origin from inverse

energy cascade (Eq. (97)) and nonlinear interaction of velocity fluc-
tuations in SG-CFD (Eq. (156)). At this time, to develop dynamic
relations, we adopt the adhesion approximation with a time-varying
viscosity 𝜈 (𝑎) as dominant dynamics on large scale.
Two identities can be introduced for arbitrary velocity field u,

u · ∇u =
1
2
∇ (u · u) + (∇ × u) × u, (73)

and

∇2u = ∇ (∇ · u) − ∇ × (∇ × u) . (74)

For irrotational flow (∇ × v = 0) on large scale, this leads to

v · ∇v =
1
2
∇ (v · v) and ∇2v = ∇ (∇ · v) , (75)

such that the dynamic Eq. (70) can be rewritten as,
𝜕v
𝜕𝑡

+ 1
2𝑎

∇ (v · v) = 𝑐 (𝑎) v + 𝜈 (𝑎) ∇2v. (76)

The index notation of Eq. (76) at two different locations x and x′ with
a separation of r is
𝜕𝑣 𝑗

𝜕𝑡
+ 1
2𝑎

𝜕 (𝑣𝑖𝑣𝑖)
𝜕𝑥 𝑗

= 𝑐𝑣 𝑗 + 𝜈∇2𝑣 𝑗 , (77)

𝜕𝑣
′
𝑖

𝜕𝑡
+ 1
2𝑎

𝜕

(
𝑣
′
𝑗
𝑣
′
𝑗

)
𝜕𝑥

′
𝑖

= 𝑐𝑣
′
𝑖 + 𝜈∇

′2𝑣
′
𝑖 . (78)

Multiplying Eqs. (77) and (78) by 𝑣′
𝑖
and 𝑣 𝑗 respectively, adding two

equations together, and taking the average on scale r lead to,

𝜕

〈
𝑣 𝑗𝑣

′
𝑖

〉
𝜕𝑡

+ 1
2𝑎

〈
𝑣
′
𝑖

𝜕 (𝑣𝑘𝑣𝑘 )
𝜕𝑥 𝑗

+ 𝑣 𝑗
𝜕

(
𝑣
′
𝑘
𝑣
′
𝑘

)
𝜕𝑥

′
𝑖

〉
= 𝑐

〈
𝑣 𝑗𝑣

′
𝑖 + 𝑣

′
𝑖𝑣 𝑗

〉
+ 𝜈∇2

〈
𝑣 𝑗𝑣

′
𝑖 + 𝑣

′
𝑖𝑣 𝑗

〉
,

(79)

with the following facts being used,

(i) Velocity 𝑣′
𝑖
is independent of x and 𝑣 𝑗 is independent of x′ .

(ii) Partial derivatives 𝜕/𝜕𝑥 𝑗 and 𝜕/𝜕𝑥
′
𝑖
can be replace by −𝜕/𝜕𝑟 𝑗

and 𝜕/𝜕𝑟𝑖 , respectively, where 𝜕/𝜕𝑥
′
𝑖
= 𝜕/𝜕𝑟 · 𝑟𝑖 and 𝜕/𝜕𝑥 𝑗 =

−𝜕/𝜕𝑟 · 𝑟 𝑗 , with unit vectors 𝑟 𝑗 = 𝑟 𝑗/𝑟 and 𝑟𝑖 = 𝑟𝑖/𝑟 .
(iii) 〈𝑣𝑘𝑣𝑘𝑣

′
𝑗
〉(r) = 〈𝑣′

𝑘
𝑣
′
𝑘
𝑣
𝑗
〉(−r) = −〈𝑣′

𝑘
𝑣
′
𝑘
𝑣
𝑗
〉(r) from symme-

try of third order tensor (see Eq. (2)).

From Eq. (79), the time evolution of second order correlation
tensor 𝑄𝑖 𝑗 reads

𝜕𝑄𝑖 𝑗

𝜕𝑡
=
1
2𝑎

(
𝜕𝑄𝑘𝑘𝑖

𝜕𝑟 𝑗
+
𝜕𝑄𝑘𝑘 𝑗

𝜕𝑟
𝑖

)
+ 2𝑐𝑄𝑖 𝑗 + 2𝜈∇2𝑄𝑖 𝑗 . (80)

The dynamics of 𝑄𝑖 𝑗 is dependent on the third order correlation
tensor 𝑄𝑘𝑘𝑖 , which is dependent on the fourth order correlation
tensor. Here we hit the closure problem.
Since the second order correlation function on large scale can be

modelled explicitly (see Xu 2022f, Eq. (110)-(112)), third and higher
order tensors can be obtained subsequently through the dynamic
equation on large scale (see Eq. (80)). Multiplying both sides of Eq.
(80) by 𝛿𝑖 𝑗 leads to the time evolution of second order correlation,

𝜕𝑅2
𝜕𝑡

= 2Γ (𝑟) + 2𝑐𝑅2 + 2𝜈
(
1
𝑟2

𝜕

𝜕𝑟

(
𝑟2
𝜕𝑅2
𝜕𝑟

))
, (81)

where the third order function Γ(𝑟) represents the energy trans-
fer across scales due to the nonlinear advection term in Eq. (70).
The energy transfer function Γ(𝑟) mimics the mass transfer func-
tion 𝑇𝑚 (𝑚ℎ , 𝑎) for inverse mass cascade in halo mass space (see Xu
2021a, Eq. (18)). It describes the removal of kinetic energy from a
small scale (Γ(𝑟) < 0) and the deposition of kinetic energy at a larger
scale (Γ(𝑟) > 0). From Eq. (80), we should have

Γ (𝑟) = 1
2𝑎

𝜕𝑄𝑘𝑘𝑖

𝜕𝑟𝑖
. (82)

From definition of third order correlation tensor (Eqs. (1) and (5)),

𝑄𝑘𝑘𝑖 = 𝑄 𝑗𝑘𝑖𝛿 𝑗𝑘 =

(
𝐴3𝑟

2 + 2𝐵3 + 3𝐷3
)
𝑟𝑖 = 𝑅31𝑟𝑖 , (83)

where 𝑅31 = 𝐿 (3,2) in Fig. 2. From Eq. (15),

𝜕𝑄𝑘𝑘𝑖

𝜕𝑟𝑖
=
1
𝑟2

(
𝑟2𝑅31

)
,𝑟

and Γ (𝑟) = 1
2𝑎𝑟2

(
𝑟2𝑅31

)
,𝑟
. (84)

Substitution of Γ (𝑟) back to Eq. (81), an important dynamic rela-
tion between second order correlation 𝑅2 (𝑟) and third order correla-
tion 𝑅31 (𝑟) are obtained. To derive an explicit expression for 𝑅31 (𝑟),
the model of 𝑅2 (𝑟) can be used here (see Xu 2022f, Eq. (112)),

𝑅2 (𝑟) =
〈
u · u

′〉
= 2𝑅 (𝑟) = 𝑎0𝑢2 exp

(
− 𝑟

𝑟2

) (
3 − 𝑟

𝑟2

)
. (85)

The comoving length scale 𝑟2=23.13Mpc/h is a constant and might
be related to the size of sound horizon 𝑟𝑠 (see Xu 2022f, Eq. (122)).
For a matter dominant model with 𝑎0𝑢2 ∝ 𝑎 (see Xu 2022f, Fig. 20),
we should have the time variation of 𝑅2 (𝑟),
𝜕𝑅2
𝜕𝑡

=
𝜕𝑅2
𝜕𝑎

𝐻𝑎 = 2𝑐𝑅2 = 𝐻𝑅2. (86)

Substitution of Eq. (86) back to Eq. (81) leads to the relation between
𝑅2 (𝑟) and 𝑅31 (𝑟),

1
𝑟2

(
𝑟2𝑅31

)
,𝑟
+ 2𝑎𝜈

(
1
𝑟2

𝜕

𝜕𝑟

(
𝑟2
𝜕𝑅2
𝜕𝑟

))
= 0, (87)

such that

𝐿 (3,2) (𝑟) = 𝑅31 (𝑟) = −2𝑎𝜈
𝜕𝑅2
𝜕𝑟

. (88)

The density correlation 𝜉 (𝑟) can be related to 𝑅2 (𝑟) as (see Xu
2022f, Eq. (120)),

𝜉 (𝑟) = − 1
(𝑎𝐻 𝑓 (Ω𝑚))2

[
1
𝑟2

𝜕

𝜕𝑟

(
𝑟2
𝜕𝑅2
𝜕𝑟

)]
=

𝑎0𝑢
2/(𝑟𝑟2)

(𝑎𝐻 𝑓 (Ω𝑚))2
· exp

(
− 𝑟

𝑟2

) [(
𝑟

𝑟2

)2
− 7

(
𝑟

𝑟2

)
+ 8

]
.

(89)

The energy transfer function Γ (𝑟) can be related to density corre-
lation 𝜉 (𝑟) and reads (using Eq. (89) and (84))

Γ (𝑟) = 𝜈 (𝑎𝐻 𝑓 (Ω𝑚))2 𝜉 (𝑟)

=
𝜈𝑎0𝑢

2

𝑟𝑟2
exp

(
− 𝑟

𝑟2

) [(
𝑟

𝑟2

)2
− 7

(
𝑟

𝑟2

)
+ 8

]
.

(90)

The third order total correlation function 𝑅31 (𝑟) can be related to
the density correlation 𝜉 (𝑟) as
1
𝑟2

(
𝑟2𝑅31

)
,𝑟

= 2𝑎𝜈𝜉 (𝑟) (𝑎𝐻 𝑓 (Ω𝑚))2 . (91)

From pair conservation Equation (see Xu 2022h, Eq. (47)), the mean
pairwise velocity satisfies

〈Δ𝑢𝐿〉 ≈ −2
3
𝐻𝑎𝑟𝜉 (𝑟, 𝑎) = −2𝐻𝑎

𝑟2

∫ 𝑟

0
𝜉 (𝑦) 𝑦2𝑑𝑦 (92)
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on large scale. Therefore, the mean pairwise velocity 〈Δ𝑢𝐿〉 can be
modelled as (using Eqs. (85) and (89)),

〈Δ𝑢𝐿〉 =
2

𝑎𝐻 𝑓 (Ω𝑚)2
𝜕𝑅2
𝜕𝑟

=
2𝑎0𝑢2

𝑎𝐻𝑟2 𝑓 (Ω𝑚)2
exp

(
− 𝑟

𝑟2

) (
𝑟

𝑟2
− 4

)
.

(93)

Using Eqs. (91) and (92), the relation between 𝑅31 (𝑟) and 〈Δ𝑢𝐿〉,

𝐿 (3,2) = 𝑅31 =
〈
𝑢2𝑢

′
𝐿

〉
= −𝜈𝐻𝑎2 𝑓 (Ω𝑚)2 〈Δ𝑢𝐿〉

= −2𝑎0𝑢
2𝑎𝜈

𝑟2
exp

(
− 𝑟

𝑟2

) (
𝑟

𝑟2
− 4

)
,

(94)

which provides a simple model for third order correlation 𝑅31.
Figure 8 plots the variation of |𝑅31 | with scale r at several different

redshifts z. Without loss of generality, the correlation function 𝑅31
can be conveniently modelled as (based on Eq. (94))

𝐿 (3,2) = 𝑅31 =
〈
𝑢2𝑢

′
𝐿

〉
= 𝑎3𝑢

3 exp
(
− 𝑟

𝑟2

) (
𝑟

𝑟2
− 𝑏3

)
, (95)

where coefficients 𝑎3 and 𝑏3 are obtained by fitting to the curves in
Fig. 8. The viscosity 𝜈(𝑎) can be related to 𝑎3 and 𝑎0 (Eq. (94)),

𝑎3 = −2𝑎0𝑎𝜈
𝑢𝑟2

or 𝛼𝜈 = − 𝜈

𝑢0𝑟2
=

𝑎3𝑢

2𝑎0𝑎𝑢0
, (96)

i.e. the artificial viscosity in adhesion model (coefficient for momen-
tum transport) is proportional to the typical velocity 𝑢 and length
scale 𝑟2 (𝜈(𝑎) ∝ 𝑢𝑟2, just like the viscosity of ideal gas, where 𝑟2 is
the mean free path).
In the standard K-epsilon turbulence model, the eddy viscosity is

dependent on the kinetic energy and the rate of dissipation of kinetic
energy. In SG-CFD for dark matter flow, the effective viscosity 𝜈 (𝑎)
on large scale can also be related to the kinetic energy and rate of
energy production in SG-CFD,

𝜈 (𝑎) = −1
𝐻𝑎2 𝑓 (Ω𝑚)2

𝑅31
〈Δ𝑢𝐿〉

(from Eq. (94))

𝜈 (𝑎) = 𝑎3𝑟2
3𝑎0𝑢𝑎𝑡

(
3𝑢2/2

)2
𝜀𝑢

≈ 𝛽𝜈𝑎
1/2

(
3𝑢20/2

)2
𝜀𝑢

∼ 𝑎1/2,

(97)

where 𝜀𝑢 = −1.5𝑑𝑢2/𝑑𝑡 ≈ −1.5𝑢20/𝑡0 is the rate of energy cascade
and 3𝑢2/2 is the specific kinetic energy of entire system. The constant
𝛽𝜈 ≈ 4.9 can be obtained from Fig. 12. By contrast, 𝛽𝜈 ≈ 0.1 in the
standard K-epsilon turbulence model for incompressible flow.
The negative effective viscosity is a direct result of inverse energy

cascade (Eq. (97)), where 𝜀𝑢 < 0, i.e. the kinetic energy is cascaded
from smaller to larger mass sales. Plot of the effective viscosity in
terms of coefficient 𝛼𝜈 in Eq. (96) is presented in Fig. 12.
The same model for 𝐿 (3,2) in Eq. (95) can be generalized to high

order correlation functions. Here we just present the models for the
other two correlation functions along the diagonal in Fig. 2,

𝑅(4,3) =
〈
𝑢2u · u

′〉
= 𝑎4𝑢

4 exp
(
− 𝑟

𝑟2

) (
𝑏4 −

𝑟

𝑟2

)
, (98)

𝐿 (5,4) =
〈
𝑢4𝑢

′
𝐿

〉
= 𝑎5𝑢

5 exp
(
− 𝑟

𝑟2

) (
𝑟

𝑟2
− 𝑏5

)
. (99)

Figures 8, 9, and 10 plot the variation of correlation functions
𝐿 (3,2) , 𝑅(4,3) , and 𝐿 (5,4) with scale r at different redshifts z. The
model in Eqs. (95), (98) and (99) are also plotted in the same plots
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Figure 8. The variation of two-point third order velocity correlation function
𝑅31 = 𝐿(3,2) with scale r at different redshifts z (normalized by 𝑢3). The
model in Eq. (95) is also plotted in the same plot as dash lines.
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Figure 9.The variation of two-point fourth order velocity correlation function
𝑅(4,3) with scale r at different redshifts z (normalized by𝑢4).Model for𝑅(4,3)
is presented in Eq. (98).

as dash lines. Figure 11 plots the variation of correlation functions
𝑅(2,1) , 𝑅(4,3) , and 𝑅(6,5) with scale r at z=0. The dash line plots
the model of 𝑅(4,3) from Eq. (98). Figure 12 plots the variation of
coefficients 𝑎𝑚 and 𝑏𝑚 (m=3, 4, 5) for correlations 𝐿 (3,2) (Eq. (95)),
𝑅(4,3) (Eq. (98)) and 𝐿 (5,4) (Eq. (99)) with scale factor a.
It can be easily confirmed that 𝐿 (3,2) ∝ 𝑎5/2, 𝐿 (5,4) ∝ 𝑎7/2 and

𝑅(4,3) ∝ 𝑎2. The viscosity coefficient 𝜈(𝑎) = −𝛼𝜈𝑢0𝑟2 ∝ 𝑎1/2,
where 𝑢0 = 354.61𝑘𝑚/𝑠 and 𝑟2 ≈ 23.13𝑀𝑝𝑐/ℎ.
In principle, the same model can be generalized to any order

(similar to the dynamic relation in Eq. (94)),

𝐿 (𝑞+1,𝑞) =
〈
𝑢𝑞𝑢

′
𝐿

〉
∝ 𝑢𝑞

〈
𝑢
′
𝐿

〉
∝
(
𝜈𝐻𝑎2

)𝑞/2
𝐿 (1,0) ∝ 𝑎 (𝑞+3)/2.

(100)
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Figure 10. The variation of two-point fifth order velocity correlation function
𝐿(5,4) with scale r at different redshifts z (normalized by 𝑢5). The model in
Eq. (99) is also plotted in the same plot as dash lines.
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Figure 11. The variation of correlation functions 𝑅(2,1) , 𝑅(4,3) and 𝑅(6,5)
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line shows the model from Eq. (98) for comparison.

The generalized dynamic relations (similar to Eq. (88)) between
correlations of different order reads

𝐿 (𝑞+1,𝑞) ∝ −2𝑎𝜈
𝜕𝑅(𝑞,𝑞−1)

𝜕𝑟
, (101)

and

𝑅(𝑞,𝑞−1) =
〈
𝑢𝑞−2u · u

′〉
∝ 𝑢𝑞−2

〈
u · u

′〉
∝
(
𝜈𝐻𝑎2

) (𝑞−2)/2
𝑅(2,1) ∝ 𝑎𝑞/2. (102)
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Figure 12. The variation of coefficients 𝑎𝑚 and 𝑏𝑚 (m=3, 4, 5) for velocity
correlation functions 𝐿(3,2) (Eq. (95)), 𝑅(4,3) (Eq. (98)) and 𝐿(5,4) (Eq.
(99)) with scale factor a. it can be confirmed that 𝑎0𝑢2 ∝ 𝑎, 𝑎3𝑢3 ∝ 𝑎5/2,
𝑎4𝑢

4 ∝ 𝑎2 and 𝑎5𝑢5 ∝ 𝑎7/2. The viscosity coefficient 𝜈 (𝑎) = −𝛼𝜈𝑢0𝑟2 ∝
𝑎1/2, where 𝑢0 = 354.61𝑘𝑚/𝑠 and 𝑟2 ≈ 23𝑀𝑝𝑐/ℎ. The negative viscosity
reflects the inverse energy cascade from smaller to larger scales.

6.2 Dynamic relations between density correlation, mean
density, and velocity dispersion

Just like the dynamic relations between third and second order statis-
tics, the relation between second and first order statistics can be
obtained by multiplying both sides of dynamic Eqs. (77) and (78)
with unit vectors 𝑟 𝑗 = 𝑟 𝑗/𝑟 and 𝑟𝑖 = 𝑟𝑖/𝑟, respectively (r = x′ − x),

𝑟 𝑗
𝜕𝑣 𝑗

𝜕𝑡
− 1
2𝑎

𝜕 (𝑣𝑖𝑣𝑖)
𝜕𝑟

= 𝑐𝑢𝐿 − 𝜈 𝜕
𝜕𝑟

(
𝜕𝑣𝑖

𝜕𝑥𝑖

)
, (103)

𝑟𝑖
𝜕𝑣

′
𝑖

𝜕𝑡
+ 1
2𝑎

𝜕

(
𝑣
′
𝑗
𝑣
′
𝑗

)
𝜕𝑟

= 𝑐𝑢
′
𝐿 + 𝜈 𝜕

𝜕𝑟

©­«
𝜕𝑣

′
𝑗

𝜕𝑥
′
𝑗

ª®¬ . (104)

Subtracting two equations and taking the average lead to,〈
𝑟𝑖
𝜕𝑣

′
𝑖

𝜕𝑡
− 𝑟 𝑗

𝜕𝑣 𝑗

𝜕𝑡

〉
+ 1
𝑎

𝜕
〈
𝑢2

〉
𝜕𝑟

= 𝑐 〈Δ𝑢𝐿〉 + 2𝜈
𝜕 〈𝜃〉
𝜕𝑟

, (105)

where the pairwise velocity 〈Δ𝑢𝐿〉 = 〈𝑢′
𝐿
− 𝑢𝐿〉 = 〈𝑣′

𝑖
𝑟𝑖 − 𝑣 𝑗𝑟 𝑗 〉.

The velocity dispersion 〈𝑢2〉 and divergence 〈𝜃〉 on a given scale r
are defined as〈
𝑢2

〉
=
1
2

〈
|u|2 +

���u′
���2〉 and 〈𝜃〉 = 〈∇ · u〉 = 1

2

〈
𝜃 + 𝜃

′〉
. (106)

On large scale, the over-density can be related to divergence as
(see Xu 2022f, Eq. (119)),

𝛿 ≈ 𝜂 = − ∇ · u
𝑎𝐻 𝑓 (Ω𝑚)

= − 𝜃

𝑎𝐻 𝑓 (Ω𝑚)
, (107)

where 𝜂 (x) = log (1 + 𝛿) ≈ 𝛿 is the log-density field. Function
𝑓 (Ω𝑚) is dependent on the matter content Ω𝑚 and 𝑓 (Ω𝑚 = 1) = 1
for matter dominant model.
From identity in Appendix Eq. (A50) with 𝑝 = 1 and 𝑞 = 0 such

that 〈𝑢′𝑠〉 = 〈𝑢′
𝐿
𝑟𝑠〉 and taking the divergence on both sides leads to

the relation between divergence 〈𝜃〉 and pairwise velocity 〈Δ𝑢𝐿〉 on
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any scale r (using identity in Appendix Eq. (A6) and product rule for
differentiation):

〈𝜃〉 = 〈∇ · u〉 = 1
2𝑟2

(
𝑟2 〈Δ𝑢𝐿〉

)
,𝑟
. (108)

This is an important kinematic relation good for entire range of scales.
With Eq. (92) for 〈Δ𝑢𝐿〉 and Eq. (107) for 𝛿, the divergence on scale
r can be finally written as,

〈𝜃〉 = 〈∇ · u〉 = −𝑎𝐻 𝑓 (Ω𝑚) 〈𝛿〉 = −𝐻𝑎𝜉 (𝑟) . (109)

Interestingly, the mean overdesnity at two locations separated by
a comoving scale r can be related to the density correlation 𝜉 (𝑟) on
the same scale via a dynamic relation, i.e.

𝑓 (Ω𝑚) 〈𝛿〉 = 𝑓 (Ω𝑚)
〈
𝛿 + 𝛿

′〉
/2 = 𝜉 (𝑟) =

〈
𝛿𝛿

′〉
, (110)

where the first and second order statistics are connected via dynamics
on large scale (Eq. (107)), the kinematic relation from Eq. (108), and
the pair conservation equation (92).
Figure 13 plots the variation of both 〈𝛿〉 and 〈𝛿𝛿′〉 with scale r in a

matter-dominant N-body simulation (Section 2), where 𝑓 (Ω𝑚) = 1
and 〈𝛿〉 ≈ 〈𝛿𝛿′〉 on large scale. With model of 𝜉 (𝑟) proposed in Eq.
(89) (see Xu 2022f, Eq. (121)), the variation of 〈𝛿〉 on large scale
should be known, where 〈𝛿〉 < 0 (the low density void region) for
scales 𝑟 > 30𝑀𝑝𝑐/ℎ (see Fig. 13).
Next, velocity dispersion on any scale of 𝑟 can be related to the

overdensity 〈𝛿〉 on the same scale. In the linear regime, by neglecting
the second order advection and viscous term, Eq. (70) reduces to
Zeldovich approximation 𝜕v/𝜕𝑡 = 𝑐 (𝑎) v in Eq. (71). For velocity
pair at x and x′ separated by r, Eq. (71) leads to (multiplying 𝑟𝑖)

𝑟𝑖
𝜕𝑣𝑖

𝜕𝑡
= 𝑐 (𝑎) 𝑟𝑖𝑣𝑖 = 𝑐 (𝑎) 𝑢𝐿

and

𝑟𝑖
𝜕𝑣

′
𝑖

𝜕𝑡
= 𝑐 (𝑎) 𝑟𝑖𝑣

′
𝑖 = 𝑐 (𝑎) 𝑢

′
𝐿 .

(111)

With Eqs. (111) and (109) for 〈𝜃〉, the dynamic Eq. (105) gives

𝜕
〈
𝑢2

〉
𝜕𝑟

= 2𝜈𝑎
𝜕 〈𝜃〉
𝜕𝑟

= −2𝜈𝑎2𝐻 𝑓 (Ω𝑚)
𝜕 〈𝛿〉
𝜕𝑟

= −2𝜈𝐻𝑎2 𝜕𝜉 (𝑟)
𝜕𝑟

.

(112)

The velocity dispersion 〈𝑢2〉 on scale r can be related to the density
correlation on the same scale as,〈
𝑢2

〉
= 3𝑢2 − 2𝜈𝐻𝑎2 𝑓 (Ω𝑚) 〈𝛿〉 = 3𝑢2 − 2𝜈𝐻𝑎2𝜉 (𝑟) ,

or equivalently, a reduced velocity dispersion is〈
𝑢2

〉
3𝑢2

− 1 = −2𝜈𝐻𝑎
2𝜉 (𝑟)
3𝑢2

= −2𝜈𝐻𝑎
2

3𝑢2
𝑓 (Ω𝑚) 〈𝛿〉 ,

such that 〈𝑢2〉 can be analytically modelled (from Eq. (89)) as

〈𝑢2〉 = 3𝑢2 − 2𝜈
𝐻 𝑓 (Ω𝑚)2

𝑎0𝑢
2

𝑟𝑟2
· exp

(
− 𝑟

𝑟2

) [(
𝑟

𝑟2

)2
− 7

(
𝑟

𝑟2

)
+ 8

]
,

(113)

where the overdensity 〈𝛿〉 on scale r is proportional to a reduced
velocity dispersion on the same scale. For 𝑟 → ∞, 〈𝑢2〉 = 3𝑢2 and
〈𝛿〉 = 0 (see Xu 2022h, Fig. 20).
In practice, the particle overdensity in N-body simulation can

be obtained using Delaunay tessellation (Xu 2022h). Figure 13 also
plots the variation of reduced velocity dispersion

〈
𝑢2

〉
/
(
3𝑢2

)
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Figure 13. The variation of density correlation 𝜉 (𝑟 ) = 〈𝛿𝛿′ 〉 and average
over-density 〈𝛿 〉 = 〈𝛿 + 𝛿

′ 〉/2 with scale r from N-body simulation at
z=0. A relation between first and second order statistics 〈𝛿 〉 ≈ 〈𝛿𝛿′ 〉 on
large scale (Eq. (110)) can be identified. The plot also shows the relation
between a reduced velocity dispersion and density correlation on large sale,
i.e. 〈𝑢2 〉/(3𝑢2) − 1 ∝ 𝜉 (𝑟 ) ∝ 〈𝛿 〉 from Eq. (113). The lower overdensity
leads to the smaller velocity dispersion.

scale r that is proportional to density correlation ormean overdensity,
i.e. ∝ 𝜉 (𝑟) or ∝ 〈𝛿〉 from Eq. (113).
Fianlly, an equation for the evolution of transverse velocity v𝑇

may be obtained. On large scale at a given scale r, using the product
rule of differentiation for 𝑢𝐿 = 𝑣𝑖𝑟𝑖 and Eq. (111),
𝜕𝑢𝐿

𝜕𝑡
= 𝑣𝑖

𝜕𝑟𝑖

𝜕𝑡
+ 𝑟𝑖

𝜕𝑣𝑖

𝜕𝑡
= 𝑣𝑖

𝜕𝑟𝑖

𝜕𝑡
+ 𝑐𝑟𝑖𝑣𝑖 = 𝑣𝑖

𝜕𝑟𝑖

𝜕𝑡
+ 𝑐𝑢𝐿 . (114)

From Eq. (93) for pairwise velocity 〈Δ𝑢𝐿〉, we would expect that
𝜕 〈𝑢𝐿〉
𝜕𝑡

=

(
1 − 𝜕 ln ¤𝑎

𝜕 ln 𝑎

)
𝐻 〈𝑢𝐿〉 . (115)

Combining Eq. (115) with Eq. (114), we should have〈
𝑣𝑖
𝜕𝑟𝑖

𝜕𝑡

〉
=

[(
1 − 𝜕 ln ¤𝑎

𝜕 ln 𝑎

)
𝐻 − 𝑐 (𝑎)

]
〈𝑢𝐿〉 . (116)

Use the definition of transverse velocity in Eq. (10) and Eq. (111),〈
𝜕v𝑇
𝜕𝑡

· r̂
〉
= −

〈
v · 𝜕r̂

𝜕𝑡

〉
, (117)

which is the acceleration of transverse velocity projecting along the
r̂ vector (centripetal acceleration).
On large scale, the (first order) peculiar velocity satisfies (Zel-

dovich approximation in Eq. (71)) 𝜕v/𝜕𝑡 = 𝑐 (𝑎) v, while the trans-
verse velocity v𝑇 should satisfy,〈
v · 𝜕r̂

𝜕𝑡

〉
= −

〈
𝜕v𝑇
𝜕𝑡

· r̂
〉

=

[(
1 − 𝜕 ln ¤𝑎

𝜕 ln 𝑎

)
𝐻 − 𝑐 (𝑎)

]
〈v · r̂〉 ≈ 𝐻 〈𝑢𝐿〉 ∝ 𝑎0.

(118)

6.3 Exponential and power-law velocity correlations on large
and small scales

The exponential function was proposed for second order transverse
velocity correlation 𝑇(2,0) ∝ 𝑎𝑒−𝑟/𝑟2 on large scale (see Xu 2022f,
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Figure 14. The variation of velocity dispersion 𝜎2𝑢 (𝑟 ) (kinetic energy con-
tained in scales above r) with scale r at different redshifts z. Function 𝜎2𝑢 (𝑟 ) is
obtained from N-body simulation using Eq. (119). Approximation of 𝜎2𝑢 (𝑟 )
by correlations (Eq. (121)) is also presented as solid lines for comparison.

Eq. (110)). This is not a coincidence and must be deeply rooted in
the dynamics and kinematics on large scale, which is demonstrated
in this section.
We first look at the distribution of kinetic energy on different scales

via one-dimensional variance of smoothed velocity (the bulk flow)
using a spherical filter of radius r, i.e. velocity dispersion functions
𝜎2𝑢 (𝑟) and 𝜎2

𝑑
(𝑟) for kinetic energy contained in all scales above or

below r (see Xu 2022f, Eqs. (27) and (29)),

𝜎2𝑢 (𝑟) = 1
3

∫ ∞

−∞
𝐸𝑢 (𝑘)𝑊 (𝑘𝑟)2 𝑑𝑘

and

𝜎2
𝑑
(𝑟) = 1

3

∫ ∞

−∞
𝐸𝑢 (𝑘)

[
1 −𝑊 (𝑘𝑟)2

]
𝑑𝑘,

(119)

where𝑊 (𝑥 ≡ 𝑘𝑟) is a window function. For a tophat spherical filter,
the window function𝑊 (𝑥) reads

𝑊 (𝑥) = 3
𝑥3

[sin (𝑥) − 𝑥 cos (𝑥)] = 3 𝑗1 (𝑥)
𝑥

, (120)

where 𝑗1 (𝑥) is the first order spherical Bessel function of first kind.
On large scale, dispersion function 𝜎2𝑢 (𝑟) is well approximated by

𝑅(2,1) (𝑟) and 𝑇(2,0) (𝑟) as

𝜎2𝑢 (𝑟) ≈ 1
4

[
𝑅(2,1) (𝑟) + 𝑇(2,0) (𝑟)

]
, (121)

which is amanifestation of energy equipartition including three trans-
lational degrees of freedom in total correlation 𝑅(2,1) and one ro-
tational degree of freedom in transverse correlation 𝑇(2,0) . Corre-
lations on large scale characterize the motion of halos. For pair of
halos, transverse motion is dominant. The longitudinal correlation is
relatively small on large scale and can be neglected. Figure 14 plots
the variation of velocity dispersion 𝜎2𝑢 (𝑟) at different redshifts z.
Function 𝜎2𝑢 (𝑟) is obtained directly from N-body simulation (also
see Xu 2022f, Fig. 9). The approximation of 𝜎2𝑢 (𝑟) by Eq. (121) is
also presented as solid lines with good agreement.
While correlations on small scale reflect the motion of particles

in the same halo such that longitudinal correlation is comparable to

transverse correlation (see Xu 2022f, Figs. 3 and 4). Therefore, the
velocity dispersion function 𝜎2𝑢 (𝑟) can be approximated by

𝜎2𝑢 (𝑟) ≈ 1
5

[
𝑅(2,1) (𝑟) + 𝑇(2,0) (𝑟) + 𝐿 (2,0) (𝑟)

]
, (122)

with an additional degree of freedom from longitudinal correlation.
When combined with kinematic relations for constant divergence
flow on small scale (see Xu 2022f, Eqs. (138)-(141)), Equation (122)
can be used to derive the power-law correlation functions on small
scale, i.e. 𝜎2

𝑑
(𝑟) ∝ 𝑟𝑛. Equation for exponent 𝑛 of power-law can be

easily obtained as,

(10 + 3𝑛) (4 + 𝑛) (6 + 𝑛) = 15 · 2𝑛+4, (123)

which gives 𝑛 ≈ 1/4 and provides the dynamic and kinematic origin
of the "one-fourth" law for constant divergence flow on small scale
(see Xu 2022f, Section 5.2).
Next, the total enstrophy contained in all scales below r can be

related to third order correlation function 𝐿 (3,2) (𝑟). From dynamic
relations on large scale (Eq. (88)) and the Fourier transform of total
correlation 𝑅(2,1) (𝑟),

𝑅(2,1) (𝑟) = 2
∫ ∞

0
𝐸𝑢 (𝑘) sin (𝑘𝑟)

𝑘𝑟
𝑑𝑘,

the Fourier transform of 𝐿 (3,2) (𝑟) can be obtained as,

𝐿 (3,2) (𝑟) = −2𝑎𝜈
𝜕𝑅(2,1)
𝜕𝑟

= 4𝑎𝜈
∫ ∞

0
𝐸𝑢 (𝑘) 𝑗1 (𝑘𝑟) 𝑘𝑑𝑘,

(124)

With 𝑗1 (𝑥) ≈ 𝑥/3 − 𝑥3/30 for small 𝑥 = 𝑘𝑟, we can write (using
definition in Eq. (119))

𝐿 (3,2) (𝑟)
𝑎𝑟

≈ 20
3
𝜈

[
1
𝑟2

∫ ∞

0
𝐸𝑢 (𝑘)

(
1 −𝑊2 (𝑘𝑟)

)
𝑑𝑘

]
=
20
3
𝜈
𝜎2
𝑑
(𝑟)
𝑟2︸  ︷︷  ︸
1

,

(125)

where term 1 represents the mean square strain rate (or velocity
gradient) below scale 𝑟 . Therefore, the RHS term (multitplied by the
viscosity) represents the rate of energy cascaded at scale 𝑟 .
In addition, the structure function 𝑆𝑥2 (𝑟) is introduced for enstro-

phy in our previous work (see Xu 2022f, Eq. (73)),

𝑆𝑥2 (𝑟)
2𝑟2

=
1
3

∫ ∞

0
𝐸𝑢 (𝑘) 𝑘2𝑊2 (𝑘𝑟) 𝑑𝑘, (126)

which represents the one-dimensional enstrophy contained in all
scales above r. With both Eqs. (125) and (126), the third order cor-
relation 𝐿 (3,2) (𝑟) is proportional to 𝑆𝑥2 (𝑟),

𝐿 (3,2) (𝑟)
𝑎𝑟

≈ 4𝜈
𝑆𝑥2 (𝑟)
2𝑟2

, (127)

which represents the rate of an inverse energy transfer from scales
below r to scales above r. Figure 15 plots the variation of both
functions in Eq. (127) with scale r at different z, where 𝐿 (3,2) (𝑟) can
be related to the enstrophy contained in scales above r.
The rate of energy transfer can also be expressed in terms of

kinetic energy 𝜎2𝑢 (𝑟) divided by the turnaround time (𝑎𝑟) /𝑢 on
scale r, where 𝑢2 is the one-dimensional velocity dispersion of entire
system. Finally, we can write the relations (with Eq. (121))

−
𝐿 (3,2) (𝑟)

𝑎𝑟
≈ 𝛼𝑟

𝜎2𝑢 (𝑟)
(𝑎𝑟) /𝑢 =

𝛼𝑟

4

[
𝑅(2,1) (𝑟) + 𝑇(2,0) (𝑟)

] 𝑢

𝑎𝑟
, (128)

where 𝛼𝑟 is a proportional constant and 𝐿 (3,2) (𝑟) < 0.With dynamic
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Figure 15. Comparison between structure function 𝑆𝑥
2 (𝑟 )/(2𝑟

2) and third
order correlation function 𝐿(3,2) (𝑟 )/𝑟 . On large scale, 𝐿(3,2) (𝑟 ) is related
to the enstrophy contained in all scales above r or the rate of energy transfer
from scale below r to scale above r.

relations (Eq. (88)) on large scale, Eq. (128) becomes

8𝜈𝑎
𝛼𝑟𝑢

𝜕𝑅(2,1)
𝜕𝑟

=

[
𝑅(2,1) (𝑟) + 𝑇(2,0) (𝑟)

]
. (129)

Using the kinematic relation between 𝑅(2,1) and 𝑇(2,0) in Eq. (A19)
(or seeXu2022f, Eq. (47)) for second order correlations on large scale
for irrotational flow, the exponential form of transverse correlation
function can be fully recovered, where

𝑇(2,0) = 𝐶𝑜𝑛𝑠𝑡 · exp
(
− 𝑟

𝑟2

)
with 𝑟2 = − 8𝜈𝑎

𝛼𝑟𝑢
. (130)

Comparing with Eq. (96), we found constant 𝛼𝑟 ≡ 4𝑎3/𝑎0 ∝ 𝑎3/4.

7 DYNAMIC RELATIONS ON SMALL SCALE

7.1 Dynamic equations for velocity on small scale

To author’s knowledge, self-closed equations for velocity evolution
on small scale do not exist. In this section, we will first formulate the
self-close equations for velocity. These equations are subsequently
applied to derive dynamic relations on small scale.

7.1.1 Self-closed dynamic equations for velocity

On small scale, the flow is of constant divergence, i.e. ∇ · v = 𝜃 .
We focus on the momentum equation (Jeans’ equation) for peculiar
velocity in comoving coordinate,

𝜕v
𝜕𝑡

+ 1
𝑎

v · ∇v + 𝐻v = − 1
𝑎

∇ · p
𝜌

− 1
𝑎
∇𝜙, (131)

where p = 𝜌𝝈2 is the pressure tensor, 𝝈2 is the velocity dispersion
tensor, and 𝜙 is the gravitational potential.
It is well known that this equation is not closed, and closuremust be

developed. Starting from the halo-based description of entire system,
peculiar velocity can be decomposed into velocity due to the motion

of halos (vℎ) and velocity due to the motion in halos, i.e. intra-halo
motion v𝑣 (also see Xu 2021f, Eq. (14)),

v (x, 𝑡) = vℎ (xℎ , 𝑡) + v𝑣 (r, 𝑡) , (132)

where xℎ is the center of mass of a given halo and r is the vector
relative to the halo center such that particle position x = xℎ + r. All
particles in the same halo should have the same halo velocity vℎ . The
spatial variation of vℎ is on a much larger length scale, compared
to the variation of v𝑣 . Therefore, vℎ is relatively a constant on halo
scale. The motion in halo (velocity v𝑣 ) can be further decomposed
into the radial flow and azimuthal flow, where polar flow can be
neglected (see Xu 2022e, Fig. 2),

v𝑣 = v𝑟 + v𝜑 . (133)

In spherical coordinate, the mean (peculiar) radial flow and az-
imuthal flow for virilized halos are obtained as (see solutions for
small halos with low peak height 𝜈) (see Xu 2022e, Section 3.4),

v𝑟 = −𝐻𝑎r, v𝜑 = 𝝎ℎ × r, and 𝝎ℎ =
(
∇ × v𝜑

)
/2. (134)

where 𝝎ℎ is the angular velocity of that halo and should be the same
for all particles in the same halo. Obviously, the radial and azimuthal
flow have the following properties:

∇v𝑟 = −𝐻𝑎∇r = −𝐻𝑎I, ∇v𝜑 +
(
∇v𝜑

)𝑇
= 0,

∇ × v𝑟 = 0, and v𝜑 = r · ∇v𝜑 ,
(135)

where I is an identity matrix and ∇v𝜑 is antisymmetric. It can be
easily confirmed that the radial flow satisfies (from Eq. (135))

𝜕v𝑟
𝜕𝑡

+ 1
𝑎

v𝑟 · ∇v𝑟 + 𝐻v𝑟 =
𝜕v𝑟
𝜕𝑡

, (136)

and the azimuthal flow satisfies (from Eq. (134))

𝐻v𝜑 + 1
𝑎
𝝎ℎ × v𝑟 = 0. (137)

Radial and azimuthal flow in Eq. (134) also satisfy the following
three equations,

1
𝑎

v𝜑 · ∇v𝑟 + 𝐻v𝜑 = 0 (from Eq. (135)), (138)

1
𝑎

v𝑟 · ∇v𝜑 =
1
𝑎
𝝎ℎ × v𝑟 (from Eq. (135)), (139)

𝜕v𝜑
𝜕𝑡

+ 1
𝑎

v𝜑 · ∇v𝜑 =
1
𝑎
𝝎ℎ × v𝜑 (Newton’s second law). (140)

By adding Eqs. (136), (138), (139) and (140) together, the equation
for intra-halo motion v𝑣 is,

𝜕v𝑣
𝜕𝑡

+ 1
𝑎

v𝑣 · ∇v𝑣 + 𝐻v𝑣 =
𝜕v𝑟
𝜕𝑡

+ 1
𝑎
𝝎ℎ × v𝑣

=
𝜕v𝑟
𝜕𝑡

+ 1
2𝑎

(∇ × v𝑣 ) × v𝑣 .
(141)

The motion of halo vℎ is spatially varying on a much larger scale
than the size of halo, i.e. the motion of halo vℎ can be treated as a
constant on halo scale such that
1
𝑎

v𝑣 · ∇vℎ ≈ 0 and
1
𝑎

vℎ · ∇vℎ ≈ 0. (142)

In addition, using the identity for two vectors A and B,

A × (∇ × B) = A ·
[
(∇B)𝑇 − ∇B

]
, (143)
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halo velocity vℎ satisfies (∇v𝜑 is antisymmetric and Eq. (135))

vℎ · ∇v𝜑 = 𝝎ℎ × vℎ and
1
𝑎

vℎ · ∇v𝑟 + 𝐻vℎ = 0. (144)

Equation for vℎ is finally written as (using Eqs. (134) and (144)),
𝜕vℎ
𝜕𝑡

+ 1
𝑎

vℎ · ∇v𝑣 + 𝐻vℎ =
𝜕vℎ
𝜕𝑡

+ 1
𝑎

vℎ · ∇v𝜑

=
𝜕vℎ
𝜕𝑡

+ 1
2𝑎

(
∇ × v𝜑

)
× vℎ .

(145)

Adding Eq. (141) for intra-halo motion v𝑣 and Eqs. (142) and
(145) for motion of halo vℎ together with the relation ∇ × v𝜑 =

∇ × v𝑣 = ∇ × v, the dynamic equation for total particle velocity v
reads,
𝜕v
𝜕𝑡

+ 1
𝑎

v · ∇v + 𝐻v =
𝜕v𝑟
𝜕𝑡

+ 𝜕vℎ
𝜕𝑡

+ 1
2𝑎

(∇ × v) × v. (146)

With ∇×vℎ = 0 and ∇×v𝑟 = 0, both v𝑟 and vℎ are of irrotational
nature that can be expressed as gradient of a scalar field (velocity
potential) such that

𝜕v𝑟
𝜕𝑡

+ 𝜕vℎ
𝜕𝑡

= − 1
𝑎

(
𝜕∇𝜙𝑟
𝜕𝑡

+ 𝜕∇𝜙ℎ
𝜕𝑡

)
= − 1

𝑎
∇ 𝜕

𝜕𝑡
(𝜙𝑟 + 𝜙ℎ) = − 1

𝑎
∇𝜙∗,

(147)

where 𝜙𝑟 and 𝜙ℎ are the velocity potential for intra-halo radial flow
v𝑟 and halo motion vℎ and total potential 𝜙∗ = 𝜕 (𝜙𝑟 + 𝜙ℎ)/𝜕𝑡.
The final complete set of self-closed dynamic equations reads,

∇ · v = 𝜃 (𝑡)
and
𝜕v
𝜕𝑡

+ 1
𝑎

v · ∇v + 𝐻v = − 1
𝑎
∇𝜙∗ + 𝛾 1

𝑎
(∇ × v) × v︸        ︷︷        ︸

1

,
(148)

where we have four equations for velocity v and potential 𝜙∗ with a
constant (in space) divergence 𝜃 = −3𝐻𝑎/2 (see Eq. (61)).
Here coefficient 𝛾 is dependent on the scale and halo properties

(virialized or not). For velocity on small scale 𝛾 = 1/2 (comparing
Eqs. (148) and (146)), and in principle, 𝛾 can be determined from
simulation (Fig. 16). Term 1 stands for the centripetal acceleration
from pressure gradient due to velocity dispersion (Eq. (131)). With
appropriate boundary and initial conditions, Eq. (148) is self-closed
and can be numerically solved for velocity field v and potential field
𝜙∗. Using identity

∇ · (v ⊗ v) = v (∇ · v) + v · ∇v, (149)

and identity in Eq. (73), Eq. (148) can be equivalently transformed
to other forms for the convenience of numerical solution,
𝜕v
𝜕𝑡

+ 1
𝑎
(1 − 𝛾) v · ∇v + 𝛾

2𝑎
∇ (v · v) + 𝐻v = − 1

𝑎
∇𝜙∗, (150)

and
𝜕v
𝜕𝑡

+ 1
𝑎
(1 − 𝛾) ∇ · (v ⊗ v)

+ 𝛾

2𝑎
∇ (v · v) +

[
𝐻 − 1

𝑎
(1 − 𝛾) 𝜃

]
v = − 1

𝑎
∇𝜙∗.

(151)

Please note that by setting 𝛾 = 1 and

∇𝜙∗ = −3
2
𝐻𝑎v − 𝑎𝜈∇2v = −3

2
𝐻𝑎v − 𝑎𝜈∇ (∇ · v) , (152)

Eqs. (150) and (151) reduces to the dynamic equation on large scale
(Eq. (76)). By setting parameter 𝛾 = 0, Eq. (150) reduces to the
inviscid Euler equation.
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Figure 16. The value of parameter 𝛾 on different scales determined by Eq.
(153) from N-body simulation at z=0. Small shift from 𝛾 = 1 on large scale
(yellow line) to 𝛾 = 0.5 on small scale (blue line) can be clearly identified.
The value of 𝛾 = 1 indicates the irrotational flow on large scale, while 𝛾 = 0.5
on small scale corresponds to the constant divergence flow on small scale.

The equation for vorticity field 𝝎 = ∇ × v can be obtained by
taking the curl on both sides of Eq. (148) and (150),

𝜕𝝎

𝜕𝑡
+ 1
𝑎
∇ × (v · ∇v) + 𝐻𝝎︸                              ︷︷                              ︸

𝐿𝐻𝑆

= 𝛾
1
𝑎
∇ × [(∇ × v) × v]︸                    ︷︷                    ︸

𝑅𝐻𝑆

, (153)

or
𝜕𝝎

𝜕𝑡
+ 𝐻𝝎 =

1
𝑎
(𝛾 − 1) ∇ × (v · ∇v) . (154)

For 𝛾 = 1, vorticity simply decays with time and there is no source
to generate vorticity on large scale. While for 𝛾 < 1, vorticity is con-
tinuously generated on small scale (see Eq. (162)). Both Equations
can be used to determine the value of 𝛾 from N-body simulation.
Figure 16 plots the variation of 𝛾 with scale (the grid size Δ𝑥). The

particle velocity field was projected onto grids using Cloud-in-Cell
(CIC) (Hockney & Eastwood 1988) with a given grid size of Δ𝑥,
or equivalently Δ𝑥 · Δ𝑛 = 𝐿, where 𝐿 = 239.5𝑀𝑝𝑐/ℎ is the size
of simulation domain. The LHS and RHS terms in Eq. (153) were
computed using the projected velocity field and plotted in Fig. 16.
The slope gives the value of 𝛾 from simulation. The two dash lines
for 𝛾 = 1 and 𝛾 = 1/2 are also plotted for comparison. For large
grid size Δ𝑥 (on large scale), 𝛾 approaches 1. While for small size
Δ𝑥 (on small scale), 𝛾 approaches 1/2. For the entire range of scales,
1/2 6 𝛾 6 1 is expected.

7.1.2 Averaged dynamic equations for velocity and the origin of
effective viscosity

The original "adhesion approximation" on large scale is a phe-
nomenological model and a mean-field description of true dynamics.
However, this model should be deeply rooted in the large-scale dy-
namics and kinematics and can be derived with appropriate closures
between velocity fluctuation and mean velocity field (Eq. (157)).
Let’s start from the time averaged equation of self-gravitating

collisionless dark matter flow (Eq. (150)). By decomposing the total
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velocity and potential into the mean and (temporal) fluctuation,

v = v̄ + v
′
and 𝜙∗ = 𝜙∗ + 𝜙∗

′
, (155)

plugging intoEq. (150) and taking the (time) average throughfiltering
at a cutoff scale 𝜏, we obtain an averaged dynamic equation for v̄,

𝜕v̄
𝜕𝑡

+ 1
𝑎
(1 − 𝛾) v̄ · ∇v̄ + 𝛾

2𝑎
∇ (v̄ · v̄) + 𝐻v̄

= − 1
𝑎
∇𝜙∗ −

©­­­«
1 − 𝛾
𝑎

v′ · ∇v′︸  ︷︷  ︸
1

+ 𝛾
2𝑎

∇
(
v′ · v′ )︸     ︷︷     ︸
2

ª®®®¬ .
(156)

The eddy viscosity 𝜈𝑒𝑑𝑑 in turbulence literature origins from term
1, i.e. v′ · ∇v′

= ∇ · v′ ⊗ v′
= 𝜈𝑒𝑑𝑑∇2v̄ for incompressible flow. For

irrotational flow on large scale in SG-CFD, by setting 𝛾 = 1, ∇𝜙∗ =

−3𝐻𝑎v̄/2 − 𝑎𝜈∇2v̄ (see Eq. (152)) and comparing Eq. (156) with
the dynamics of mean flow on scale 𝜏 (replacing 𝜈(𝑎) by 𝜈𝜏 (𝑎, 𝜏)
in Eq. (76), which is the effective viscosity on cutoff scale 𝜏), the
"artificial" viscosity in adhesion model originates from the velocity
fluctuation (terms 2) in Eq. (156). The comparison shows

− 1
2𝑎

∇
(
v′ · v′

)
= (Δ𝜈)∇2v̄ = (Δ𝜈)∇ (∇ · v̄) , (157)

which is the closure relating velocity fluctuation below cutoff scale 𝜏
with the mean velocity above scale 𝜏 through viscosity Δ𝜈 = 𝜈𝜏 − 𝜈.
Similar to the "Reynolds stress" in turbulence (Xu 2022e), velocity
fluctuation below the cutoff scale (v′) leads to an "artificial stress"
term (RHS of Eq. (157)) applied onto the dynamics for mean velocity
above that cutoff scale (v̄) in averaged Eq. (156). Therefore, the
effective viscosity in adhesion model has an origin from the velocity
fluctuation below the cutoff scale 𝜏.
Using Eq. (107) for relation between overdensity and divergence,

∇
(
v′ · v′

)
= 2𝑎2𝐻 𝑓 (Ω𝑚) (Δ𝜈)∇𝛿,

or equivalently (after integration)

v′2 = 𝐹 (𝑡) + 2(Δ𝜈)𝑎2𝐻 𝑓 (Ω𝑚) 𝛿,

(158)

where 𝐹 (𝑡) is a function emerging after integration and 𝛿 is the (time)
average density above that cutoff scale. Equation (158) is essentially a
sub-grid closure for large scale dynamics, where unresolved velocity
fluctuation below a cutoff scale 𝜏 can be related to the resolved mean
density at the same location through an effective viscosity 𝜈.
The total kinetic energy (a function of time t only due to transla-

tional symmetry) can be decomposed into the kinetic energy in mean
flow (resolved) and in fluctuation (unresolved),

v2 ≡ v2 (𝑡) ≡
(
v̄ + v′ )2

= v̄2 + v′2

= v̄2 + 𝐹 (𝑡) + 2(Δ𝜈)𝑎2𝐻 𝑓 (Ω𝑚) 𝛿,
(159)

such that the kinetic energy in mean flow reads (same as Eq. (113)),

v̄2 = v2 (𝑡) − 𝐹 (𝑡) − 2(Δ𝜈)𝐻𝑎2 𝑓 (Ω𝑚) 𝛿. (160)

On large scale, the gravitational collapse leads to a decreasing dis-
persion in mean flow v̄2. There is a continuous energy transfer from
mean flow (v̄2) to fluctuation (random motion in v′2) on large scale.
Combined with the energy transfer from mean flow to fluctuation on
halo scale (Xu 2022e), both facilitates the continuously increasing
entropy in non-equilibrium dark matter flow (Xu 2021c).

7.1.3 Equations for the evolution of vorticity and enstrophy

The vorticity field is important on small scale, as every halo has a
finite spin. With identity in Eq. (73) and the identity for two arbitrary
vectors A and B,

∇ × (A × B) = A∇ · B − B∇ · A + B · ∇A − A · ∇B, (161)

Eq. (154) can be transformed to (note that ∇ · 𝝎 = 0):

𝜕𝝎

𝜕𝑡
+ 1 − 𝛾

𝑎
v · ∇𝝎︸ ︷︷ ︸
1

+
[
1 + (1 − 𝛾) 𝜃

𝐻𝑎

]
𝐻𝝎︸︷︷︸
2

=
1 − 𝛾
𝑎

𝝎 · ∇v︸ ︷︷ ︸
3

.

(162)

From identity (74), velocity field can be expressed in terms of the
vorticity field for constant divergence flow,

∇2v = −∇ × 𝝎. (163)

For infinite domain, this can be solved by Green’s function,

v (x) = − 1
4𝜋

∫ [∇ × 𝝎]′��x − x′ �� 𝑑x
′
, (164)

where vorticity is a local quantity, but velocity can be non-local. The
velocity field is affected by the vorticity from other locations.
Three terms in Eq. (162) represent the transport of vorticity (term

1), the decaying of vorticity due to expanding background (term 2),
and the generation of vorticity (term 3) that is similar to the vortex
stretching in hydrodynamic turbulence (see Xu 2021f, Eq. (1)). On
large scale, 𝛾 ≈ 1 and the dominant mode is the decaying of vorticity,
while vorticity is strongly generated with 𝛾 → 1/2 on small scale.
For comparison, the vorticity equation for incompressible flow is

𝜕𝝎

𝜕𝑡
+ v · ∇𝝎 = 𝝎 · ∇v + 𝜈∇2𝝎, (165)

where 𝜈 is the molecular viscosity leading to the destruction of
vorticity. Finally, the evolution of enstrophy can be obtained by the
scalar product of Eq. (162) with vorticity vector 𝝎,

𝜕𝝎2/2
𝜕𝑡

+ 1 − 𝛾
𝑎

v · ∇𝝎2

2︸   ︷︷   ︸
1

+
[
1 + (1 − 𝛾) 𝜃

𝐻𝑎

]
𝐻𝝎2︸︷︷︸
2

=
1 − 𝛾
𝑎

𝝎 · (𝝎 · ∇v)︸         ︷︷         ︸
3

,

(166)

where the enstrophy is generated on the small scale (term 3), trans-
ported (term 1) and decaying on large scale (term 2).

7.1.4 Dynamic equations for the evolution of energy

By taking scalar product vwith both sides of Eq. (148) and using the
fact that v · (∇ × v) × v = 0, the evolution of kinetic energy reads

𝜕v2/2
𝜕𝑡

+ 1
𝑎

v · [v · ∇ (v)] + 𝐻v2 = − 1
𝑎

v · ∇𝜙∗. (167)

Using identity (73) and v · (∇ × v) × v = 0, Eq. (167) becomes

𝜕v2/2
𝜕𝑡

= − 1
𝑎
∇ ·

[(
1
2

v2 + 𝜙∗
)

v
]
−𝐻v2 + 1

𝑎

(
1
2

v2 + 𝜙∗
)
∇ · v. (168)

Integrating Eq. (168) over a control volume 𝑉 (for example the vol-
ume of a halo) and using divergence theorem,

𝜕𝐾

𝜕𝑡
= − 1

𝑎

∮
𝑆
𝐸v · 𝑑S − 2𝐻𝐾 + 1

𝑎

∫
𝑉
𝐸 (∇ · v) 𝑑𝑉, (169)
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where the specific kinetic energy 𝐾 of entire volume and the total
energy 𝐸 at a given location are defined as

𝐾 =

∫
𝑉

1
2

v · v𝑑𝑉 and 𝐸 =
1
2

v2 + 𝜙∗. (170)

For systemwith 𝐸 = 0 on the surface of control volume, the surface
term vanishes in Eq. (169). Introducing virial theorem between the
total kinetic and potential energy with a virial ratio 𝛽,∫
𝑉

(
2v2 + 𝛽𝜙∗

)
𝑑𝑉 = 0, (171)

the time variation of total kinetic energy in control volume is,

𝜕 ln𝐾
𝜕 ln 𝑎

= − 𝜃

𝑎𝐻

(
4
𝛽
− 1

)
− 2. (172)

By taking the divergence on both sides of Eq. (148), we have

𝜕𝜃

𝜕𝑡
+ 1
2𝑎

∇2 (v · v) +𝐻𝜃 = − 1
𝑎
∇2𝜙∗+ 𝛾 − 1

𝑎
∇· [(∇ × v) × v] . (173)

With the identity in Eq. (74) and identity

∇ · (A × B) = (∇ × A) · B − A · (∇ × B) , (174)

the equation for total energy 𝐸 can be obtained,

∇2
(
1
2

v · v + 𝜙∗
)
+ 𝐻𝑎𝜃

(
1 + 𝜕 ln 𝜃

𝜕 ln 𝑎

)
= (1 − 𝛾)

( [
v ·

(
∇2v − ∇𝜃

)
+ 𝝎 · 𝝎

] )
.

(175)

On large scale, 𝛾 = 1 and 𝜃 = −𝑎𝐻 𝑓 (Ω𝑚) 𝛿 ∝ 𝑎1/2 (Eq. (107)),

∇2
(
1
2

v · v + 𝜙∗
)
= 𝑓 (Ω𝑚) ∇2𝜙 =

3
2
𝑎2𝐻2 𝑓 (Ω𝑚) 𝛿, (176)

where 𝜙 is the (peculiar) gravitational potential. The potential well
forms from increasing 𝛿 due to gravitational collapse. On small scale
with constant divergence and 𝜃 ∝ 𝑎−1/2,

∇2
(
1
2

v · v + 𝜙∗
)
= −1
2
𝐻𝑎𝜃 + (1 − 𝛾)

(
v · ∇2v + 𝝎 · 𝝎

)
, (177)

where the local vorticity will affect the depth of potential well.

7.2 Dynamic relations from dynamics on small scale

In this section, we are ready to develop dynamic relations on small
scale. Starting from the index notation of dynamic Eq. (151) at two
different locations x and x′ ,

𝜕𝑣𝑖

𝜕𝑡
+ 1 − 𝛾

𝑎

𝜕 (𝑣𝑖𝑣𝑘 )
𝜕𝑥𝑘

+ 𝛾

2𝑎
𝜕 (𝑣𝑘𝑣𝑘 )
𝜕𝑥𝑖

+
[
1 − (1 − 𝛾)

𝑎𝐻
𝜃

]
𝐻𝑣𝑖 = − 1

𝑎

𝜕𝜙∗

𝜕𝑥𝑖
,

(178)

𝜕𝑣
′
𝑗

𝜕𝑡
+ 1 − 𝛾

𝑎

𝜕

(
𝑣
′
𝑗
𝑣
′
𝑘

)
𝜕𝑥

′
𝑘

+ 𝛾

2𝑎

𝜕

(
𝑣
′
𝑘
𝑣
′
𝑘

)
𝜕𝑥

′
𝑗

+
[
1 − (1 − 𝛾)

𝑎𝐻
𝜃

]
𝐻𝑣

′
𝑗 = − 1

𝑎

𝜕𝜙∗
′

𝜕𝑥
′
𝑗

,

(179)

multiplying 𝑣′
𝑗
and 𝑣𝑖 to both sides of two equations, adding them

together, and taking average at a given scale r leads to

𝜕

〈
𝑣𝑖𝑣

′
𝑗

〉
𝜕𝑡

+ 1 − 𝛾
𝑎

©­­«
𝜕

〈
𝑣𝑖𝑣𝑘𝑣

′
𝑗

〉
𝜕𝑥𝑘

+
𝜕

〈
𝑣
′
𝑗
𝑣
′
𝑘
𝑣𝑖

〉
𝜕𝑥

′
𝑘

ª®®¬
+ 𝛾

2𝑎
©­­«
𝜕

〈
𝑣𝑘𝑣𝑘𝑣

′
𝑗

〉
𝜕𝑥𝑖

+
𝜕

〈
𝑣
′
𝑘
𝑣
′
𝑘
𝑣𝑖

〉
𝜕𝑥

′
𝑗

ª®®¬
+ 2

[
1 − (1 − 𝛾)

𝑎𝐻
𝜃

]
𝐻

〈
𝑣𝑖𝑣

′
𝑗

〉
= − 1

𝑎

©­­«
𝜕

〈
𝜙∗𝑣

′
𝑗

〉
𝜕𝑥𝑖

+
𝜕

〈
𝜙∗

′
𝑣𝑖

〉
𝜕𝑥

′
𝑗

ª®®¬ ,
(180)

or in terms of the second and third order velocity correlation tensors
(see definition in Eq. (1)),

𝜕𝑄𝑖 𝑗

𝜕𝑡
+ 2

[
1 − (1 − 𝛾)

𝑎𝐻
𝜃

]
𝐻𝑄𝑖 𝑗

=
2 − 2𝛾
𝑎

𝜕𝑄𝑖𝑘 𝑗

𝜕𝑟𝑘
+ 𝛾
𝑎

𝜕𝑄𝑘𝑘 𝑗

𝜕𝑟𝑖
− 1
𝑎


𝜕

〈
𝜙∗𝑣

′
𝑗

〉
𝜕𝑥𝑖

+
𝜕

〈
𝜙∗

′
𝑣𝑖

〉
𝜕𝑥

′
𝑗

 .
(181)

Multiplying both sides by 𝛿𝑖 𝑗 , using Eqs. (15) and (84) for third
order correlations with 𝑅3 ≡ 𝑅(3,1) and 𝑅31 ≡ 𝐿 (3,2) , and using the
fact that the first order correlation tensor for constant divergence flow
(see Xu 2022f, Eq. (9)) satisfying,

𝜕

〈
𝜙∗𝑣

′
𝑗

〉
𝜕𝑥 𝑗

= −
𝜕

〈
𝜙∗𝑣

′
𝑗

〉
𝜕𝑟 𝑗

= −𝜃
〈
𝜙∗

〉
, (182)

evolution of second order correlation on small scale finally reads

𝜕𝑅(2,1)
𝜕𝑡

+ 2
[
1 − (1 − 𝛾)

𝑎𝐻
𝜃

]
𝐻𝑅(2,1)

=
1
𝑎𝑟2

[
𝜕

𝜕𝑟

(
𝑟2

[
(2 − 2𝛾) 𝑅(3,1) + 𝛾𝐿 (3,2)

] )]
+ 2
𝑎
𝜃
〈
𝜙∗

〉
,

(183)

where third order correlation functions are (Eqs. (15) and (84))

𝜕𝑄𝑖𝑘𝑖

𝜕𝑟𝑘
=
1
𝑟2

𝜕

𝜕𝑟

(
𝑟2𝑅(3,1)

)
,

𝜕𝑄𝑘𝑘 𝑗

𝜕𝑟 𝑗
=
1
𝑟2

𝜕

𝜕𝑟

(
𝑟2𝐿 (3,2)

)
. (184)

Equation (183) provides a dynamic relation between second and third
order correlation functions (similar to Eq. (81) on large scale), which
can be integrated and equivalently transformed to,

− 〈𝜙∗〉
𝑢2

=
3

2𝜃𝑟𝑢2
[
(2 − 2𝛾) 𝑅(3,1) + 𝛾𝐿 (3,2)

]
+
[
(1 − 𝛾) 2𝜃

𝑎𝐻
− 2 −

𝜕 ln 𝑅(2,1)
𝜕 ln 𝑎

]
3𝐻𝑎
2𝑢2𝜃𝑟3

∫ 𝑟

0
𝑅(2,1) (𝑦) 𝑦2𝑑𝑦.

(185)

On small scale, the correlation function 𝑅(2,1) can be modeled as
(see Xu 2022f, Eq. (139)),

𝑅(2,1) = 𝑢
2
[
3 − (3 + 𝑛)

(
𝑟

𝑟1

)𝑛]
and

𝜕 ln 𝑅(2,1)
𝜕 ln 𝑎

=
3
2
, (186)

with 𝑢2 ∼ 𝑡, where 𝑢2 is the one-dimensional velocity dispersion of
entire system and 𝑛 ≈ 1/4. The correlation function 𝑅(2,1) ∝ 𝑎 on
large scale and 𝑅(2,1) ∝ 𝑎3/2 on small scale.
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Figure 17.The variation of different terms in Eq. (187) with scale r at z=0. On
small scale, term 1 approaches 5 and term2 approaches 1. The sum of term1
and term2 approaches the velocity dispersion

〈
𝑢2

〉
/𝑢2. The variation of virial

coefficient 𝛽∗ with scale r (slightly decreasing with r) is also presented with〈
𝑢2

〉
/𝑢2 directly obtained from simulation and Eq. (187).

On small scale, we expect 𝛾 = 1/2 and 𝜃 = −3𝐻𝑎/2, and relation
〈𝑢2〉 + 𝛽∗〈𝜙∗〉 = 0, Eq. (185) reduces to

− 〈𝜙∗〉
𝑢2

=

〈
𝑢2

〉
𝛽∗𝑢2

=
5

𝑢2𝑟3

∫ 𝑟

0
𝑅(2,1) (𝑦) 𝑦2𝑑𝑦︸                            ︷︷                            ︸
1

− 1
𝐻𝑎𝑟𝑢2

(
𝑅(3,1) +

1
2
𝐿 (3,2)

)
︸                                ︷︷                                ︸

2

,

(187)

where 𝛽∗ is a virial ratio on scale r.
To validate Eq. (187), different terms were directly obtained from

N-body simulation and plotted in Fig. 17. The sumof terms 1 and 2 on
the RHS of Eq. (187) approaches LHS on small scale. The variation
of 𝛽∗ with scale r (slightly decreasing with r) is also presented with〈
𝑢2

〉
/𝑢2 directly obtained from simulation.

For 𝑟 → 0, we have lim
𝑟→0

𝑅(2,1) = lim
𝑟→0

〈u·u′〉 = 3𝑢2 and lim
𝑟→0

〈𝑢2〉 =

lim
𝑟→0

〈u · u〉 = 6𝑢2, where 〈𝑢2〉 ≈ 6𝑢2 on small scale (see Xu 2022h,
Fig. 20) and 𝛽∗ ≈ 1, term 1 on RHS of Eq. (187) approaches 5 such
that term 2 becomes(
𝑅(3,1) +

1
2
𝐿 (3,2)

)
= −𝐻𝑎𝑢2𝑟 = 〈Δ𝑢𝐿〉 𝑢2 =

4
9
𝜀𝑢𝑎𝑟, (188)

where the rate of kinetic energy cascade 𝜀𝑢 is negative (inverse
energy cascade) and relatively a constant of time,

𝜀𝑢 = −3
2
𝜕𝑢2

𝜕𝑡
≈ −3
2
𝑢2

𝑡
= −3
2
𝑢20
𝑡0

≈ −4.6 × 10−7𝑚2/𝑠3. (189)

The velocity dispersion at present epoch is about 𝑢0 ≈
354.61𝑘𝑚/𝑠 in the current model. Since the third moment of pair-
wise velocity (third order structure function in Eq. (38)) satisfies
(from generalized stable clustering hypothesis, GSCH in Eq. (42)),〈
(Δ𝑢𝐿)3

〉
= 3

〈
(Δ𝑢𝐿)2

〉
〈Δ𝑢𝐿〉 , (190)
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Figure 18. The variation of correlation function 𝑅(3,1) + 𝐿(3,2) /2 at 𝑧 = 0
(normalized by 𝑢30 ), the pairwise velocity (first order longitudinal structure
function) 〈Δ𝑢𝐿 〉 (normalized by𝑢0), and the third order longitudinal structure
function 〈(Δ𝑢𝐿)3 〉 (normalized by 𝑢30 ) with scale r (from Eqs. (188) and
(191)). All functions are normalized and 〈(Δ𝑢𝐿)3 〉 = 8𝜀𝑢𝑎𝑟/3.

and lim
𝑟→0

〈
(Δ𝑢𝐿)2

〉
≈ 2𝑢2 (see Xu 2022h, Fig. 21), we may write(

𝑅(3,1) +
1
2
𝐿 (3,2)

)
=
1
6

〈
(Δ𝑢𝐿)3

〉
= 〈Δ𝑢𝐿〉 𝑢2 =

4
9
𝜀𝑢𝑎𝑟, (191)

where the third moment of pairwise velocity determines the rate of
energy production on the smallest scale, i.e.

〈
(Δ𝑢𝐿)3

〉
=
8
3
𝜀𝑢𝑎𝑟 or 𝜀𝑢 =

3
8

〈
(Δ𝑢𝐿)3

〉
𝑎𝑟

. (192)

Figure 18 presents the relevant correlation and structure functions
in Eqs. (188) and (191). On small scale, all these functions can be
related to the rate of energy cascade 𝜀𝑢 .

8 CONCLUSIONS

Much more complicated than incompressible flow, the self-
gravitating collisionless dark matter flow (SG-CFD) is of constant
divergence on small scale and irrotational on large scale. To under-
stand the nature of flow across entire range of scales, fundamental
kinematic and dynamic relations among statistical measures of dif-
ferent order need to be developed for different types of flow.
By extending the two-point second order statistics to high order, we

present the third order statistical measures and associated kinematic
relations for different types of flow. In principle, the incompressible
and constant divergence flow share the same kinematic relations for
even order correlations, while they can be different for odd order
correlations (Eq. (56)). For third order velocity correlation tensor
𝑄𝑖 𝑗𝑘 (𝑟), four scalar correlation functions (total correlations 𝑅3 and
𝑅31, longitudinal correlation 𝐿3, and transverse correlation 𝑇3) can
be obtained by contraction of indices from 𝑄𝑖 𝑗𝑘 (𝑟) (Eqs. (6)-(9)).
Kinematic relations are developed for incompressible flow (Eqs. (26)
and (27)), constant divergence flow (Eqs. (31) and (33)), and irrota-
tional flow (Eq. (37)). Correlation functions from N-body simulation
are presented in Figs. 3 and 4 for third and fourth order, respectively.
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To formulate kinematic relations of any order, a compact deriva-
tion is presented involving high order tensor and vector calculus.
This is a challenging task (see Appendix A). Starting from refor-
mulating the kinematic relations of second and third order, general
kinematic relations of any order are developed, i.e. Eqs. (53)-(55) for
incompressible flow, Eq. (62) for constant divergence on small scale,
and Eqs. (63)-(65) for irrotational flow on large scale. To validate
these relations by N-body simulation, the original differential equa-
tions are transformed to integral form (Eqs. (67) to (69)). Results are
presented in Figs. 6 and 7 with good agreement.
The dynamic relations between correlation functions of different

orders can only be determined from the dynamic equation of veloc-
ity evolution on relevant scales. On large scale, the Zeldovich and
adhesion approximations govern the dynamics of velocity (Eq. (70)).
Third order correlations are related to second order velocity/density
correlations andmean pairwise velocity (𝐿 (3,2) ∝ −𝜈〈Δ𝑢𝐿〉) through
an effective viscosity 𝜈(𝑎) (Eqs. (88), (91), and (94)). The negative
viscosity 𝜈(𝑎) ∝ −𝑢𝑟2 ∝ 𝑎1/2 originates from the velocity fluc-
tuation (Eq. (158)) and can be determined by the rate of energy
production (Eq. (97) and Fig. 12).
Redshift dependence of correlations functions on any order are

obtained as 𝐿 (𝑞+1,𝑞) ∝ 𝑎 (𝑞+3)/2 and 𝑅(𝑞,𝑞−1) ∝ 𝑎𝑞/2 for even q
(Eqs. (100)-(102) and Figs. 8-12). The divergence can be determined
by the mean pairwise velocity (Eq. (108)). Mean overdensity on a
given scale r is proportional to the density correlation 𝑓 (Ω𝑚)〈𝛿〉 ≈
〈𝛿𝛿′〉 (Eq. (110) and Fig. 13)). A reduced velocity dispersion is also
proportional to density correlation, i.e. 〈𝑢2〉/(3𝑢2) − 1 ∝ 〈𝛿𝛿′〉 (Eq.
(113) and Fig. 13)). Finally, both exponential velocity correlations on
large scale and the "one-fourth" law for correlations on small scale
are direct results of combined dynamics and kinematic relations (Eqs.
(128), (129), and (123)).
On small scale, self-closed equation for velocity evolution is de-

veloped to derive dynamic relations. We decompose total velocity
into the velocity from motion in halos and from the motion of ha-
los (Eq. (132)). Based on solutions for virialized rotating halos, the
self-closed dynamic equation includes an additional term to reflect
the effect of local vorticity (term 1 in Eq. (148)) that is controlled
by a parameter 𝛾. From large to small scales, 𝛾 gradually changes
from 1 to 1/2 (Fig. 16). The effective viscosity on large scale origins
from the velocity fluctuations below the cutoff scale for filtering (Eq.
(156)). The vorticity, enstrophy, and energy evolution are all derived
from the self-closed dynamic equation (Eqs. (162), (166), (168), and
(175)). Finally, the dynamic relation is derived to relate second and
third order correlations in Eq. (183). The same relation in integral
form (Eqs. (185) and (187)) can be directly validated by N-body
simulation (Fig. 17). Third order correlations are related to the en-
ergy production rate 𝜀𝑢 (Eq. (191) and Fig. 18) and third moment of
pairwise velocity 〈(Δ𝑢𝐿)3〉 = 8𝜀𝑢𝑎𝑟/3 (Eq. (192)).

DATA AVAILABILITY

Two datasets underlying this article, i.e. a halo-based and correlation-
based statistics of dark matter flow, are available on Zenodo (Xu
2022a,b), along with the accompanying presentation slides "A com-
parative study of darkmatter flow&hydrodynamic turbulence and its
applications" (Xu 2022c). All data files are also available on GitHub
(Xu 2022d).
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APPENDIX A: KINEMATIC RELATIONS FOR VELOCITY
CORRELATIONS OF ARBITRARY ORDER

In this Appendix, a compact derivation for kinematic relations of
arbitrary order is presented for incompressible, constant divergence,
and irrotational flow.

A1 Introduction to some general identities

Let’s first introduce some identities, which are the generalization of
identities in Eq. (25),

(𝑟𝑖), 𝑗 =
𝜕𝑟𝑖

𝜕𝑟 𝑗
=
1
𝑟

(
𝛿𝑖 𝑗 − 𝑟𝑖𝑟 𝑗

)
=
(
𝑟 𝑗
)
,𝑖
, (A1)

(
𝑟𝑖𝑟 𝑗

)
,𝑘

=
1
𝑟

(
𝑟𝑖𝛿 𝑗𝑘 + 𝑟 𝑗𝛿𝑖𝑘 − 2𝑟𝑖𝑟 𝑗𝑟𝑘

)
, (A2)

(
𝑟𝑖𝑟 𝑗𝑟𝑘

)
,𝑙
=
1
𝑟

(
𝑟𝑖𝑟 𝑗𝛿𝑘𝑙 + 𝑟𝑖𝑟𝑘𝛿 𝑗𝑙 + 𝑟 𝑗𝑟𝑘𝛿𝑖𝑙 − 3𝑟𝑖𝑟 𝑗𝑟𝑘𝑟𝑙

)
, (A3)

(
𝑟𝑖𝑟 𝑗𝑟𝑘𝑟𝑙

)
,𝑚

=
1
𝑟

(
𝑟𝑖𝑟 𝑗𝑟𝑙𝛿𝑘𝑚 + 𝑟𝑖𝑟𝑘𝑟𝑙𝛿 𝑗𝑚

+𝑟𝑖𝑟 𝑗𝑟𝑘𝛿𝑙𝑚 + 𝑟 𝑗𝑟𝑘𝑟𝑙𝛿𝑖𝑚 − 4𝑟𝑖𝑟 𝑗𝑟𝑘𝑟𝑙𝑟𝑚
)
,

(A4)

(𝑟𝑖), 𝑗 𝑟 𝑗 = 0,
(
𝑟𝑖𝑟 𝑗

)
,𝑘
𝑟𝑘 = 0,

(
𝑟𝑖𝑟 𝑗𝑟𝑘

)
,𝑙
𝑟𝑙 = 0, (A5)

(𝑟𝑖),𝑖 =
2
𝑟
,
(
𝑟𝑖𝑟 𝑗

)
, 𝑗

=
2
𝑟
𝑟𝑖 ,

(
𝑟𝑖𝑟 𝑗𝑟𝑘

)
,𝑘

=
2
𝑟
𝑟𝑖𝑟 𝑗 , (A6)

(𝑟𝑖), 𝑗 = 𝛿𝑖 𝑗 ,
(
𝑟𝑖𝑟 𝑗

)
, 𝑗

= 3𝑟𝑖 ,
(
𝑟𝑖𝑟 𝑗𝑟𝑘

)
,𝑘

= 3𝑟𝑖𝑟 𝑗 . (A7)

In the following, we first reformulate kinematic relations in a more
general but compact way for second and third correlation functions
to get familiar with the general idea and tensor notations, followed
by the generalization to arbitrary orders.

A2 Reformulating second order kinematic relations

The starting point of new formulation is definitions of correlation
tensor 𝑄𝑖 𝑗 and associated correlation functions 𝑅2, 𝐿2, and 𝑇2,

𝑄𝑖 𝑗 (𝑟) =
〈
𝑢𝑖𝑢

′
𝑗

〉
, 𝑅2 =

〈
𝑢𝑖𝑢

′
𝑖

〉
,

𝐿2 =
〈
𝑢𝐿𝑢

′
𝐿

〉
, and 𝑅2 = 𝐿2 + 2𝑇2.

(A8)

With isotropic homogeneous second order correlation tensor defined
as (see Xu 2022f, Eq. (10)),

𝑄𝑖 𝑗 (r) = 𝑄𝑖 𝑗 (𝑟) = 𝐴2 (𝑟) 𝑟𝑖𝑟 𝑗 + 𝐵2 (𝑟) 𝛿𝑖 𝑗 , (A9)

we should have an identity valid for any type of flow,

𝑄𝑖 𝑗𝑟𝑖
(
𝛿 𝑗𝑘 − 𝑟 𝑗𝑟𝑘

)
=

〈
𝑢𝐿𝑢

′
𝑗

〉 (
𝛿 𝑗𝑘 − 𝑟 𝑗𝑟𝑘

)
=

〈
𝑢𝐿𝑢

′
𝑘

〉
−
〈
𝑢𝐿𝑢

′
𝐿𝑟𝑘

〉
= 0.

(A10)

This is an important identity that we will repeatedly use.

A2.1 Kinematic relations for incompressible flow

Using identity in Eq. (A1), the relation 𝑢𝐿 = 𝑢𝑖𝑟𝑖 , and the product
rule of differentiation,

𝑄𝑖 𝑗 , 𝑗𝑟𝑖 =

〈
𝑢𝑖𝑢

′
𝑗

〉
, 𝑗
𝑟𝑖 =

〈
𝑢𝑖𝑟𝑖𝑢

′
𝑗

〉
, 𝑗
−
〈
𝑢𝑖𝑢

′
𝑗

〉
(𝑟𝑖) 𝑗

=

〈
𝑢𝐿𝑢

′
𝑗

〉
, 𝑗
− 1
𝑟

〈
𝑢𝑖𝑢

′
𝑗

〉 (
𝛿𝑖 𝑗 − 𝑟𝑖𝑟 𝑗

)
.

(A11)

By using identity in Eq. (A10), Eq. (A11) can be further written as

𝑄𝑖 𝑗 , 𝑗𝑟𝑖 =

〈
𝑢𝐿𝑢

′
𝐿𝑟 𝑗

〉
, 𝑗
− 1
𝑟

〈
𝑢𝑖𝑢

′
𝑗

〉 (
𝛿𝑖 𝑗 − 𝑟𝑖𝑟 𝑗

)
=

〈
𝑢𝐿𝑢

′
𝐿

〉
, 𝑗
𝑟 𝑗 +

〈
𝑢𝐿𝑢

′
𝐿

〉 (
𝑟 𝑗
)
, 𝑗
− 1
𝑟

〈
𝑢𝑖𝑢

′
𝑗

〉 (
𝛿𝑖 𝑗 − 𝑟𝑖𝑟 𝑗

)
.

(A12)

For incompressible flow, 𝑄𝑖 𝑗 , 𝑗 = 0. From Eq. (A12) and identity
(A6), kinematic relations between second order correlation functions
can be obtained in a very simple and compact way,

2𝑇2 =
1
𝑟

(
𝑟2𝐿2

)
,𝑟
, 𝑅2 =

1
𝑟2

(
𝑟3𝐿2

)
,𝑟
,

and(
𝑟2𝐿2

)
,𝑟

= 𝑟 (𝑅2 − 𝐿2) ,

(A13)

which are exact the same as our previous result (see Xu 2022f, Eq.
(39)). Here the relation〈
𝑢𝐿𝑢

′
𝐿

〉
, 𝑗
𝑟 𝑗 =

〈
𝑢𝐿𝑢

′
𝐿

〉
,𝑟
𝑟 𝑗𝑟 𝑗 =

〈
𝑢𝐿𝑢

′
𝐿

〉
,𝑟

(A14)

is applied to Eq. (A12) for results in Eq. (A13).

A2.2 Kinematics relations for constant divergence flow on small
scale

For even order correlation functions, kinematic relations for constant
divergence flow should be the same as those for incompressible flow,
i.e. Eq. (A13) is still valid.

A2.3 Kinematic relations for irrotational flow on large scale

The starting point to formulate kinematic relations for irrotational
flow is the identity,

𝑄𝑖 𝑗 ,𝑘𝜀𝑚𝑖𝑘𝜀𝑚𝑗𝑛𝑟𝑛 = 𝑄𝑖 𝑗 ,𝑘

(
𝛿𝑖 𝑗𝛿𝑘𝑛 − 𝛿𝑖𝑛𝛿 𝑗𝑘

)
𝑟𝑛

= 𝑄𝑖 𝑗 ,𝑘

(
𝑟𝑘𝛿𝑖 𝑗 − 𝑟𝑖𝛿 𝑗𝑘

)
,

(A15)

where 𝜀𝑖 𝑗𝑘 is the Levi-Civita symbol and 𝑟𝑛 = r/|r| is a unit vector.
With curl free condition 𝑄𝑖 𝑗 ,𝑘𝜀𝑚𝑖𝑘 = 0 and the product rule of
differentiation, Eq. (A15) becomes

𝑄𝑖 𝑗 ,𝑘

(
𝑟𝑘𝛿𝑖 𝑗 − 𝑟𝑖𝛿 𝑗𝑘

)
=

〈
𝑢𝑖𝑢

′
𝑖

〉
,𝑘
𝑟𝑘 −

〈
𝑢𝑖𝑢

′
𝑗

〉
, 𝑗
𝑟𝑖

=

〈
𝑢𝑖𝑢

′
𝑖

〉
,𝑘
𝑟𝑘 −

〈
𝑢𝑖𝑢

′
𝑗𝑟𝑖

〉
, 𝑗
+
〈
𝑢𝑖𝑢

′
𝑗

〉
(𝑟𝑖), 𝑗 = 0.

(A16)
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With identity in Eq. (A1), 𝑢𝐿 = 𝑢𝑖𝑟𝑖 , and the help of Eq. (A10),〈
𝑢𝑖𝑢

′
𝑖

〉
,𝑟
−
〈
𝑢𝐿𝑢

′
𝑗

〉
, 𝑗
+ 1
𝑟

〈
𝑢𝑖𝑢

′
𝑗

〉 (
𝛿𝑖 𝑗 − 𝑟𝑖𝑟 𝑗

)
=

〈
𝑢𝑖𝑢

′
𝑖

〉
,𝑟
−
〈
𝑢𝐿𝑢

′
𝐿𝑟 𝑗

〉
, 𝑗
+ 1
𝑟

〈
𝑢𝑖𝑢

′
𝑗

〉 (
𝛿𝑖 𝑗 − 𝑟𝑖𝑟 𝑗

)
= 0.

(A17)

Using the product rule of differentiation, Eq. (A17) leads to〈
𝑢𝑖𝑢

′
𝑖

〉
,𝑟
−
〈
𝑢𝐿𝑢

′
𝐿

〉
, 𝑗
𝑟 𝑗 −

〈
𝑢𝐿𝑢

′
𝐿

〉 (
𝑟 𝑗
)
, 𝑗

+ 1
𝑟

〈
𝑢𝑖𝑢

′
𝑗

〉 (
𝛿𝑖 𝑗 − 𝑟𝑖𝑟 𝑗

)
= 0.

(A18)

Finally for irrotational flow, with 𝑅2 = 𝐿2 + 2𝑇2 and identity (A6),
Eq. (A18) leads to the relations(
𝑅2𝑟

)
,𝑟

=
1
𝑟2

(
𝑟3𝐿2

)
,𝑟
, 𝑅2 =

1
𝑟2

(
𝑟3𝑇2

)
,𝑟
, 𝐿2 = (𝑟𝑇2),𝑟 , (A19)

which are the same as previous result (see Xu 2022f, Eq. (47)), but
obtained in a much simpler and more compact way.

A3 Reformulating third order kinematic relations

Kinematic relations for third order correlations can be derived in a
similar way. Starting from the definitions of third order correlation
tensor and correlation functions

𝑄𝑖 𝑗𝑘 (𝑟) =
〈
𝑢𝑖𝑢 𝑗𝑢

′
𝑘

〉
, 𝑅3 =

〈
𝑢𝐿𝑢𝑖𝑢

′
𝑖

〉
,

𝑅31 =
〈
𝑢𝑖𝑢𝑖𝑢

′
𝐿

〉
, 𝐿3 =

〈
𝑢2𝐿𝑢

′
𝐿

〉
, 𝑅3 = 𝐿3 + 2𝑇3,

(A20)

we can easily verify identities (similar to Eq. (A10))

𝑄𝑖 𝑗𝑘𝑟𝑖𝑟 𝑗 (𝛿𝑘𝑙 − 𝑟𝑘𝑟𝑙) =
〈
𝑢2𝐿𝑢

′
𝑙

〉
−
〈
𝑢2𝐿𝑢

′
𝐿𝑟𝑙

〉
= 0, (A21)

𝑄𝑖 𝑗𝑘𝑟 𝑗𝑟𝑘 (𝛿𝑖𝑙 − 𝑟𝑖𝑟𝑙) =
〈
𝑢𝑙𝑢𝐿𝑢

′
𝐿

〉
−
〈
𝑢2𝐿𝑢

′
𝐿𝑟𝑙

〉
= 0, (A22)

𝑄𝑖 𝑗𝑘𝛿𝑖 𝑗 (𝛿𝑘𝑙 − 𝑟𝑘𝑟𝑙) =
〈
𝑢𝑖𝑢𝑖𝑢

′
𝑙

〉
−
〈
𝑢𝑖𝑢𝑖𝑢

′
𝐿𝑟𝑙

〉
= 0, (A23)

where the identity (A23) only exists for odd order correlation tensors.

A3.1 Kinematic relations for incompressible flow

Using the identity in Eqs. (A2) and (A21), 𝑢𝐿 = 𝑢𝑖𝑟𝑖 , and the product
rule of differentiation,

𝑄𝑖 𝑗 𝑘,𝑘𝑟𝑖𝑟 𝑗 =

〈
𝑢𝑖𝑢 𝑗𝑢

′
𝑘
𝑟𝑖𝑟 𝑗

〉
,𝑘

−
〈
𝑢𝑖𝑢 𝑗𝑢

′
𝑘

〉 (
𝑟𝑖𝑟 𝑗

)
,𝑘

=

〈
𝑢2𝐿𝑢

′
𝑘

〉
,𝑘

− 1
𝑟

〈
𝑢𝑖𝑢 𝑗𝑢

′
𝑘

〉 (
𝑟 𝑗𝛿𝑖𝑘 + 𝑟𝑖𝛿 𝑗𝑘 − 2𝑟𝑖𝑟 𝑗𝑟𝑘

)
.

(A24)

Using Eqs. (A6) and (A21), and the product rule of differentiation,

𝑄𝑖 𝑗 𝑘,𝑘𝑟𝑖𝑟 𝑗 =

〈
𝑢2𝐿𝑢

′
𝐿𝑟𝑘

〉
,𝑘

− 1
𝑟

(
2
〈
𝑢𝐿𝑢𝑖𝑢

′
𝑖

〉
− 2

〈
𝑢2𝐿𝑢

′
𝐿

〉)
=

〈
𝑢2𝐿𝑢

′
𝐿

〉
,𝑘
𝑟𝑘 + 2

𝑟

〈
𝑢2𝐿𝑢

′
𝐿

〉
− 1
𝑟

(
2
〈
𝑢𝐿𝑢𝑖𝑢

′
𝑖

〉
− 2

〈
𝑢2𝐿𝑢

′
𝐿

〉) (A25)
For incompressible flow, 𝑄𝑖 𝑗 𝑘,𝑘 = 0. Kinematic relations for third
order correlation functions can be easily derived from Eq. (A25)

2𝑅3 =
1
𝑟3

(
𝑟4𝐿3

)
,𝑟
, 4𝑇3 =

1
𝑟

(
𝑟2𝐿3

)
,𝑟
,

and(
𝑟2𝐿3

)
,𝑟

= 𝑟 (2𝑅3 − 2𝐿3) ,

(A26)

which are the same as our original results in Eq. (26).

A3.2 Kinematic relations for constant divergence on small scale

Eq. (A25) is still valid for constant divergence flow such that

𝑄𝑖 𝑗 𝑘,𝑘𝑟𝑖𝑟 𝑗 = 𝜃

〈
𝑢2𝐿

〉
=

〈
𝑢2𝐿𝑢

′
𝐿

〉
,𝑘
𝑟𝑘 + 2

𝑟

〈
𝑢2𝐿𝑢

′
𝐿

〉
− 1
𝑟

(
2
〈
𝑢𝐿𝑢𝑖𝑢

′
𝑖

〉
− 2

〈
𝑢2𝐿𝑢

′
𝐿

〉)
,

(A27)

from which we should have an exact relation (same as Eq. (31))

𝑅3 +
1
2

〈
𝑢2𝐿

〉
𝜃𝑟 =

1
2𝑟3

(
𝑟4𝐿3

)
,𝑟
. (A28)

On the other hand, from identity (A23), we have

𝑄𝑖 𝑗 𝑘,𝑘𝛿𝑖 𝑗 = 𝜃

〈
𝑢2

〉
=

〈
𝑢𝑖𝑢𝑖𝑢

′
𝑘

〉
,𝑘

=

〈
𝑢𝑖𝑢𝑖𝑢

′
𝐿𝑟𝑘

〉
,𝑘

=

〈
𝑢2𝑢

′
𝐿

〉
,𝑟
+ 2
𝑟

〈
𝑢2𝑢

′
𝐿

〉
.

(A29)

With 𝑅31 = 〈𝑢2𝑢′
𝐿
〉, another exact relation (same as Eq. (33)) is〈

𝑢2
〉
𝜃 =

1
𝑟2

(
𝑟2𝑅31

)
,𝑟
. (A30)

With 〈𝑢2〉 ≈ 3〈𝑢2
𝐿
〉, the kinematic relation reads (same as Eq. (34))

𝑅3 +
1
6𝑟

(
𝑟2𝑅31

)
,𝑟

=
1
2𝑟3

(
𝑟4𝐿3

)
,𝑟
. (A31)

A3.3 Kinematic relations for irrotational flow on large scale

Like the derivation for second order correlations in Eq. (A15), the
starting point is the expression,

𝑄𝑖 𝑗 𝑘,𝑙𝜀𝑚𝑘𝑙𝜀𝑚𝑖𝑛𝑟 𝑗𝑟𝑛 = 𝑄𝑖 𝑗𝑘,𝑙 (𝛿𝑖𝑘𝛿𝑛𝑙 − 𝛿𝑛𝑘𝛿𝑖𝑙) 𝑟 𝑗𝑟𝑛
= 𝑄𝑖 𝑗𝑘,𝑙 (𝑟𝑙𝛿𝑖𝑘 − 𝑟𝑘𝛿𝑖𝑙) 𝑟 𝑗 .

(A32)

where an identity for Levi-Civita symbol is used

𝜀𝑚𝑘𝑙𝜀𝑚𝑖𝑛 = 𝛿𝑖𝑘𝛿𝑛𝑙 − 𝛿𝑛𝑘𝛿𝑖𝑙 . (A33)

The curl free condition leads to 𝑄𝑖 𝑗 𝑘,𝑙𝜀𝑚𝑘𝑙 = 0. Using the product
rule of differentiation,

𝑄𝑖 𝑗𝑘,𝑙 (𝑟𝑙𝛿𝑖𝑘 − 𝑟𝑘𝛿𝑖𝑙) 𝑟 𝑗 =
〈
𝑢𝑖𝑢 𝑗𝑢

′
𝑖

〉
,𝑙
𝑟 𝑗𝑟𝑙 −

〈
𝑢𝑖𝑢 𝑗𝑢

′
𝑘

〉
,𝑖
𝑟 𝑗𝑟𝑘

=

〈
𝑢𝑖𝑢 𝑗𝑢

′
𝑖𝑟 𝑗

〉
,𝑙
𝑟𝑙 −

〈
𝑢𝑖𝑢 𝑗𝑢

′
𝑖

〉 (
𝑟 𝑗
)
,𝑙
𝑟𝑙

−
〈
𝑢𝑖𝑢 𝑗𝑢

′
𝑘
𝑟 𝑗𝑟𝑘

〉
,𝑖
+
〈
𝑢𝑖𝑢 𝑗𝑢

′
𝑘

〉 (
𝑟 𝑗𝑟𝑘

)
,𝑖
= 0.

(A34)

Because 〈𝑢𝑖𝑢 𝑗𝑢
′
𝑖
〉(𝑟 𝑗 ),𝑙𝑟𝑙 = 〈𝑢𝑖𝑢 𝑗𝑢

′
𝑖
〉(𝑟 𝑗 ),𝑟 = 0 (from identity

(A5)), Eq. (A34) becomes〈
𝑢𝐿𝑢𝑖𝑢

′
𝑖

〉
,𝑙
𝑟𝑙 −

〈
𝑢𝑖𝑢𝐿𝑢

′
𝐿

〉
,𝑖

+ 1
𝑟

〈
𝑢𝑖𝑢 𝑗𝑢

′
𝑘

〉 (
𝑟 𝑗𝛿𝑖𝑘 + 𝑟𝑘𝛿𝑖 𝑗 − 2𝑟𝑖𝑟 𝑗𝑟𝑘

)
= 0.

(A35)

Again with identity in Eq. (A1), 𝑢𝐿 = 𝑢𝑖𝑟𝑖 , and the help of Eq. (A22),〈
𝑢𝐿𝑢𝑖𝑢

′
𝑖

〉
,𝑟
−
〈
𝑢2𝐿𝑢

′
𝐿𝑟𝑖

〉
,𝑖

+ 1
𝑟

(〈
𝑢𝐿𝑢𝑖𝑢

′
𝑖

〉
+
〈
𝑢𝑖𝑢𝑖𝑢

′
𝐿

〉
− 2

〈
𝑢2𝐿𝑢

′
𝐿

〉)
= 0.

(A36)
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With production rule of differentiation for second term in Eq. (A36),
we should have

𝑅3 ,𝑟 −
2
𝑟
𝐿3 − 𝐿3,𝑟 +

1
𝑟
(𝑅3 + 𝑅31 − 2𝐿3) = 0. (A37)

Finally, with 𝑅3 = 𝐿3 + 2𝑇3, kinematic relations are(
𝑅3𝑟

)
,𝑟
+ 𝑅31 =

1
𝑟3

(
𝐿3𝑟

4
)
,𝑟
, 3𝑅3 − 𝑅31 =

2
𝑟3

(
𝑟4𝑇3

)
,𝑟
,

and
3𝐿3 − 𝑅31 = 2 (𝑟𝑇3),𝑟 ,

(A38)

which are the same as those developed before (Eq. (37)) but in a
much more compact way.

A4 Formulating kinematic relations of arbitrary order

The new compact formulation for second and third order kinematic
relations can be generalized to arbitrary order. Some tensor and vector
algebra are involved, and readers can jump to main results. Equations
(A57)-(A61) present the limiting values of correlation functions on
small and large scales. General kinematic relations for different types
of flow are also presented, i.e. Eqs. (A65)-(A68) for incompressible
flow, Eqs. (A73)-(A77) for constant divergence flow on small scale,
and Eqs. (A86)-(A88) for irrotational flow on large scale.
Just like in SectionsA2 andA3, some general tensors and identities

are introduced first. The pth order Ω tensor and its derivative reads

(𝑝)Ω𝑖 𝑗...𝑘𝑙 = (𝑟𝑖𝑟 𝑗 ...𝑟𝑘𝑟𝑙︸      ︷︷      ︸
𝑝

), (A39)

(
(𝑝)Ω𝑖 𝑗...𝑘𝑙

)
,𝑚 =

𝜕

(
(𝑝)Ω𝑖 𝑗...𝑘𝑙

)
𝜕𝑟𝑚

=
1
𝑟

(
(𝑝+1)Π𝑖 𝑗...𝑘𝑙𝑚 − 𝑝

(
(𝑝+1)Ω𝑖 𝑗...𝑘𝑙𝑚

))
,

(A40)

where the Π tensor is written as

(𝑝+1)Π𝑖 𝑗...𝑘𝑙𝑚 =
∑︁

𝑎,𝑏..,𝑑,𝑒∈[𝑆𝑝] 𝑝−1
𝑟𝑎𝑟𝑏...𝑟𝑑𝛿𝑒𝑚. (A41)

Equation (A40) is a generalization of identities in Eqs. (A1)-(A4).
Here [𝑆𝑝] 𝑝−1 includes all subsets of size (p-1) in set [𝑆𝑝] =

{𝑖, 𝑗 , ...𝑘, 𝑙} of size p. There is total of p subsets of size (p-1) from set
𝑆𝑝 of size p. Indices 𝑎, 𝑏, ..𝑑, 𝑒 represent all possible combinations
of size (p-1) from set 𝑆𝑝 of size p. Here the Kronecker delta 𝛿•𝑚 in
Π tensor should always have m as one of its indices. There will be p
terms for tensor (𝑝+1)Π𝑖 𝑗...𝑘𝑙𝑚 of order (p+1).
One example of 4𝑡ℎ order Ω tensor is:(

(4)Ω𝑖 𝑗𝑘𝑙

)
,𝑚

=
(
𝑟𝑖𝑟 𝑗𝑟𝑘𝑟𝑙

)
,𝑚

=
1
𝑟

(
(5)Π𝑖 𝑗𝑘𝑙𝑚 − 4

(
(5)Ω𝑖 𝑗𝑘𝑙𝑚

))
,

(A42)

where 5𝑡ℎ order tensor Π is

(5)Π𝑖 𝑗𝑘𝑙𝑚 = 𝑟𝑖𝑟 𝑗𝑟𝑙𝛿𝑘𝑚 + 𝑟𝑖𝑟𝑘𝑟𝑙𝛿 𝑗𝑚
+ 𝑟𝑖𝑟 𝑗𝑟𝑘𝛿𝑙𝑚 + 𝑟 𝑗𝑟𝑘𝑟𝑙𝛿𝑖𝑚.

(A43)

For odd number p, two additional tensors Λ and Σ of (p-1) order can
be introduced consisting of Kronecker delta,

(𝑝−1)Λ𝑖 𝑗𝑘𝑙...𝑚𝑛 = 𝛿𝑖 𝑗𝛿𝑘𝑙 ...𝛿𝑚𝑛

with (𝑝 − 1) /2 terms in multiplication,
(A44)

(𝑝−1)Σ𝑖 𝑗𝑘𝑙...𝑚𝑛 = 𝛿𝑖 𝑗𝛿𝑘𝑙 ... + 𝛿𝑖𝑘𝛿 𝑗𝑙 ... + ....

with
(𝑝 − 1)!

2(𝑝−1)/2 ((𝑝 − 1) /2)!
terms in summation.

(A45)

Examples of 4𝑡ℎ order Λ and Σ tensors are:

(4)Λ𝑖 𝑗𝑘𝑙 = 𝛿𝑖 𝑗𝛿𝑘𝑙

and

(4)Σ𝑖 𝑗𝑘𝑙 = 𝛿𝑖 𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿𝑖𝑙𝛿 𝑗𝑘 .
(A46)

With the help of Eq. (A40), two additional identities can be estab-
lished for tensor Ω,(
(𝑝)Ω𝑖 𝑗...𝑘𝑙

)
,𝑟

=

(
(𝑝)Ω𝑖 𝑗...𝑘𝑙

)
,𝑚
𝑟𝑚

=
(
𝑟𝑖𝑟 𝑗 ...𝑟𝑘𝑟𝑙

)
,𝑚
𝑟𝑚 = 0,

(A47)

(
(𝑝)Ω𝑖 𝑗...𝑘𝑙

)
,𝑙
=

(
(𝑝)Ω𝑖 𝑗...𝑘𝑙

)
,𝑚
𝛿𝑙𝑚 =

2
𝑟

(
(𝑝−1)Ω𝑖 𝑗...𝑘

)
. (A48)

A4.1 Correlation functions and identities for any type of flow

The two-point velocity correlation tensor 𝑄 of arbitrary order p can
be defined as,(
(𝑝)𝑄𝑖 𝑗 𝑘..𝑚𝑛

)
=

〈
𝑢𝑖𝑢 𝑗𝑢𝑘 ...𝑢𝑚𝑢

′
𝑛

〉
. (A49)

Two identities for𝑄 tensor of any order p are (similar to Eq. (A21)),〈
𝑢𝑖𝑢 𝑗𝑢𝑘 ...𝑢𝑚...𝑢

′
𝑛

〉
𝛿𝑖 𝑗𝛿.. ..︸  ︷︷  ︸

𝑞

(𝑟𝑘 ...𝑟𝑚)︸     ︷︷     ︸
𝑝−𝑞−1

(𝛿𝑛𝑠 − 𝑟𝑛𝑟𝑠)

=

〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

𝑢
′
𝑛

〉
(𝛿𝑛𝑠 − 𝑟𝑛𝑟𝑠)

=

〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

𝑢
′
𝑠

〉
−
〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

𝑢
′
𝐿𝑟𝑠

〉
= 0,

(A50)

and〈
𝑢𝑖𝑢 𝑗𝑢𝑘 ...𝑢𝑚...𝑢

′
𝑛

〉
𝛿 𝑗𝑘𝛿.. ..︸  ︷︷  ︸

𝑞

(𝑟𝑚...𝑟𝑛)︸     ︷︷     ︸
𝑝−𝑞−1

(𝛿𝑖𝑠 − 𝑟𝑖𝑟𝑠)

=

〈
𝑢𝑞𝑢

𝑝−𝑞−2
𝐿

𝑢𝑖𝑢
′
𝐿

〉
(𝛿𝑖𝑠 − 𝑟𝑖𝑟𝑠)

=

〈
𝑢𝑞𝑢

𝑝−𝑞−2
𝐿

𝑢𝑠𝑢
′
𝐿

〉
−
〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

𝑢
′
𝐿𝑟𝑠

〉
= 0,

(A51)

where 𝑞 is an even number that stands for q indices in term (𝛿𝑖 𝑗𝛿.. ..).
Scalar correlation functions are defined by tensor contraction of 𝑄.
For even number q, the total correlation functions of order (𝑝, 𝑞+1)

is defined as

𝑅(𝑝,𝑞+1) =
〈
𝑢𝑞𝑢

𝑝−𝑞−2
𝐿

𝑢𝑖𝑢
′
𝑖

〉
=

〈
𝑢𝑞𝑢

𝑝−𝑞−2
𝐿

u · u
′〉
. (A52)

For even number q, the longitudinal and transverse correlation func-
tions of order (𝑝, 𝑞) are

𝐿 (𝑝,𝑞) =
〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

𝑢
′
𝐿

〉
(A53)

and

𝑇(𝑝,𝑞) =
(
𝑅(𝑝,𝑞+1) − 𝐿 (𝑝,𝑞)

)
/2. (A54)

Figure 2 lists the velocity correlation functions up to the sixth order.
Just like the second order correlations, all these correlation functions
can be similarly computed from N-body simulations.
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A4.2 Correlation functions in the limit 𝑟 → 0 and 𝑟 → ∞

In the limit 𝑟 → 0 on small scale, the r dependence is eliminated and
isotropic homogeneous velocity correlation tensor Q of odd order p
should satisfy (see Eq. (11) as an example):

lim
𝑟→0

(
(𝑝)𝑄𝑖 𝑗 ..𝑘𝑙𝑚

)
,𝑚

= 𝐶𝑝 · (𝑝−1)
∑︁
𝑖 𝑗..𝑘𝑙

, (A55)

such that with the definition of Σ tensor in Eq. (A45), we have

lim
𝑟→0

〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

〉
𝜃 = lim

𝑟→0

(
(𝑝)𝑄𝑖 𝑗 𝑘..𝑙𝑚

)
,𝑚
𝛿𝑖 𝑗𝛿.. ..︸  ︷︷  ︸

𝑞

(𝑟𝑘 ...𝑟𝑙)︸   ︷︷   ︸
𝑝−𝑞−1

= 𝐶𝑝
𝑝!

2(𝑝−1)/2 ((𝑝 − 1) /2)! (𝑝 − 𝑞)
.

(A56)

where 𝐶𝑝 is a parameter that is only dependent on the order p. Here
𝜃 = 𝑢𝑖,𝑖 is the divergence on small scale.
The limiting ratio for odd order p reads

lim
𝑟→0

〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

〉〈
𝑢
𝑝−1
𝐿

〉 =
𝑝

𝑝 − 𝑞 with q=0...p-1. (A57)

Equation (A57) is also valid for 𝑟 → ∞where velocity distributions
are independent of scale r, i.e.

lim
𝑟→∞

〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

〉〈
𝑢
𝑝−1
𝐿

〉 =
𝑝

𝑝 − 𝑞 with q=0...p-1. (A58)

Finally, using the definition of correlation functions from index con-
traction, for correlation functions of odd order p,

lim
𝑟→0,∞

𝐿 (𝑝,𝑞)
𝐿 (𝑝,0)

= lim
𝑟→0,∞

〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

〉〈
𝑢
𝑝−1
𝐿

〉 =
𝑝

𝑝 − 𝑞 . (A59)

Similar relations can be obtained for correlation functions of even
order p (from Eq. (A58)),

lim
𝑟→0

𝑅(𝑝,𝑞+1)
𝐿 (𝑝,0)

= lim
𝑟→0

〈
𝑢𝑞𝑢

𝑝−𝑞−2
𝐿

u · u′
〉〈

𝑢
𝑝−1
𝐿

𝑢
′
𝐿

〉 =
𝑝 + 1

𝑝 − 𝑞 − 1 , (A60)

and

lim
𝑟→0,∞

𝐿 (𝑝,𝑞)
𝐿 (𝑝,0)

= lim
𝑟→0,∞

〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

𝑢
′
𝐿

〉〈
𝑢
𝑝−1
𝐿

𝑢
′
𝐿

〉 =
𝑝 + 1

𝑝 + 1 − 𝑞 . (A61)

A4.3 Kinematic relations for incompressible flow

The incompressibility condition requires a vanishing divergence of
correlation tensor 𝑄(
(𝑝)𝑄𝑖 𝑗 ..𝑚𝑛

)
,𝑛

=

〈
𝑢𝑖𝑢 𝑗 ...𝑢𝑚𝑢

′
𝑛

〉
,𝑛

= 0. (A62)

Using Eq. (A62), the relation 𝑢𝐿 = 𝑢𝑖𝑟𝑖 , and the product rule of
differentiation,〈
𝑢𝑖𝑢 𝑗𝑢𝑘 ...𝑢𝑚𝑢

′
𝑛

〉
,𝑛
𝛿𝑖 𝑗𝛿.. ..︸  ︷︷  ︸

𝑞

(𝑟𝑘 ...𝑟𝑚)︸     ︷︷     ︸
𝑝−𝑞−1

=

[〈
𝑢𝑖𝑢 𝑗𝑢𝑘 ...𝑢𝑚𝑢

′
𝑛

〉
𝛿𝑖 𝑗 ... (𝑟𝑘 ...𝑟𝑚)

]
,𝑛

−
〈
𝑢𝑖𝑢 𝑗𝑢𝑘 ...𝑢𝑚𝑢

′
𝑛

〉
𝛿𝑖 𝑗 ... (𝑟𝑘 ...𝑟𝑚),𝑛 = 0,

(A63)

where 𝑞 is an even number that stands for q indices in term (𝛿𝑖 𝑗𝛿.. ...).
Using identities (A50) and (A40), Eq. (A63) becomes〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

𝑢
′
𝐿𝑟𝑛

〉
,𝑛

=

〈
𝑢𝑞𝑢𝑘 ...𝑢𝑚𝑢

′
𝑛

〉
(𝑟𝑘 ...𝑟𝑚),𝑛

=

〈
𝑢𝑞𝑢𝑘 ...𝑢𝑚𝑢

′
𝑛

〉 1
𝑟

[
(𝑝−𝑞)Π𝑘...𝑚𝑛 − (𝑝 − 𝑞 − 1) (𝑟𝑘 ...𝑟𝑚𝑟𝑛)

]
.

(A64)

Applying the product rule of differentiation on the left side of Eq.
(A64) and the definition of velocity correlation functions in Eqs.
(A52), (A54) and tensor Π in Eq. (A41), we have(
𝐿 (𝑝,𝑞)

)
,𝑟
+ 2
𝑟
𝐿 (𝑝,𝑞) =

1
𝑟
(𝑝 − 𝑞 − 1)

(
𝑅(𝑝,𝑞+1) − 𝐿 (𝑝,𝑞)

)
(A65)

Finally, kinematic relations for correlation functions of arbitrary or-
der p should be

(𝑝 − 𝑞 − 1) 𝑅(𝑝,𝑞+1) =
1

𝑟 𝑝−𝑞

(
𝑟 𝑝−𝑞+1𝐿 (𝑝,𝑞)

)
,𝑟
, (A66)

2 (𝑝 − 𝑞 − 1) 𝑇(𝑝,𝑞) =
1
𝑟

(
𝑟2𝐿 (𝑝,𝑞)

)
,𝑟
, (A67)

(
𝑟2𝑅(𝑝,𝑞+1)

)
,𝑟

=
2

𝑟 𝑝−𝑞−1

(
𝑟 𝑝−𝑞+1𝑇(𝑝,𝑞)

)
,𝑟
. (A68)

A4.4 Kinematic relations for constant divergence on small scale

Just like the incompressible flow, we start from the equation〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

〉
𝜃 =

〈
𝑢𝑖𝑢 𝑗𝑢𝑘 ...𝑢𝑚𝑢

′
𝑛

〉
,𝑛
𝛿𝑖 𝑗𝛿.. ..︸  ︷︷  ︸

𝑞

(𝑟𝑘 ...𝑟𝑚)︸     ︷︷     ︸
𝑝−𝑞−1

=

[〈
𝑢𝑖𝑢 𝑗𝑢𝑘 ...𝑢𝑚𝑢

′
𝑛

〉
𝛿𝑖 𝑗𝛿.. .. (𝑟𝑘 ...𝑟𝑚)

]
,𝑛

−
〈
𝑢𝑖𝑢 𝑗𝑢𝑘 ...𝑢𝑚𝑢

′
𝑛

〉
𝛿𝑖 𝑗𝛿.. .. (𝑟𝑘 ...𝑟𝑚),𝑛 ,

(A69)

where 𝑞 is an even number. Using identities (A50) and (A40), Eq.
(A69) becomes〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

〉
𝜃 =

〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

𝑢
′
𝑛

〉
,𝑛

−
〈
𝑢𝑞𝑢𝑘 ...𝑢𝑚𝑢

′
𝑛

〉 1
𝑟

[
(𝑝−𝑞)Π𝑘...𝑚𝑛 − (𝑝 − 𝑞 − 1) (𝑟𝑘 ...𝑟𝑚𝑟𝑛)

]
.

(A70)

Applying the product rule of differentiation to the first item on the
RHS and the definition of correlation functions in Eqs. (A52) and
(A54), a general relation for constant divergence flow is

(𝑝 − 𝑞 − 1) 𝑅(𝑝,𝑞+1) +
〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

〉
𝜃𝑟

=
1

𝑟 𝑝−𝑞

(
𝑟 𝑝−𝑞+1𝐿 (𝑝,𝑞)

)
,𝑟
.

(A71)

Equation (A71) is a general relation for correlation functions of any
order p. For correlation functions of even order p (Note that q is
always an even number),

lim
𝑟→0

〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

〉
= 0. (A72)

Therefore, the kinematic relations for even order correlations in con-
stant divergence flow should be the same as that of incompressible
flow, i.e. using Eqs. (A71) and (A72), Eqs. (A66)-(A68) are still valid
for correlation functions of even order p in constant divergence flow.
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For odd order p, two special cases are considered with 𝑞 = 𝑝 − 1
and 𝑞 = 0 from Eq. (A71),〈
𝑢𝑝−1

〉
𝜃𝑟 =

1
𝑟

(
𝑟2𝐿 (𝑝,𝑝−1)

)
,𝑟

(A73)

and

(𝑝 − 1) 𝑅(𝑝,1) +
〈
𝑢
𝑝−1
𝐿

〉
𝜃𝑟 =

1
𝑟 𝑝

(
𝑟 𝑝+1𝐿 (𝑝,0)

)
,𝑟
. (A74)

For 𝑟 → 0, the correlation function 𝐿 (𝑝,𝑝−1) can be solved from Eq.
(A73) (use Eq. (A57))

𝐿 (𝑝,𝑝−1) =
𝑝

3
𝜃

〈
𝑢
𝑝−1
𝐿

〉
𝑟 =
1
3
𝜃

〈
𝑢𝑝−1

〉
𝑟. (A75)

For 𝑝 = 1 and 𝑞 = 0 in Eq. (A74), the mean pairwise velocity
𝑆
𝑙 𝑝

1 (𝑟) = 〈Δ𝑢𝐿〉 =

〈
𝑢
′
𝐿
− 𝑢𝐿

〉
= 2

〈
𝑢
′
𝐿

〉
can be directly related to

the divergence,

𝜃 =
1
2𝑟2

(
𝑟2 〈Δ𝑢𝐿〉

)
,𝑟
. (A76)

With 〈Δ𝑢𝐿〉 = −𝐻𝑎𝑟 from stable clustering hypothesis, the diver-
gence 𝜃 = −3𝐻𝑎/2 on small scale. Equation (A76) is derived for
constant divergence flow. With Eq. (A57), Eqs. (A71) and (A74), the
kinematic relations for odd order p should read

(𝑝 − 𝑞 − 1) 𝑅(𝑝,𝑞+1) +
1

𝑝 − 𝑞
1
𝑟

(
𝑟2𝐿 (𝑝,𝑝−1)

)
,𝑟

=
1

𝑟 𝑝−𝑞

(
𝑟 𝑝−𝑞+1𝐿 (𝑝,𝑞)

)
,𝑟
.

(A77)

A4.5 Kinematic relations for irrotational flow on large scale

The irrotational flow requires a vanishing curl, i.e. 𝑄𝑖 𝑗... 𝑘𝑙,𝑚𝜀𝑛𝑙𝑚 =

0, such that〈
𝑢𝑖𝑢 𝑗 ...𝑢𝑘𝑢𝑜𝑢

′
𝑙

〉
,𝑚
𝜀𝑛𝑙𝑚𝜀𝑛𝑖𝑠 𝛿 𝑗𝑘𝛿.. ..︸  ︷︷  ︸

𝑞

(...𝑟𝑜𝑟𝑠)︸    ︷︷    ︸
𝑝−𝑞−1

=

〈
𝑢𝑖𝑢 𝑗 ...𝑢𝑘𝑢𝑜𝑢

′
𝑙

〉
,𝑚

(𝛿𝑖𝑙𝛿𝑚𝑠 − 𝛿𝑖𝑚𝛿𝑙𝑠) 𝛿 𝑗𝑘𝛿.. ..︸  ︷︷  ︸
𝑞

(...𝑟𝑜𝑟𝑠)︸    ︷︷    ︸
𝑝−𝑞−1

= 0.

(A78)

where the identity 𝜀𝑛𝑙𝑚𝜀𝑛𝑖𝑠 = (𝛿𝑖𝑙𝛿𝑚𝑠 − 𝛿𝑖𝑚𝛿𝑙𝑠) is used and 𝑞 is an
even number for q indices in term 𝛿𝑖 𝑗𝛿.. ... From Eq. (A78),〈
𝑢𝑖𝑢 𝑗 ...𝑢𝑘𝑢𝑜𝑢

′
𝑙

〉
,𝑚

(𝛿𝑖𝑙𝑟𝑚) 𝛿 𝑗𝑘𝛿.. ..︸  ︷︷  ︸
𝑞

(...𝑟𝑜)︸ ︷︷ ︸
𝑝−𝑞−2

=

〈
𝑢𝑖𝑢 𝑗 ...𝑢𝑘𝑢𝑜𝑢

′
𝑙

〉
,𝑚

(𝛿𝑖𝑚𝑟𝑙) 𝛿 𝑗𝑘𝛿.. ..︸  ︷︷  ︸
𝑞

(...𝑟𝑜)︸ ︷︷ ︸
𝑝−𝑞−2

=

〈
𝑢𝑖𝑢 𝑗 ...𝑢𝑘𝑢𝑜𝑢

′
𝑙

〉
,𝑖
𝛿 𝑗𝑘𝛿.. ..︸  ︷︷  ︸

𝑞

(...𝑟𝑜𝑟𝑙)︸   ︷︷   ︸
𝑝−𝑞−1

.

(A79)

Using the product rule of differentiation, the LHS (left hand side) in
Eq. (A79) becomes

𝐿𝐻𝑆 =

((
(𝑝)𝑄𝑖 𝑗... 𝑘𝑙

)
𝛿𝑖𝑙

(
(𝑝−2)Ω 𝑗...𝑘

))
,𝑚
𝑟𝑚

−
(
(𝑝)𝑄𝑖 𝑗... 𝑘𝑙

)
𝛿𝑖𝑙

(
(𝑝−2)Ω 𝑗...𝑘

)
,𝑚
𝑟𝑚

or equivalently

𝐿𝐻𝑆 =

〈
𝑢𝑞𝑢

𝑝−𝑞−2
𝐿

u · u
′〉
,𝑚
𝑟𝑚 −

〈
𝑢𝑞 ...𝑢𝑜u · u

′〉 (...𝑟𝑜),𝑚 𝑟𝑚.

(A80)

Using identity (A47), (...𝑟𝑜),𝑚 (𝑟𝑚) = 0, LHS term becomes

𝐿𝐻𝑆 =

〈
𝑢𝑞𝑢

𝑝−𝑞−2
𝐿

u · u
′〉
,𝑚

(𝑟𝑚)

=

〈
𝑢𝑞𝑢

𝑝−𝑞−2
𝐿

u · u
′〉
,𝑟

=
(
𝑅𝑝,𝑞+1

)
,𝑟
.

(A81)

Now, using the product rule of differentiation, the right-hand side
(RHS) in Eq. (A79) reads,

𝑅𝐻𝑆 =

〈
𝑢𝑞𝑢

𝑝−𝑞−2
𝐿

𝑢𝑖𝑢
′
𝐿

〉
,𝑖
−
〈
𝑢𝑞𝑢𝑖 ...𝑢𝑜𝑢

′
𝑙

〉
(...𝑟𝑜𝑟𝑙),𝑖 . (A82)

Using identity (A40), the right-hand-side term becomes

𝑅𝐻𝑆 =

〈
𝑢𝑞𝑢

𝑝−𝑞−2
𝐿

𝑢𝑖𝑢
′
𝐿

〉
,𝑖

− 1
𝑟

〈
𝑢𝑞𝑢𝑖 ...𝑢𝑜𝑢

′
𝑙

〉 [
(𝑝−𝑞)Π...𝑜𝑙𝑖 − (𝑝 − 𝑞 − 1) (...𝑟𝑜𝑟𝑙𝑟𝑖)

]
.

(A83)

Using identity (A51), definition in (A41), (A52), and (A54),

𝑅𝐻𝑆 =

〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

𝑢
′
𝐿𝑟𝑖

〉
,𝑖
− 1
𝑟

(〈
𝑢𝑞𝑢

𝑝−𝑞−2
𝐿

u · u
′〉

+ (𝑝 − 𝑞 − 2)
〈
𝑢𝑞+2𝑢𝑝−𝑞−3

𝐿
𝑢
′
𝐿

〉
− (𝑝 − 𝑞 − 1)

〈
𝑢𝑞𝑢

𝑝−𝑞−1
𝐿

𝑢
′
𝐿

〉)
.

(A84)

Again, applying the product rule of differentiation on the first term
of RHS of Eq. (A84) leads to,

𝑅𝐻𝑆 = 𝐿 (𝑝,𝑞) +
2
𝑟
𝐿 (𝑝,𝑞) −

1
𝑟

(
𝑅(𝑝,𝑞+1)

+ (𝑝 − 𝑞 − 2) 𝐿 (𝑝,𝑞+2) − (𝑝 − 𝑞 − 1) 𝐿 (𝑝,𝑞)
)
.

(A85)

Equating Eq. (A85) with Eq. (A81) leads to the final kinematic
relations between velocity correlation functions of arbitrary order p
and even number 0 6 𝑞 6 𝑝 − 1,(
𝑅(𝑝,𝑞+1)𝑟

)
,𝑟
+ (𝑝 − 𝑞 − 2)𝐿 (𝑝,𝑞+2)

=
1

𝑟 𝑝−𝑞

(
𝑟 𝑝−𝑞+1𝐿 (𝑝,𝑞)

)
,𝑟
,

(A86)

(𝑝 − 𝑞) 𝑅(𝑝,𝑞+1) − (𝑝 − 𝑞 − 2)𝐿 (𝑝,𝑞+2)

=
2

𝑟 𝑝−𝑞

(
𝑟 𝑝−𝑞+1𝑇(𝑝,𝑞)

)
,𝑟
,
(A87)

(𝑝 − 𝑞) 𝐿 (𝑝,𝑞) − (𝑝 − 𝑞 − 2) 𝐿 (𝑝,𝑞+2) = 2
(
𝑟𝑇(𝑝,𝑞)

)
,𝑟
. (A88)

In Eqs. (A86)-(A88), terms involving correlation function 𝐿 (𝑝,𝑞+2)
should vanish if 𝑞 > 𝑝 − 2.
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