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ABSTRACT
A halo-based non-projection approach is proposed to study the scale and redshift dependence of density and velocity distributions
(PDF) in dark matter flow. All particles are divided into halo and out-of-halo particles such that PDF can be studied separately.
Without projecting particle fields onto grid, scale dependence is analyzed by counting all pairs on different scales 𝑟 . Redshift
dependence is studied via generalized kurtosis. From this analysis, we can demonstrate: i) Delaunay tessellation can be used
to reconstruct density field. Density correlations/spectrum are obtained, modeled and compared with theory; ii) 𝑚th moment
of pairwise velocity can be analytically modelled. On small scale, even order moments can be modelled by a two-thirds law
〈(Δ𝑢𝐿)2𝑛〉 ∝ (−𝜖𝑢𝑟)2/3, while odd order moments 〈(Δ𝑢𝐿)2𝑛+1〉 = (2𝑛 + 1)〈(Δ𝑢𝐿)2𝑛〉〈Δ𝑢𝐿〉 ∝ 𝑟 and satisfy a generalized stable
clustering hypothesis (GSCH); iii) Scale dependence is studied for longitudinal velocity 𝑢𝐿 or 𝑢

′
𝐿
, pairwise velocity (velocity

difference) Δ𝑢𝐿=𝑢
′
𝐿
-𝑢𝐿 and velocity sum Σ𝑢𝐿=𝑢

′
𝐿
+𝑢𝐿 . Fully developed velocity fields are never Gaussian on any scale; iv) On

small scale, both 𝑢𝐿 and Σ𝑢𝐿 can be modelled by a 𝑋 distribution to maximize system entropy. Distributions of Δ𝑢𝐿 is different
with its moments analytically derived; v) On large scale, both Δ𝑢𝐿 and Σ𝑢𝐿 can be modelled by a logistic function; vi) Redshift
evolution of velocity distributions follows prediction of 𝑋 distribution with a decreasing shape parameter 𝛼(𝑧) to continuously
maximize system entropy.
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1 INTRODUCTION

The cosmic peculiar velocity and density fields contain rich infor-
mation for the dynamics of self-gravitating collisionless dark matter
flow (SG-CFD) from large scale to the highly non-linear small scales.
Statistics of velocity and density fields is crucial for fundamental
questions regarding structure formation and dynamics. The statisti-
cal analysis of velocity fields was previously applied to describe the
evolution of a system of self-gravitating collisionless particles using
BBGKY equations (Davis & Peebles 1977). The pairwise velocity
has been introduced to probe the cosmological density parameter
(Ferreira et al. 1999; Juszkiewicz et al. 2000), and the two-point
correlation function was introduced to quantify the cosmic velocity
field from real dataset (Gorski 1988; Gorski et al. 1989).
In addition, velocity distribution has profound implications for

detection experiments. For predictedDM-nucleon scattering in direct
detection (Kuhlen et al. 2010; Ullio & Kamionkowski 2001), the
detection rate of scattering is proportional to the inverse (or -1)
moment of distribution. That rate is very sensitive to the high velocity
tail of distribution. For indirect search (Zhao et al. 2018; Petac et al.
2018), the annihilation cross section is directly dependent on the
distribution of relative velocity. Velocity distribution of dark matter
particles is expected to be different from Maxwell-Boltzmann. This
is confirmed by simulations (Kazantzidis et al. 2004; Wojtak et al.
2008) and theory from maximum entropy principle (Xu 2021c,e).
The one-point distribution of matter density is another fundamen-

tal property for gravitational lensing and nonlinear clustering. The
study of matter density has a long history dating back to 1930s when
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2 Z. Xu

Hubble found the matter distribution is non-Gaussian and can be
approximate by log-normal distribution (Hubble 1934). The inter-
ests and efforts are still ongoing both theoretically and numerically
(Bernardeau & Kofman 1995; Klypin et al. 2018).
While directly measuring velocity and density fields from real

samples is still challenging in practice, tremendous information can
be obtained from N-body simulation, an invaluable tool to study
the dynamics of collisionless dark matter flow in both linear and
nonlinear regime (Angulo et al. 2012; Springel 2005; Peebles et al.
1989; Efstathiou et al. 1985). However, it is not a trivial task to extract
and characterize the statistics of velocity and density fields from N-
body simulations. There is a fundamental problem as velocity and
density are only sampled at discrete locations of particle position in
N-body simulations. That sampling has a poor quality at locations
with low particle density (Jennings et al. 2011).
The standard approach computes the power spectrum of velocity,

density (and its gradients) in Fourier space (Hahn et al. 2015; Pueblas
& Scoccimarro 2009; Jelic-Cizmek et al. 2018), where cloud-in-
cell (CIC) (Hockney & Eastwood 1988) or triangular-shaped-cloud
(TSC) schemes are used to project density and velocity fields onto
regular structured grids. This will unavoidably introduce sampling
errors in density and velocity fields (Baugh&Efstathiou 1994; Baugh
et al. 1995). Both real-space and Fourier-space data contain the same
information, while directly working in real-space data avoids the
information distortion due to field projection and the associated errors
due to the conversion between Fourier- and real-space.
In this paper, a new halo-based non-projection approach is pro-

posed for statistical analysis of density and velocity fields:

(i) Instead of projecting particle fields onto structured grid, analysis
is performed in real space by the statistics over all particle pairs
on different scales. This will maximumly preserve and utilize the
information from N-body simulation;
(ii) Based on the halo description of N-body system, distributions
should evolve differently in halos and out-of-halo region. Therefore,
all halos in N-body system are identified and all particles are divided
into halo and out-of-halo particles such that relevant distributions
can be studied separately;
(iii) Scale and redshift dependence of distributions can be studied
by the variation of generalized kurtosis for a given distribution.

From this practice, tremendous amount of knowledge was learned
that can be compared with the statistical theory of isotropic, homoge-
neous, and incompressible turbulence (Taylor 1935, 1938; deKarman
& Howarth 1938; Batchelor 1953). One example is the distribution
of pairwise velocity. For incompressible flow, there exist an inertial
range of scales in energy spectrum with a constant energy flux fol-
lowed by a dissipation range dominant by viscous force. A universal
form was established for mth order longitudinal velocity structure
function (mth moment of pairwise velocity in cosmological terms)
in inertial range (Kolmogorov 1962),

𝑆
𝑙 𝑝
𝑚 (𝑟) =

〈(
𝑢
′
𝐿 − 𝑢𝐿

)𝑚〉
= 𝛽𝑚 (𝜀𝑢)𝑚/3 𝑟𝑚/3, (1)

where 𝑢′
𝐿
and 𝑢𝐿 are longitudinal velocities, 𝛽𝑚 is a universal con-

stant, and 𝜀𝑢 is the energy dissipation rate.
Specifically, the second order structure function (i.e. pairwise ve-

locity dispersion) 𝑆𝑙 𝑝2 (𝑟) = 𝛽2𝜀𝑢𝑟
2/3 with 𝛽2 ≈ 2 is known as

the two-thirds law, while 𝑆𝑙 𝑝2 (𝑟) ∝ 𝑟2 in the dissipation range
where viscous force is dominant. The third order structure function
𝑆
𝑙 𝑝

3 (𝑟) = −4/5𝜀𝑢𝑟 with 𝛽3 = −4/5 is known as the four-fifths law
that can be exactly derived from Navier-stokes equation (de Karman
& Howarth 1938). Similarly, 𝑆𝑙 𝑝3 (𝑟) ∝ 𝑟3 in the dissipation range

Table 1. Numerical parameters of N-body simulation

Run Ω0 Λ ℎ Γ 𝜎8
L

(Mpc/h) 𝑁
𝑚𝑝

𝑀�/ℎ
𝑙𝑠𝑜 𝑓 𝑡

(Kpc/h)
SCDM1 1.0 0.0 0.5 0.5 0.51 239.5 2563 2.27×1011 36

for incompressible flow. However, dark matter flow exhibits com-
pletely different behavior due to collisionless nature and long-range
interaction, as we will demonstrate in this paper.
By studying the scale and redshift variation of density and velocity

distributions in dark matter flow using the proposed halo-based non-
projection approach, we can

(i) obtain the redshift evolution of one-point density and log-density
distributions for halo and out-of-halo particles along with analytical
models for two-point density statistical measures;
(ii) demonstrate that velocity fields are non-Gaussian on all scales
despite that they can be initially Gaussian;
(iii) model velocity distributions separately on small and large scales
along with their redshift variation;
(iv) identify a universal two-thirds law for (reduced) even order
structure functions and liner scaling for all odd order structure func-
tions (or generalized stable clustering hypothesis GSCH).

In addition to the density and velocity, there exist acceleration
fluctuations in dark matter flow and distributions of acceleration
due to the long-range gravitational interaction. The fluctuation of
acceleration in halos (∼ 10−10𝑚/𝑠2) matches the critical acceleration
𝑎0 in MOND, which can be further determined by the rate of energy
cascade 𝜀𝑢 = −𝑎0𝑢/(3𝜋)2 (Xu 2022j). Here 𝑢 is the one-dimensional
velocity dispersion of all particles in system (see Xu 2022e, Eq. (1)).
In addition, the baryonic-to-halo mass ratio is also closely related to
the energy cascade in dark matter flow (Xu 2022k).
Finally, this paper is organized as follows: Section 2 introduces the

N-body simulation data, followed by statistical measures for density
in Section 3. The redshift and scale dependence of velocity distribu-
tions are presented and modeled in Sections 4 and 5.

2 N-BODY SIMULATIONS AND NUMERICAL DATA

The numerical data were public available and generated from the
N-body simulations carried out by the Virgo consortium. A compre-
hensive description of the data can be found in (Frenk et al. 2000;
Jenkins et al. 1998). As the first step, the current study was carried
out using the simulation runs with W = 1 and the standard CDM
power spectrum (SCDM) to focus on the matter-dominant gravita-
tional flow of collisionless matter. Similar analysis can be extended
to other simulations with different model assumptions in the future.
The same set of data has been widely used in studies from clustering
statistics (Jenkins et al. 1998) to formation of cluster halos in large
scale environment (Colberg et al. 1999), and test of models for halo
abundances and mass functions (Sheth et al. 2001a). More details on
simulation parameters are provided in Table 1.
Two relevant datasets from this N-boby simulation, i.e. halo-based

and correlation-based statistics of dark matter flow, can be found at
Zenodo.org (Xu 2022a,b), along with the accompanying presentation
slides, "A comparative study of dark matter flow & hydrodynamic
turbulence and its applications" (Xu 2022c). All data files are also
available on GitHub (Xu 2022d).
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Density and velocity distributions in dark matter flow 3

3 DENSITY DISTRIBUTION, CORRELATION, AND
SPECTRUM FUNCTIONS

Various statistical measures can be introduced to characterize the
velocity field in self-gravitating collisionless flow (Xu 2022e,f,h),
i.e. the real-space correlation, dispersion and structure functions,
and power spectrum functions in Fourier space. They are related
to each other through kinematic relations for a given type of flow.
The real-space correlation functions are the most fundamental quan-
tity and building blocks of statistical theory for any stochastic field.
The statistical measures of density field are also a primary focus
of many existing literature. This section will introduce/review these
fundamental statistical descriptions and relations between different
measures, along with results from N-body simulations. Analytical
models for these statistical measures are also presented.

3.1 One-point probability distributions of density field

Projecting particle field onto structured grid usually involves infor-
mation loss and numerical noise. Without projecting onto grid, De-
launay tessellation is used in this section to reconstruct the density
field and maximumly preserve information from N-body data. For a
particle at location x, the particle overdensity 𝛿 (x) and log-density
𝜂 (x) are defined as

𝛿 (x) = 𝜌 (x)
𝜌0

−1 and 𝜂 (x) = log (1 + 𝛿 (x)) = log
(
𝜌 (x)
𝜌0

)
, (2)

where 𝜌 (x) = 𝑚𝑝/𝑉𝑝 is a local matter density at comoving co-
ordinate x, 𝑚𝑝 is the particle mass, 𝑉𝑝 is the volume occupied by
that particle, and 𝜌0 is the mean (comoving) density. In linear theory,
𝜂 (x) ≈ 𝛿 (x) for small 𝛿 (x) � 1 on large scale. They are different on
small scale in the nonlinear regime. Due to normalization that total
volume should equal the sum of all particle volume (

∑
𝑉𝑝 = 𝑉), the

redshift evolution of distributions of 𝛿 and 𝜂 should always satisfy〈
1

1 + 𝛿 (x)

〉
= 1 and

〈
𝑒−𝜂 (x)

〉
= 1. (3)

Unlike the velocity field, density is not a variable automatically
carried by and computed for each particle in N-body simulation. The
Delaunay tessellation can be applied to reconstruct the density field
from a discrete set of particles (Romano-Díaz & Van De Weygaert
2007; Bernardeau & vandeWeygaert 1996). All particles in system
are first connected by a set of non-overlapping tetrahedra (triangles
in two-dimension). The volume 𝑉𝑝 that each particle occupies can
be determined from the volume of its surrounding tetrahedral. The
density 𝜌 (x) of each particle can be subsequently computed. This
enables us to compute density distribution for halo particles and
out-of-halo particles separately.
By computing density for each particle from simulation in Sec-

tion 2, Fig. 1a presents the redshift evolution of one-point density
distribution 𝛿 (x) for all particles in N-body system. Due to gravita-
tional collapse on small scale, 𝛿 (x) evolves from an initial Gaussian
(symmetric) at high redshift to a "double-power-law" distribution
(asymmetric and highly skewed toward 𝛿 > 0) at z=0 with a long tail
∝ 𝛿−3. The distribution is approximately ∝ 𝛿−1 for small 𝛿.
For comparison, the distribution of density can also be obtained

by projecting particles onto structure grid using Cloud-in-Cell (CIC)
assignment scheme with a given size of grid (Δ𝑥). Results of (grid-
based) density distributions for different Δ𝑥 are presented in Fig. 1b)
with an approximate scaling of∝ 𝛿−2 that is consistent with literature
(Klypin et al. 2018). For grid-based density, 〈𝛿〉 = 0. Because of the
limit of grid resolution, the grid-based density is much smaller than
particle density directly obtained from Delaunay tessellation.
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Figure 1a. The redshift evolution of density distribution 𝛿 from z=10 to z=0.
Density evolves from an initial Gaussian to an asymmetric distribution with a
long tail∝ 𝛿−3. Initial Gaussian distribution at high redshift has two branches
(𝛿 > 0 and 𝛿 < 0).
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The distribution shows an approximate scaling of ∝ 𝛿−2. The particle density
fromDelaunay tessellation is also plotted for comparison with greater density
values than grid-based density.

Similarly, Fig. 2 plots the redshift evolution of log-density distri-
bution 𝜂 (x) from z=10 to z=0. A bimodal distribution is gradually
developed from an initial Gaussian distribution. The first peak corre-
sponds to out-of-halo particles in the low-density region that do not
belong to any halos with 〈𝜂〉 < 0. The second peak comes from all
particles residing in halos with higher density and wider dispersion.
A simple bimodal equation can be used to fit this distribution,

𝑓 (𝜂) = 𝑐1√
2𝜋𝜎1

exp

[
(𝜂 − 𝜇1)2

2𝜎21

]
+ 1 − 𝑐1√
2𝜋𝜎2

exp

[
(𝜂 − 𝜇2)2

2𝜎22

]
(4)

with best fitting parameters 𝑐1 = 0.404, 𝜇1 = −0.30, 𝜎1 = 1.212,
𝜇2 = 4.256, 𝜎2 = 2.979 at z=0. Fitted curve is plotted in the same
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Figure 2. Distribution of log-density 𝜂 (x) at different redshifts z. The log-
density 𝜂 (x) evolves from a relatively Gaussian to a bimodal distribution
at z=0 with two peaks corresponding to halo (60%) and out-of-halo (40%)
particles. Inverse mass cascade leads to continuous mass exchange from out-
of-halo to halos and the formation of two peaks in density distribution.

figure with about 60% particles in halos and 40% out-of-halo parti-
cles. This is consistent with the prediction from inverse mass cascade
theory (see Xu 2021a, Eq. (38)), i.e. 60% of total mass is in all halos
at 𝑧 = 0. There is a continuous exchange of mass from out-of-halo to
halos due to inverse mass cascade. Particles in halos should have an
average density close to 𝛿 = Δ𝑐 − 1, where the critical density ratio
Δ𝑐 = 18𝜋2 from a spherical collapse model or a two-body collapse
model (TBCM, Eq. (89) in (Xu 2021d)) such that 〈𝜂〉 ≈ 5.17 (close
to 𝜇2 as the mean density for all halo particles). Figure 2 reflects the
effect of inverse mass cascade on density distributions (Xu 2021a,b).
It is also natural to check the density distributions of halo particles

and out-of-halo particles separately. By identifying all halos in entire
system and dividing all particles into halo and out-of-halo particles,
Fig. 3 presents the redshift evolution of distributions of log-density
𝜂 (x) for halo and out-of-halo particles, respectively. For out-of-halo
particles, the distribution of 𝜂 is relatives Gaussianwithmean density
decreasing with time. The distribution of 𝛿 is lognormal for out-
of-halo particles that is consistent with Hubble’s finding (Hubble
1934). However, for halo particles, the log-density distribution is
non-Gaussian and evolves with increasing mean density due to the
continuous formation and growth of halos.
To characterize the time evolution of distribution of any random

variable 𝜏, statistical quantities such as the skewness and kurtosis
should be used. A generalized kurtosis 𝐾𝑛 (𝜏) is defined as

𝐾𝑛 (𝜏) =
〈(𝜏 − 〈𝜏〉)𝑛〉〈
(𝜏 − 〈𝜏〉)2

〉𝑛/2 =
𝑆
𝑐𝑝
𝑛 (𝜏)

𝑆
𝑐𝑝

2 (𝜏)𝑛/2
, (5)

where the central moment of order n for random variable 𝜏 reads

𝑆
𝑐𝑝
𝑛 (𝜏) =

〈
(𝜏 − 〈𝜏〉)𝑛

〉
. (6)

The odd order generalized kurtosis should vanish for symmetric
distributions. Specifically for Gaussian distribution, 𝐾3 = 𝐾5 = 0,
𝐾2 = 1, 𝐾4 = 3, 𝐾6 = 15, and 𝐾8 = 105.
Figure 4 presents the redshift evolution of generalized kurtosis. For

out-of-halo particles, the generalized kurtosis (𝐾3 (𝜂) to 𝐾6 (𝜂)) is
relatively independent of time. The distribution is relatively Gaussian
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halo particles absorbed into halos. For halo particles, the distribution evolves
with an increasing mean log-density.
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Figure 4. The redshift evolution of generalized kurtosis of log-density 𝜂
for two different types of particles. The density distribution for out-of-halo
particles is relatively Gaussian with generalized kurtosis𝐾4 ≈ 3 and𝐾6 ≈ 15
at z=0. The density distribution for halo particles becomes more symmetric
with vanishing odd order generalized kurtosis, while even order kurtosis
𝐾4 → 2 and 𝐾6 → 7.

with 𝐾4 ≈ 3 and 𝐾6 ≈ 15 at z=0, such that the distribution of 𝛿 for
out-of-halo particles is approximately log-normal. The distribution
for halo particles approaches a symmetric distribution with vanishing
odd order kurtosis and even order kurtosis 𝐾4 → 2 and 𝐾6 → 7.
Figure 5 plots the variation of mean and standard deviation of log-

density with time. For out-of-halo particles, the mean log-density
decreases with time and 〈𝜂〉 < 0 after z=1 (or a=0.5).While the mean
log-density of halo particles increase with time, i.e. 〈𝜂〉 ∝ 𝑎1/2. The
power-law scaling of 𝑠𝑡𝑑 (𝜂) ∝ 𝑎1/2 can also be found from this plot,
reflecting the fact that spread of halo particle density becomes wider
due to continuous mass accretion.
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3.2 Two-point statistical measures of density field

3.2.1 Density correlation from radial distribution function

The gravitational interaction between collisionless particles leads to
correlations in particle positions. Following the statistical mechanics
of molecular liquid, we start from the radial distribution function
𝑔 (𝑟) at a given scale factor a, a quantity to measure the averaged
particle density from an arbitrary reference particle. The number of
particles in spherical shell of thickness dr at a distance r from the
reference particle can be written as:

𝑑𝑁𝑝 = 𝑔 (𝑟)
𝑁𝑝

𝑉
4𝜋𝑟2𝑑𝑟, (7)

where 𝑁𝑝/𝑉 is the mean density of particles, 𝑁𝑝 is the total number
of particles in the system, and V is the volume. The mean comoving
density 𝜌0 = 𝑁𝑝𝑚𝑝/𝑉 . The normalization condition reads∫ ∞

0
𝑔 (𝑟) 4𝜋𝑟2𝑑𝑟 =

𝑁𝑝 − 1
𝑁𝑝

𝑉. (8)

The two-point second order density correlation function at a given
scale factor a is given by 𝜉 (𝑟) that can be related to the radial
distribution function 𝑔 (𝑟) as

𝜉 (𝑟) = 〈𝛿 (x) 𝛿 (x + r)〉 = 𝑔 (𝑟) − 1, (9)

with normalization condition,∫ ∞

0
𝜉 (𝑟, 𝑎) 4𝜋𝑟2𝑑𝑟 = −𝑉/𝑁 𝑝 < 0, (10)

such that 𝜉 (𝑟, 𝑎) cannot be positive on all scales. Density must be
negatively correlated on some scale r. Two length scales can be
defined from the moments of density correlation (see Fig. 10),

𝑙𝛿0 (𝑎) =
∫ ∞

0
𝜉 (𝑟, 𝑎) 𝑑𝑟, 𝑙2

𝛿1 (𝑎) =
∫ ∞

0
𝜉 (𝑟, 𝑎) 𝑟𝑑𝑟. (11)

3.2.2 Specific potential/kinetic energy from density correlation

In principle, the specific potential energy (per mass) of any system
with particles interacting via a pairwise potential𝑉𝑔 (𝑟) can be related

to the radial distribution function 𝑔 (𝑟) as,

𝑃𝐸 =
2𝜋𝜌0
𝑚2𝑝

∫ ∞

0
𝑟2 [𝑔 (𝑟) − 1] 𝑉𝑔 (𝑟) 𝑑𝑟, (12)

where 𝜌0 is the mean density. With 𝑉𝑔 (𝑟) = −𝐺𝑚2𝑝/𝑟 for gravity,
the specific potential energy in physical coordinate reads

𝑃𝑦 (𝑎) = −2𝜋𝐺𝜌0
𝑎

∫ ∞

0
𝜉 (𝑟, 𝑎) 𝑟𝑑𝑟 = −

3𝐻20 𝑙
2
𝛿1

4𝑎
< 0. (13)

The specific kinetic energy of entire system can be related to the
potential energy via a cosmic energy equation (Irvine 1961; Layzer
1963; Mo et al. 1997)(also see Xu 2022g, Eqs. (2) and (17)), i.e.,

𝜕
(
𝐾𝑝 + 𝑃𝑦

)
𝜕𝑡

+ 𝐻
(
2𝐾𝑝 + 𝑃𝑦

)
= 0, (14)

with an exact solution of

𝐾𝑝 = 𝑎−2
∫ 𝑎

0
𝑎𝑃𝑦𝑑𝑎 − 𝑃𝑦 . (15)

Substituting Eq. (13) into (15), the specific kinetic energy can be
finally related to the density correlation as (Sheth et al. 2001b),

𝐾𝑝 =
3
4
𝐻20𝑎

−1
[∫ ∞

0
𝜉 (𝑟, 𝑎) 𝑟𝑑𝑟 − 𝑎−1

∫ 𝑎

0

(∫ ∞

0
𝜉 (𝑟, 𝑎) 𝑟𝑑𝑟

)
𝑑𝑎

]
=
3
4
𝐻20𝑎

−1
(
𝑙2
𝛿1 − 𝑎

−1
∫ 𝑎

0
𝑙2
𝛿1𝑑𝑎

)
.

(16)

The evolution of kinetic and potential energy of N-body system in
an expanding background can be modeled by a power law solution
that is proportional to time t (see Xu 2022g, Eq. (40)),

𝐾𝑝 = −𝜀𝑢 𝑡, 𝑃𝑦 =
7
5
𝜀𝑢 𝑡, (17)

where the rate of energy cascade 𝜀𝑢 is a negative constant,

𝜀𝑢 = −3
2
𝜕𝑢2

𝜕𝑡
≈ −3
2
𝑢20
𝑡0
. (18)

The correlation length 𝑙2
𝛿1maybe related to the rate of energy cascade

as (using Eqs. (13) and (17)),

𝑙2
𝛿1 (𝑎) =

∫ ∞

0
𝜉 (𝑟, 𝑎) 𝑟𝑑𝑟 = −56

45
𝜀𝑢

𝐻30
𝑎5/2. (19)

3.2.3 Density spectrum/dispersion functions and real space
distribution of density fluctuation

The density spectrum 𝐸𝛿 (𝑘, 𝑎) in Fourier space and correlation
function 𝜉 (𝑟, 𝑎) in real space are related through a pair of Fourier
transformations:

𝐸𝛿 (𝑘, 𝑎) =
2
𝜋

∫ ∞

0
𝜉 (𝑟, 𝑎) 𝑘𝑟 sin (𝑘𝑟) 𝑑𝑟, (20)

𝜉 (𝑟, 𝑎) =
∫ ∞

0
𝐸𝛿 (𝑘, 𝑎)

sin (𝑘𝑟)
𝑘𝑟

𝑑𝑘. (21)

In Peebles’ convention (Peebles 1980), the usual matter power
spectrum 𝑃𝛿 (𝑘, 𝑎) reads

𝑃𝛿 (𝑘, 𝑎) = 2𝜋2𝐸𝛿 (𝑘, 𝑎) /𝑘2. (22)

The dimensionless power spectrum Δ2
𝛿
(𝑘, 𝑎) (the power per loga-

rithmic interval) reads

Δ2𝛿 (𝑘, 𝑎) = 𝐸𝛿 (𝑘, 𝑎) 𝑘. (23)

Vol. 000, 1–19 (2022)



6 Z. Xu

The variance of density fluctuation (density dispersion function), i.e.
the density fluctuation contained in all scales above r should be

𝜎2𝛿 (𝑟, 𝑎) =
∫ ∞

−∞
𝐸𝛿 (𝑘, 𝑎)𝑊 (𝑘𝑟)2 𝑑𝑘, (24)

where𝑊 (𝑥 ≡ 𝑘𝑟) is a window function when smoothed with a filter
of size r. For a typical tophat spherical filter, r is the radius of filter
and the window function is written as

𝑊 (𝑥) = 3
𝑥3

[sin (𝑥) − 𝑥 cos (𝑥)] = 3 𝑗1 (𝑥)
𝑥

, (25)

where

𝑗1 (𝑥) =
sin (𝑥)
𝑥2

− cos (𝑥)
𝑥

(26)

is the first order spherical Bessel function of the first kind. With
𝑊 (0) = 1, the variance of density fluctuation 𝜎2

𝛿
(0) → ∞, i.e.

diverging with 𝑟 → 0.
A relation between 𝜉 (𝑟) and 𝜎2

𝛿
(𝑟) for a tophat filter in Eq. (25)

can be derived exactly from Eqs. (21) and (24),

𝜉 (2𝑟) = 1
72𝑟2

𝜕

𝜕𝑟

(
1
𝑟2

𝜕

𝜕𝑟

(
𝑟3
𝜕

𝜕𝑟

(
𝜎2𝛿 (𝑟) 𝑟

4
)))

. (27)

For a power-law density spectrum 𝐸𝛿 (𝑘) ≡ 𝑏𝑘−𝑚, a power-law
correlation is expected,

𝜉 (𝑟) = −2𝑏Γ (−𝑚) sin
(𝑚𝜋
2

)
𝑟𝑚−1, (28)

along with a power-law density dispersion function

𝜎2𝛿 (𝑟) = 72 ·2
𝑚𝑏 (1 + 𝑚) (4 + 𝑚) Γ (−5 − 𝑚) sin

(𝑚𝜋
2

)
𝑟𝑚−1. (29)

It can be easily verified that Eqs. (28) and (29) satisfy Eq. (27).
Finally, the real-space distribution of density fluctuation between

scale [r, r+dr] can be written as,

𝐸𝛿𝑟 (𝑟) = −
𝜕𝜎2

𝛿
(𝑟)

𝜕𝑟
. (30)

This distribution can be related to the density spectrum function as,

𝐸𝛿𝑟 (𝑟) 𝑟2 = −4
∫ ∞

0
𝐸𝛿

( 𝑥
𝑟

)
𝑊 (𝑥)𝑊

′ (𝑥) 𝑥𝑑𝑥. (31)

The fluctuation distribution in real space 𝐸𝛿𝑟 (𝑟) is equivalent to and
contain the same information as the density spectrum in Fourie space.
For a power-law density spectrum, 𝐸𝛿 (𝑘) ≡ 𝑏𝑘−𝑚, the fluctuation
distribution function 𝐸𝛿𝑟 (𝑟) can be exactly related to 𝐸𝛿 (𝑘) as,

𝐸𝛿𝑟 (𝑟) 𝑟2 = 𝐸𝛿
( 𝑥0
𝑟

)
and

𝑥0 =
1
2

[
−72

(
𝑚2 − 1

)
(4 + 𝑚) Γ (−5 − 𝑚) sin

(𝑚𝜋
2

)]− 1
𝑚
.

(32)

With correlation 𝜉 (𝑟) fully determined from simulation data, we
can translate it into the dispersion function 𝜎2

𝛿
(𝑟) via Eq. (27), the

spectrum function 𝐸𝛿 via Eq. (20), and the real-space fluctuation
distribution 𝐸𝛿𝑟 (𝑟) via Eq. (30) (See Figs. 7, 8, 11, and 12).

3.3 Statistical measures of density from N-body simulation

In this section, second order statistical measures for density are ob-
tained from N-body simulation in Section 2. Algorithms are devel-
oped to find all pairs with a given separation r and computing the
average of these statistical measures over all particle pairs with the
same separation r. We first compute the radial distribution function
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Nonlinear theory

8

2

Figure 6. Two-point second order density correlation function 𝜉 (𝑟 ) (solid
blue) varying with scale r at z=0. The negative density correlation can be
identified for scale larger than 30Mpc/h. The linear (blue dash) and nonlinear
predictions (red dash) are also presented in the same plot and both underesti-
mate the negative correlation. The dispersion function 𝜎2

𝛿
(𝑟 ) (solid purple)

is obtained from Eq. (27). Models for 𝜉 (𝑟 ) and 𝜎2
𝛿
(𝑟 ) (Eqs. (33) and (35))

are also presented in the same figure that capture the negative correlation.

𝑔 (𝑟) (Eq. (7)) by counting all pairs at a given distance of r. Density
correlation can be obtained from Eq. (9). In this way, we avoid pro-
jecting particle field onto structured grid and maximumly preserve
information from N-body simulation.
Figure 6 presents the density correlation function 𝜉 (𝑟) (us-

ing Eq. (9)) at z=0 (solid blue curve). The velocity dispersion
𝜎2
𝛿
(𝑟) is obtained using Eq. (27) and plotted in solid purple with

𝜎2
𝛿
(𝑟 = 8𝑀𝑝𝑐/ℎ) = 𝜎28 matching the model input in Table 1. The

density correlation 𝜉 (𝑟) < 0 at scale 𝑟 > 30𝑀𝑝𝑐/ℎ, as required
by normalization in Eq. (10). This negative correlation also means
a negative mean overdensity (low density void region) and negative
reduced velocity dispersion on the same scale (see dynamic relation
on large scale Xu 2022f, Eqs. (110), (113) and Fig. 13 ).
To validate the numerical algorithm identifying particle pairs, we

compared with other model predictions (Jenkins et al. 1998). The
linear (blue dash) and nonlinear theory prediction (red dash) are
both obtained by Fourier transform of the model for density spectrum
function (Jenkins et al. 1998). Note that both predictions significantly
underestimate the negative density correlation comparing to N-body
results (blue solid). Models for 𝜉 (𝑟) and 𝜎2

𝛿
(𝑟) in Section 3.4 (Eqs.

(33) and (35)) are also plotted (dotted lines) that correctly capture
the negative density correlation on large scale.
Similarly, the power spectrum 𝐸𝛿 (𝑘) can be obtained by Fourier

transform (Eq. (20)) of correlation function 𝜉 (𝑟) that is directly ob-
tained from N-body simulation. Three spectrum functions (𝐸𝛿 (𝑘),
𝑃𝛿 (𝑘) fromEq. (22), andΔ2𝛿 (𝑘) fromEq. (23) ) at z=0 are presented
in Fig. 7 in solid lines and compared against the nonlinear theory
prediction (dash) (Jenkins et al. 1998). Again, the existing theory un-
derestimate the velocity correlation on large scale (or equivalently,
small wavenumber 𝑘).
The density correlation 𝜉 (𝑟, 𝑎) at different redshift z can be sim-

ilarly obtained for redshifts between z=5 and z=0 and presented in
Fig. 8. The variation of 𝜉 (𝑟, 𝑎) at a given scale r with scale factor
a is plotted in Fig. 9. The density correlation 𝜉 (𝑟, 𝑎) ∝ 𝑎2 on large
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Figure 7. Without projecting particles onto structured grid, density power
spectrum 𝐸𝛿 (𝑘) (𝑀𝑝𝑐/ℎ) , 𝑃𝛿 (𝑘) (𝑀𝑝𝑐3/ℎ3) , and Δ2

𝛿
(𝑘) (dimension-

less) can be obtained from correlation function 𝜉 (𝑟 ) . The nonlinear theory
predictions (dash lines) are also presented for comparison. The power spec-
trum 𝐸𝛿 (𝑘) was obtained by Fourier transform of correlation function 𝜉 (𝑟 )
in Fig. 6 using Eq. (20). Model for 𝐸𝛿 (𝑘) is presented in a separate paper
(see Xu 2022e, Eq. (132)).
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Figure 8. Two-point second order density correlation function 𝜉 (𝑟 , 𝑎) vary-
ing with scale r at different redshifts z=0, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 3.0 and
5.0. Negative density correlation can be identified for r>30Mpc/h.

scale r that is still in the linear regime, while 𝜉 (𝑟, 𝑎) is approximately
∝ 𝑎5/2 on small scale r that is in the nonlinear regime. The variation
of two length scales (defined in Eq. (11)) with scale factor a are
plotted in Fig. 10. Two comoving correlation lengths show a limiting
scaling of 𝑙𝛿0 (𝑎) ∝ 𝑎5/2 and 𝑙𝛿1 (𝑎) ∝ 𝑎5/4. The specific potential
energy computed by Eq. (13) using 𝑙𝛿1 is in good agreement with
the potential energy directly obtained from simulation. Both have a
limiting scaling of 𝑃𝑦 (𝑎) ∝ 𝑎3/2 (Eq. (17)).
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Figure 9. Two-point second order density correlation 𝜉 (𝑟 , 𝑎) varying with
scale factor a on different scales r = 0.1, 0.3, 0.5, 1.0, 3.0, 5.0 and 10 Mpc/h.
The correlation 𝜉 (𝑟 , 𝑎) ∝ 𝑎2 on large scale r that is in the linear regime,
and approximately ∝ 𝑎5/2 on small scale.
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Figure 10. The variation of two comoving correlation lengths 𝑙𝛿0 (𝑀𝑝𝑐/ℎ)
and 𝑙𝛿1 (𝑀𝑝𝑐/ℎ) with scale factor a. Both correlation lengths are derived
from density correlation 𝜉 (𝑟 , 𝑎) (Eq. (11)) with a limiting scaling 𝑙𝛿1 (𝑎) ∝
𝑎5/4 (Eq. (19)) and 𝑙𝛿0 (𝑎) ∝ 𝑎5/2. The potential energy 𝑃𝑦 (𝑎) (in unit of
(𝐾𝑚/𝑠)2) using Eq. (13) is in good agreement with 𝑃𝑦 (𝑎) that is directly
computed from simulation, both of which show a scaling of 𝑃𝑦 (𝑎) ∝ 𝑎3/2.

3.4 Modeling second order statistical measures of density field

The density correlation on large scale can be analytically derived
from velocity correlation functions (see Xu 2022e, Section 5). The
exponential correlation for transverse velocity is a direct result of
combined kinematics and dynamics on large scale (see Xu 2022f,
Section 6.3), which leads to a simple form of density correlation (see
Xu 2022e, Eq. (121)),

𝜉 (𝑟, 𝑎) = 𝑎0𝑢
2/(𝑟𝑟2)

(𝑎𝐻 𝑓 (Ω0))2
exp

(
− 𝑟

𝑟2

) [(
𝑟

𝑟2

)2
− 7

(
𝑟

𝑟2

)
+ 8

]
, (33)
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Table 2. Parameters 𝑎0 (𝑎) and velocity dispersion 𝑢 (𝑎) (𝑘𝑚/𝑠)

z 0 0.1 0.3 0.5 1.0 1.5 2.0 3.0
𝑎0 (𝑎) 0.451 0.463 0.486 0.509 0.559 0.604 0.643 0.694
𝑢 (𝑎) 354.61 335.42 303.37 277.67 231.29 199.76 177.15 148.61
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Figure 11.Density dispersion function 𝜎2
𝛿
(𝑟 ) at different redshift z obtained

from density correlation 𝜉 (𝑟 ) using Eq. (27). Model from Eq. (35) is plotted
for comparison with good agreement with simulation data on large scale.

with parameter 𝑎0𝑢2 = 0.45𝑢20𝑎 and 𝑢
2 (𝑎) is the one-dimension

velocity dispersion (see Xu 2022e, Fig. 20).
The only comoving length scale in this model 𝑟2 = 23.14𝑀𝑝𝑐/ℎ is

independent of time andmight be related to the size of sound horizon.
Values of 𝑎0 and 𝑢2 are listed in Table 2 for different redshift z.
Obviously 𝑎0𝑢2 ∝ 𝑎 is consistent with the scaling 𝜉 (𝑟, 𝑎) ∝ 𝑎2 in the
linear theory. The correlation turns to negative at 0.5

(
7 −

√
17

)
𝑟2 ≈

33𝑀𝑝𝑐/ℎ from Eq. (33). The model of Eq. (33) is also plotted in
Fig. 6 that matches the N-body simulation on large scale.
The average correlation 𝜉 (𝑟, 𝑎) on large scale should read,

𝜉 (𝑟, 𝑎) = 3
𝑟3

∫ 𝑟

0
𝜉 (𝑦, 𝑎) 𝑦2𝑑𝑦

=
𝑎0𝑢

2

(𝑎𝐻 𝑓 (Ω0))2
3
𝑟𝑟2
exp

(
− 𝑟

𝑟2

) (
4 − 𝑟

𝑟2

)
,

(34)

that can be related to themean pairwise velocity via pair conservation
equation (Eq. (41)).
The density dispersion function 𝜎2

𝛿
(𝑟) for density fluctuation can

be obtained using Eqs. (27) and (33),

𝜎2𝛿 (𝑟) =
1

(𝑎𝐻 𝑓 (Ω0))2
· 9𝑎0𝑢

2

2𝑟2

{
3
( 𝑟2
𝑟

)4
+
( 𝑟2
𝑟

)2
− exp

(
−2𝑟
𝑟2

) [
1 +

( 𝑟2
𝑟

)2] [
3
( 𝑟2
𝑟

)2
+ 6

( 𝑟2
𝑟

)
+ 4

]}
,

(35)

where 𝜎2
𝛿
(𝑟) ∝ 𝑎2𝑟−4 for large 𝑟 → ∞ and 𝜎2

𝛿
(𝑟) ∝ 𝑎2𝑟−1 for

𝑟 → 0. Figure 11 plots the variation of 𝜎2
𝛿
(𝑟) obtained from 𝜉 (𝑟) at

different redshifts z, along with the model in Eq. (35) for comparison.
The real-space distribution of density fluctuation, i.e. function

𝐸𝛿𝑟 (𝑟) can be subsequently obtained from 𝜎2
𝛿
(𝑟) (Eq. (30)) and

presented in Fig. 12. The density fluctuation increases with time on
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Figure 12. Real-space distribution of density fluctuation 𝐸𝛿𝑟 (𝑟 ) (ℎ/𝑀𝑝𝑐)
on scale r obtained from density dispersion function 𝜎2

𝛿
(𝑟 ) using Eq. (30).

Density fluctuation increases with time on all scales, while fluctuation on
small scale increases faster than large scale.

Figure 13. Longitudinal and transverse velocities on scale r.

all scales, while kinetic energy decreases on large scale and increase
on small scale (see Xu 2022e, Fig. 11).

4 CHARACTERIZING PROBABILITY DISTRIBUTIONS
OF VELOCITY FIELDS

The nature of velocity distributions is studied in this section. To
understand how velocity distributions vary with scale r and redshift
z, we are interested in three types of velocities on different scale r, i.e.
the longitudinal velocity 𝑢𝐿 or 𝑢

′
𝐿
, velocity difference (or pairwise

velocity) Δ𝑢𝐿 = 𝑢
′
𝐿
− 𝑢𝐿 , and velocity sum Σ𝑢𝐿 = 𝑢𝐿 + 𝑢′

𝐿
. For a

pair of particles with velocities u, u′ , and separation vector r = x′−x,
the longitudinal and transverse velocities read (Fig. 13),

𝑢𝐿 = u · r̂ and u𝑇 = − (u × r̂ × r̂) = u − (u · r̂) r̂,

𝑢
′
𝐿 = u

′
· r̂ and u

′
𝑇 = −

(
u
′
× r̂ × r̂

)
= u

′
−
(
u
′
· r̂
)

r̂,
(36)

where r̂ = r/𝑟 is the normalized unit vector. For any given scale
r, all particle pairs with a separation between r and r+dr (𝑑𝑟 =

0.001𝑀𝑝𝑐/ℎ in this work) are identified and the particle position
and velocity are recorded to compute the velocity distribution and
associated statistical quantities by averaging that quantity over all
pairs on the same scale r. By this way, information is maximumly
preserved without projecting particle velocity onto structured grid.
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In addition to three velocities that are scale dependent, we are
also interested in the distribution of four velocities, i.e. the velocity
of all particles in entire system (u𝑝), velocity of all halo particles
(uℎ𝑝), velocity of all out-of-halo particles (u𝑜𝑝), and velocity of all
halos identified in the system (uℎ , the mean velocity of all particles
in the same halo). The distributions of these velocities are not scale
dependent, but redshift dependent. The redshift evolution of these
distributions will significantly improve our understanding of velocity
field in dark matter flow.

4.1 Generalized kurtosis, moments, and structure functions

Just like the density distributions in Section 3.1, velocity distributions
can be best characterized by generalized kurtosis in Eqs. (5) and (6).
The first example is the generalized kurtosis for velocity difference
Δ𝑢𝐿 (pairwise velocity),

𝐾𝑛 (Δ𝑢𝐿 , 𝑟) =
〈(Δ𝑢𝐿 − 〈Δ𝑢𝐿〉)𝑛〉〈
(Δ𝑢𝐿 − 〈Δ𝑢𝐿〉)2

〉𝑛/2 =
𝑆
𝑐𝑝
𝑛 (Δ𝑢𝐿 , 𝑟)

𝑆
𝑐𝑝

2 (Δ𝑢𝐿 , 𝑟)𝑛/2
, (37)

where the central moment of order n for Δ𝑢𝐿 reads

𝑆
𝑐𝑝
𝑛 (Δ𝑢𝐿 , 𝑟) =

〈
(Δ𝑢𝐿 − 〈Δ𝑢𝐿〉)𝑛

〉
. (38)

The nth order longitudinal structure function of Δ𝑢𝐿 is defined as,

𝑆
𝑙 𝑝
𝑛 (𝑟) =

〈
(Δ𝑢𝐿)𝑛

〉
=

〈(
𝑢
′
𝐿 − 𝑢𝐿

)𝑛〉
, (39)

Remarks: For incompressible hydrodynamics, 〈𝑢𝐿〉 = 〈Δ𝑢𝐿〉 =

〈Σ𝑢𝐿〉 = 0 on all scales of r and 𝑆𝑐𝑝𝑛 (Δ𝑢𝐿 , 𝑟) = 𝑆𝑙 𝑝𝑛 (𝑟), namely the
central moment of Δ𝑢𝐿 equals the structure function defined in Eq.
(39). For self-gravitating collisionless dark matter flow (SG-CFD),
two particles tend to approach each other under gravity that leads to
a non-zero longitudinal velocity 〈𝑢𝐿〉 = −〈Δ𝑢𝐿〉/2 > 0, and central
moment 𝑆𝑐𝑝𝑛 (Δ𝑢𝐿 , 𝑟) ≠ 𝑆

𝑙 𝑝
𝑛 (𝑟) for SG-CFD. Due to symmetry,

〈Σ𝑢𝐿〉 = 0 and the distribution of Σ𝑢𝐿 is always symmetric on all
scale r with vanishing odd moments.

4.2 Generalized kurtosis of velocity from N-body simulation

Figure 14 presents the time variation of generalized kurtosis for ve-
locity u𝑝 (for all particles), uℎ𝑝 (for halo particles), and u𝑜𝑝 (for
out-of-halo particles). Different order of kurtosis for Gaussian dis-
tribution is plotted as green dash lines for comparison. All velocities
are initially Gaussian. The velocity distribution of halo particles uℎ𝑝
deviates from Gaussian much faster than the distribution of out-of-
halo particles u𝑜𝑝 due to stronger gravitational interaction in halos
than gravity between halos. All velocities become non-Gaussian with
time to maximize system entropy (Xu 2021c).
Figure 15 plots the even order generalized kurtosis (4𝑡ℎ order –

bottom, 6𝑡ℎ order – middle, and 8𝑡ℎ order – top) of three velocities
(𝑢𝐿 , Δ𝑢𝐿 , and Σ𝑢𝐿) at z=0. The 4th, 6th and 8th kurtosis of Gaus-
sian distribution are also plotted in the same figure with 𝐾4 = 3,
𝐾6 = 15, and 𝐾8 = 105. Clearly, distributions of three velocities are
non-Gaussian on all scales due to the long-range nature of gravity.
This is important as it poses serious challenges on any theory that
assumes the Gaussianity of velocity fields. Velocity field of fully de-
veloped self-gravitating collisionless dark matter flow (SG-CFD) is
not Gaussian on any scale despite that they can be initially Gaussian.
By contrast, for incompressible hydrodynamics with short range in-
teractions, the distribution of 𝑢𝐿 is nearly Gaussian on large scale and
Δ𝑢𝐿 is also Gaussian on large scale and only becomes non-Gaussian
on small scale due to strong viscous force.
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Figure 14. Redshift evolution of generalized kurtosis for velocity of all par-
ticles (blue), all halo particles (red), and all out-of-halo particles (black).
Gaussian distribution is presented as green dash lines. All velocities quickly
become non-Gaussian with time to maximize system entropy, while the evo-
lution of out-of-halo particle velocity is at a much slower pace than that of
halo particles due to weak gravity on large scale.

In Fig. 15, distribution ofΣ𝑢𝐿 approaches the distribution of 𝑢𝐿 on
small scale with a limiting correlation (between 𝑢𝐿 and 𝑢

′
𝐿
), where

𝜌𝐿 = 〈𝑢′
𝐿
𝑢𝐿〉/〈𝑢2𝐿〉 = 0.5 between two velocities (see Xu 2022e,

Fig. 16). This is expected as 𝑟 → 0, the sum velocity lim
𝑟→0

Σ𝑢𝐿 =

lim
𝑟→0

(𝑢′
𝐿
(x′) + 𝑢𝐿 (x)) will become the total velocity u(x) at location

x. Longitudinal velocities 𝑢𝐿 and 𝑢
′
𝐿
along many different directions

will simply collapse into u(x) and this also requires 𝜌𝐿 = 0.5, i.e.

lim
𝑟→0

〈(
𝑢
′
𝐿 + 𝑢𝐿

)2〉
= lim
𝑟→0

(〈𝑢
′2
𝐿 〉 + 〈𝑢2𝐿〉 + 2〈𝑢

′
𝐿𝑢𝐿〉)

= lim
𝑟→0

|u (x) |2 = 3 lim
𝑟→0

〈
𝑢2𝐿

〉
.

(40)

On large scale, the distribution of Σ𝑢𝐿 approaches the distribu-
tion of Δ𝑢𝐿 with correlation 𝜌𝐿 = 0 between 𝑢𝐿 and 𝑢

′
𝐿
. This is

also expected as the sum and difference of two independent random
variables with symmetric distribution should follow the same distri-
bution. Finally, on both small and large scales, generalized kurtosis
approaches constant such that there exist unique (limiting) proba-
bility distributions that are independent of scale r when 𝑟 → 0 or
𝑟 → ∞. While on the intermediate scale around 1Mpc/h, all three ve-
locity distributions exhibit the greatest value for generalized kurtosis
of different order.
Figure 16 plots the variation of odd order generalized kurtosis

(𝐾3 (Δ𝑢𝐿 , 𝑟) and 𝐾5 (Δ𝑢𝐿 , 𝑟)) with scale r at z=0. The third order
kurtosis 𝐾3 (Δ𝑢𝐿 , 𝑟) (skewness) vanishes on both small and large
scales, where the distribution of Δ𝑢𝐿 is symmetric. The skewness
𝐾3 (Δ𝑢𝐿 , 𝑟) < 0 on the intermediate scale (the distribution of Δ𝑢𝐿
skews toward positive side, see Fig. 26). The negative skewness can
be an important signature of inverse cascade of kinetic energy across
halo mass scales (Xu 2021f).

4.3 First moment of velocity and pair conservation equation

While the generalized kurtosis can be used to characterize distribu-
tions of different velocities, themoments of velocity distributions can
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Figure 15. The generalized kurtosis (4𝑡ℎ , 6𝑡ℎ , and 8𝑡ℎ order) of three ve-
locities varying with scale r at z=0. The generalized kurtosis of Gaussian
distribution is plotted in the same figure (magenta) for comparison. All ve-
locity distributions are non-Gaussian on all scales due to the long-range
gravitational interaction, despite that they can be initially Gaussian. The dis-
tribution of Σ𝑢𝐿 approaches that of 𝑢𝐿 on small scale, while the distribution
ofΣ𝑢𝐿 approaches that ofΔ𝑢𝐿 on large scale. There exist limiting probability
distributions for all velocities on both ends of small and large scales.
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Figure 16. The odd order generalized kurtosis of pairwise velocity
Δ𝑢𝐿varying with scale r at z=0. The third order kurtosis 𝐾3 (Δ𝑢𝐿 , 𝑟 ) (skew-
ness) vanishes on both small and large scales, where distribution of Δ𝑢𝐿 is
symmetric. The skewness 𝐾3 (Δ𝑢𝐿 , 𝑟 ) < 0 on the intermediate scale (distri-
bution skews toward positive side). This negative skewness on the intermedi-
ate scale should be a result of inverse cascade of kinetic energy.

be studied in detail to provide more insights. To validate the algo-
rithm identifying pairs from N-body simulation, the mean pairwise
velocity (first moment) on all scales can be compared against pair
conservation equation that relates the pairwise velocity with density
correlation (Peebles 1980),

〈Δ𝑢𝐿〉
𝐻𝑎𝑟

= −
(
1 + 𝜉 (𝑟, 𝑎)

)
3 (1 + 𝜉 (𝑟, 𝑎))

𝜕 ln
(
1 + 𝜉 (𝑟, 𝑎)

)
𝜕 ln 𝑎

, (41)
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Figure 17. The variation of first moment of pairwise velocity 𝑆𝑙𝑝1 (𝑟 ) =

〈Δ𝑢𝐿 〉 (mean pairwise velocity) with scale r at z=0 (normalized by Hubble
constant H) from N-body simulation (blue solid). Results are compared with
predictions using pair conservation equation for both linear (black dash from
Eq. (42)) and nonlinear regime (red dash from Eq. (43)). Predictions are made
with density correlation 𝜉 (𝑟 ) from N-body simulation.

where 𝜉 (𝑟, 𝑎) = 3𝑟−3
∫ 𝑟
0 𝜉 (𝑦, 𝑎) 𝑦

2𝑑𝑦 is the volume averaged cor-
relation function (model provided in Eq. (34) for large scale). For
linear regime, 𝜉 � 1 and 𝜕 ln 𝜉/𝜕 ln 𝑎 = 2, we have

〈Δ𝑢𝐿〉
𝐻𝑎𝑟

= −
2𝜉 (𝑟, 𝑎)

(
1 + 𝜉 (𝑟, 𝑎)

)
3 (1 + 𝜉 (𝑟, 𝑎)) ≈ −2

3
𝜉 (𝑟, 𝑎) . (42)

For nonlinear regime with 𝜉 � 1 and assuming the scaling with
scale factor as 𝜉 (𝑟, 𝑎) ∝ 𝑎𝛼 (Fig. 9) and 𝜕 ln 𝜉/𝜕 ln 𝑎 = 𝛼, the pair
conservation Eq. (41) reduces to,

〈Δ𝑢𝐿〉
𝐻𝑎𝑟

= −
𝛼
(
1 + 𝜉 (𝑟, 𝑎)

)
3 (1 + 𝜉 (𝑟, 𝑎)) . (43)

On small scale, if stable clustering hypothesis (〈Δ𝑢𝐿〉 = −𝐻𝑎𝑟 that
is demonstrated in (Xu 2021d)) is assumed combined with a self-
similar gravitational clustering with 𝜉 (𝑟, 𝑎) ∝ 𝑎𝛼𝑟𝛾 , we have
〈Δ𝑢𝐿〉
𝐻𝑎𝑟

= −1 and 𝛼 = 𝛾 + 3 (44)

Figure 17 plots the variation of the first moment 𝑆𝑙 𝑝1 (𝑟) = 〈Δ𝑢𝐿〉
(mean pairwise velocity) with scale r (normalized by Hubble con-
stant) at z=0. Results are compared with the prediction from pair
conservation equation for both linear (black dash from Eq. (42)) and
nonlinear regime (red dash from Eq. (43) with 𝛼 = 5/2 from Fig. 9)
using the density correlation 𝜉 (𝑟, 𝑎) obtained from N-body simula-
tion (Fig. 8). Blue line is the normalized pairwise velocity computed
directly from simulation by identifying all particle pairs and associ-
ated velocities. Goodmatchwith pair conservation equation validates
our numerical implementation.
On small scale, an exact expression can be identified from stable

clustering hypothesis (also analytically demonstrated by a two-body
collapse model in (Xu 2021d)),

〈Δ𝑢𝐿〉 = −𝐻𝑎𝑟 and 〈𝑢𝐿〉 = 𝐻𝑎𝑟/2. (45)

For nonlinear regime below a characteristic scale 𝑟𝑡 =

1.3𝑎1/2𝑀𝑝𝑐/ℎ where the longitudinal velocity correlation equals
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Figure 18.Mean (first moment) longitudinal velocity 〈𝑢𝐿 〉 and velocity dif-
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z, normalized by velocity dispersion 𝑢 (𝑎) . Note that 〈Δ𝑢𝐿 〉 = −2〈𝑢𝐿 〉 is not
zero, while 〈𝑢𝐿 〉 = −〈𝑢′

𝐿
〉 and velocity sum 〈Σ𝑢𝐿 〉 = 0 on all scales. For

SG-CFD, the velocity field u and vector r between two particles are correlated
that leads to a nonzero longitudinal velocity 〈𝑢𝐿 〉 = 〈u · r〉 > 0.

the transverse velocity correlation (see Xu 2022e, Figs. 3 and 4), a
better relation to fit the simulation data reads

〈Δ𝑢𝐿〉 = −𝐻𝑎𝑟 − 𝑢𝑎−5/3
(
𝑟

𝑟𝑡

)5/2
, (46)

where 𝑢(𝑎) is one-dimension velocity dispersion in Table 2. On large
scale, from pair conservation Eq. (42), the mean pairwise velocity
can be written as

〈Δ𝑢𝐿〉 ≈ −2
3
𝐻𝑎𝑟𝜉 (𝑟, 𝑎) = −2𝐻𝑎

𝑟2

∫ 𝑟

0
𝜉 (𝑦) 𝑦2𝑑𝑦. (47)

With Eq. (34) for mean correlation 𝜉 (𝑟, 𝑎), the mean pairwise
velocity is simply the derivative of velocity correlation 𝑅2 =

〈
u · u′

〉
(see Xu 2022e, Eq. (120)), we should have

〈Δ𝑢𝐿〉 =
2

𝑎𝐻 𝑓 (Ω0)
𝜕𝑅2
𝜕𝑟

=
2𝑎0𝑢2

𝑎𝐻𝑟2
exp

(
− 𝑟

𝑟2

) (
𝑟

𝑟2
− 4

)
. (48)

Figure 18 plots the mean longitudinal velocity 〈𝑢𝐿〉 and velocity
difference −〈Δ𝑢𝐿〉 at different redshift z. Note that 〈Δ𝑢𝐿〉 = −2〈𝑢𝐿〉
vanishes on both small and large scales. Since 〈𝑢𝐿〉 = −〈𝑢′

𝐿
〉, mean

velocity sum 〈Σ𝑢𝐿〉 = 0 on all scales. 〈𝑢𝐿〉 > 0 and 〈Δ𝑢𝐿〉 <
0 indicate that two particles are moving toward each other due to
gravity. By contrast, 〈𝑢𝐿〉 = 〈Δ𝑢𝐿〉 = 〈Σ𝑢𝐿〉 = 0 on all scales
for incompressible collisional hydrodynamics, where u and r are
independent of each other. Models for pairwise velocity on small and
large scales (Eqs. (46) and (48)) are also presented for comparison.
The entire range of 〈Δ𝑢𝐿〉 can be modeled by smoothly connecting
two models on small and large scales (see Xu 2022e, Eq. (147)).

4.4 Second moment of velocity field

Figure 19 plots the second moments and central moments (normal-
ized by 𝑢2) of three velocities 𝑢𝐿 ,Δ𝑢𝐿 , and

∑
𝑢𝐿 on all scales at z=0.

The longitudinal velocities (𝑢𝐿 and 𝑢
′
𝐿
) must be strongly correlated
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Figure 19. The variation of second moments of 〈𝑢2
𝐿
〉, 〈Δ𝑢2

𝐿
〉 and 〈Σ𝑢2

𝐿
〉

at z=0, normalized by velocity dispersion 𝑢20 of entire system. On small
scale, 〈Δ𝑢2

𝐿
〉 = 〈𝑢2

𝐿
〉 = 〈Σ𝑢2

𝐿
〉/3 = 2𝑢2 and on large scale 〈Δ𝑢2

𝐿
〉 =

〈Σ𝑢2
𝐿
〉 = 2〈𝑢2

𝐿
〉 = 2𝑢2. The difference between the second order longitudinal

structure function 𝑆𝑙𝑝2 (𝑟 ) = 〈Δ𝑢2
𝐿
〉 and central moment 𝑆𝑐𝑝2 (Δ𝑢𝐿 , 𝑟 ) is

due to the nonzero 〈Δ𝑢𝐿 〉 on intermediate scale. By contrast, 𝑆𝑙𝑝2 = 𝑆
𝑐𝑝

2
and 〈𝑢2

𝐿
〉 = 𝑢2 on all scales for incompressible hydrodynamics. Model for

longitudinal dispersion 〈𝑢2
𝐿
〉 in Eq. (60) is also plotted (dotted line).

on small scale due to gravitational interaction and uncorrelated on
large scale. The correlation between 𝑢𝐿 and 𝑢

′
𝐿
leads to〈

Δ𝑢2𝐿

〉
= 2

〈
𝑢2𝐿

〉
(1 − 𝜌𝐿) ,

〈
Σ𝑢2𝐿

〉
= 2

〈
𝑢2𝐿

〉
(1 + 𝜌𝐿) , (49)

where 𝜌𝐿 is the correlation coefficient between 𝑢𝐿 and 𝑢
′
𝐿
. On small

scale, 𝜌𝐿 = 1/2 for 𝑟 → 0 (Eq. (40)). Pairs in small halos are fully
correlated, while pairs in large halos are uncorrelated, such that the
average correlation is around 1/2 (see Xu 2022e, Section 3.3),〈
Δ𝑢2𝐿

〉
=

〈
𝑢2𝐿

〉
=

〈
Σ𝑢2𝐿

〉
/3 = 2𝑢2. (50)

On large scale with 𝜌𝐿 = 0 for 𝑟 → ∞,〈
Δ𝑢2𝐿

〉
=

〈
Σ𝑢2𝐿

〉
= 2

〈
𝑢2𝐿

〉
= 2𝑢2. (51)

By contrast, the incompressible collisional hydrodynamics should
have 〈Δ𝑢2

𝐿
〉 = 0 and 〈Σ𝑢2

𝐿
〉 = 4 on small scale with 𝜌𝐿 = 1 when

𝑟 → 0, and 〈𝑢2
𝐿
〉 = 𝑢2 on all scales.

The difference between second moments and the central moments
of 𝑢𝐿 and Δ𝑢𝐿 on intermediate scale is due to the non-zero first
moment 〈𝑢𝐿〉 and 〈Δ𝑢𝐿〉, as shown in Fig. 19. All second moments
increase with r initially and decrease for 𝑟 > 𝑟𝑡 . Model for 〈𝑢2𝐿〉 on
small scale is proposed in Eq. (60), while model for 〈𝑢2

𝐿
〉 on large

scale is proposed in our previous work (see Xu 2022e, Eq. (136)).
By identifying all pairs of particles with different separation r, we

can compute the variance of velocity on different scales r, namely
the total variance 〈𝑢2〉 = 〈u · u〉, the longitudinal variance 〈𝑢2

𝐿
〉, and

the transverse variance 〈𝑢2
𝑇
〉 = 〈u𝑇 · u𝑇 〉, where〈

𝑢2
〉
= 〈u · u〉 =

〈
𝑢2𝐿

〉
+ 〈u𝑇 · u𝑇 〉 . (52)

Figure 20 plots three velocity dispersions 〈𝑢2〉, 〈𝑢2
𝐿
〉, and 〈𝑢2

𝑇
〉 on

different scale r at z=0. The initial increase of all three dispersions
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Figure 20. The variation of velocity dispersions 〈𝑢2 〉 = 〈u · u〉, 〈𝑢2
𝐿
〉, and

〈𝑢2
𝑇
〉 = 〈u𝑇 ·u𝑇 〉 with scale r at z=0 (normalized by 𝑢20 ). The initial increase

of all dispersions with r for 𝑟 < 𝑟𝑡 is mostly due to the increasing velocity
dispersion with halo size on small scale. With more pairs of particles from
different halos on larger scale 𝑟 > 𝑟𝑡 , dispersion starts to decrease with r.
With all pairs of particles from different halos, velocity dispersion reaches a
plateau with 〈𝑢2 〉 = 3〈𝑢2

𝐿
〉 = 3𝑢2. The variation of 〈𝑢2 〉 can be related to

density correlation 𝜉 (𝑟 ) through dynamic relations on large scale (see Xu
2022f, Eq. (113)).

with r for 𝑟 < 𝑟𝑡 (pair of particles are more likely from same halos)
is mostly due to the increase of velocity dispersion with halo size.
With more pairs of particles from different halos for scale 𝑟 > 𝑟𝑡 , the
velocity dispersions sharply decrease with r. At some large scale r,
almost all pair of particles are from different halos, where velocity
dispersions reach a plateau with 〈𝑢2〉 = 3〈𝑢2

𝐿
〉 = 3𝑢2. The variation

of 〈𝑢2〉 can be related to density correlation 𝜉 (𝑟) through dynamic
relations on large scale (see Xu 2022f, Eq. (113))
For particle pairs separated by scale r, the second moments of

longitudinal and transverse velocities are comparable on both small
and large scales. However, 〈𝑢2

𝐿
〉 > 〈𝑢2

𝑇
〉/2 on intermediate scales

with 〈𝑢2
𝐿
〉 > 〈𝑢2〉/3, i.e. energy is not equipartitioned on inter-

mediate scale. The velocity dispersion on small scale 〈𝑢2
𝐿
〉
��
𝑟=0 ≈

2 〈𝑢2
𝐿
〉
��
𝑟=∞, i.e. the kinetic energy on small scale is twice of the

kinetic energy on large scale.
The variation of pairwise velocity dispersion (or the second order

longitudinal structure function)

𝑆
𝑙 𝑝

2 =

〈
(Δ𝑢𝐿)2

〉
=

〈(
𝑢
′
𝐿 − 𝑢𝐿

)2〉
and velocity sum〈(∑︁

𝑢𝐿

)2〉
=

〈(
𝑢
′
𝐿 + 𝑢𝐿

)2〉 (53)

are also plotted in the same figure for comparison.

4.5 Two-thirds law for even order moments of pairwise velocity

Now we focus on the second order structure function 𝑆𝑙 𝑝2 (pairwise
velocity dispersion in Eqs. (39) and (53)) that is defined as

𝑆
𝑙 𝑝

2 (𝑟) =
〈
(Δ𝑢𝐿)2

〉
= 2

(〈
𝑢2𝐿

〉
− 𝐿2 (𝑟)

)
, (54)
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Figure 21. The variation of pairwise velocity dispersion 𝑆𝑙𝑝2 (𝑟 )/𝑢2 with
scale r and redshifts z. The two limits 𝑆𝑙𝑝2 (𝑟 → 0) = 𝑆𝑙𝑝2 (𝑟 → ∞) = 2𝑢2
due to correlation coefficients 𝜌𝐿 = 1/2 and 𝜌𝐿 = 0 between longitudinal
velocities 𝑢𝐿 and 𝑢

′
𝐿
on small and large scales. Two second order structure

functions 𝑆𝑙𝑝2 (𝑟 ) ≈ 𝑆𝑙2 (𝑟 ) at high redshift z when velocity is still Gaussian
and small scale structures are not fully developed.

and a modified version of longitudinal structure function 𝑆𝑙2 (𝑟)

𝑆𝑙2 (𝑟) = 2
(
𝑢2 − 𝐿2 (𝑟)

)
. (55)

With equations for 〈𝑢2
𝐿
〉 (seeXu 2022e, Eq. (136)) and longitudinal

correlation function 𝐿2 = 〈𝑢𝐿𝑢
′
𝐿
〉 (see Xu 2022e, Eq. (111)), 𝑆𝑙 𝑝2 (𝑟)

on large sale can be easily calculated. The structure function 𝑆𝑙2 (𝑟)
on small scale is also identified to follow a one-fourth law ∝ 𝑟1/4 (see
Xu 2022e, Eq. (137)). However, the knowledge of structure function
𝑆
𝑙 𝑝

2 (𝑟) on small scale is still missing. Figure 21 presents the variation
of pairwise velocity dispersion 𝑆𝑙 𝑝2 (𝑟) with scale r and redshift z
with limits 𝑆𝑙 𝑝2 (𝑟 → 0) = 𝑆

𝑙 𝑝

2 (𝑟 → ∞) = 2𝑢2 due to correlation
coefficient 𝜌𝐿 = 1/2 and 𝜌𝐿 = 0 on small and large scales. Also,
𝑆
𝑙 𝑝

2 (𝑟) ≈ 𝑆𝑙2 (𝑟) for high redshift z, when velocity distribution is
nearly Gaussian and 〈𝑢2

𝐿
〉 ≈ 𝑢2 on all scales (Eqs. (54) and (55)).

Both two-thirds and four-fifths laws (Eq. (1)) in incompressible
hydrodynamics are no longer valid for SG-CFD due to the colli-
sionless nature of flow. However, since the peculiar velocity field is
of constant divergence on small scale, second order structure and
correlation functions for peculiar velocity should satisfy the same
kinematic relations as if the peculiar velocity field is incompressible
(Xu 2022e). In addition, just like the direct energy cascade in 3D
incompressible turbulence, there also exists a constant energy flux
𝜀𝑢 < 0 in the mass propagation range for inverse kinetic energy
cascade from small to large mass scales (see Xu 2021f, Eqs. (27)
and (48)) in SG-CFD. Therefore, we expect the second order struc-
ture function 𝑆𝑙 𝑝2 (𝑟) on the small scale should be determined by the
constant energy flux 𝜀𝑢 in some way.
Since the viscous effect is not present in SG-CFD, a reduced

structure function 𝑆𝑙 𝑝2𝑟 = 𝑆
𝑙 𝑝

2 − 2𝑢2 can be introduced with a limit
lim
𝑟→0

𝑆
𝑙 𝑝

2𝑟 = 0. The limiting pairwise velocity dispersion is inherent to
all particle pairs with 𝑟 → 0 and equals the kinetic energy on small

Vol. 000, 1–19 (2022)



Density and velocity distributions in dark matter flow 13

10
-2

10
-1

10
0

10
1

10
2

r (Mpc/h) 

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

z=0.0

z=0.1

z=0.3

z=0.5

z=1.0

z=1.5

z=2.0

z=3.0

z=5.0

z=10.0

From Eq. (56)

Slope 2/3

t

Figure 22. The variation of reduced longitudinal structure functions 𝑆𝑙𝑝2𝑟 =

(𝑆𝑙𝑝2 − 2𝑢2) with scale r at different redshifts z, normalized by velocity
dispersion 𝑢2 (𝑎) . A scaling of 𝑆𝑙𝑝2𝑟 ∝ (−𝜀𝑢)2/3𝑟2/3 (two-thirds law) can
be clearly identified in a range that is gradually expanding with time, where
𝜀𝑢 < 0 is the constant rate of energy cascade. The model from Eq. (56) is
also presented for comparison. This relation might be used to predict dark
matter particle mass and properties on small scale (Xu 2022i).

scale, lim
𝑟→0

𝑆
𝑙 𝑝

2 = lim
𝑟→0

〈𝑢2
𝐿
〉 = 2𝑢2. The reduced structure function

𝑆
𝑙 𝑝

2𝑟 is the extra pairwise velocity dispersion purely due to the inverse
energy cascade. It should be determined by and only by the constant
energy flux 𝜀𝑢 (𝑚2/𝑠3) and scale r. By a simple dimensional analysis,
𝑆
𝑙 𝑝

2𝑟 must follow a two-thirds law, i.e. 𝑆
𝑙 𝑝

2𝑟 ∝ (−𝜀𝑢)2/3𝑟2/3.
Here to test this idea, Figure 22 plots the variation of reduced

second order structure function 𝑆𝑙 𝑝2𝑟 with scale r at different redshifts
z. The range with 𝑆𝑙 𝑝2𝑟 ∝ 𝑟2/3 can be clearly identified that is formed
along with the formation of halo structures. This range gradually
extends to smaller and smaller length scales with time. This is a very
interesting finding that the constant energy flux 𝜀𝑢 determines a new
two-thirds law for a reduced second order structure function 𝑆𝑙 𝑝2𝑟 in
self-gravitating collisionless dark matter flow.
As expected, the reduced structure function quickly converges to

𝑆
𝑙 𝑝

2𝑟 ∝ (−𝜀𝑢)2/3𝑟2/3 with halo structures developed. The length scale
at which 𝑆𝑙 𝑝2 is at its maximum is about 𝑟𝑑 ≈ 0.7𝑎𝑀𝑝𝑐/ℎ, same as
the length scale for 〈𝑢2

𝐿
〉 (see Xu 2022e, Fig. 22). Therefore, second

order longitudinal structure function (pairwise velocity dispersion)
on small scale can be finally modelled as,

𝑆
𝑙 𝑝

2 (𝑟) = 𝑢2
[
2 + 𝛽∗2

(
𝑟

𝑟𝑠

)2/3]
= 2𝑢2 + 𝑎3/2𝛽∗2 (−𝜀𝑢)

2/3 𝑟2/3, (56)

where the length scale 𝑟𝑠 is purely determined by 𝑢0 and 𝜀𝑢 with

𝑟𝑠 = −
𝑢30
𝜀𝑢

=
4
9
𝑢0
𝐻0

=
2
3
𝑢0𝑡0 ≈ 1.58𝑀𝑝𝑐/ℎ, (57)

which is roughly the scale below which two-thirds law is valid. Rate
of energy cascade 𝜀𝑢 is estimated as,

−𝜀𝑢 =
3
2
𝑢20
𝑡0

=
9
4
𝑢20𝐻0 ≈ 0.6345

𝑢30
𝑀𝑝𝑐/ℎ = 4.6 × 10−7𝑚2/𝑠3. (58)
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Figure 23. The variation of even and odd order structure functions with scale
r at z=0. The plot demonstrates that even order reduced structure functions
scales as 𝑆𝑙𝑝2𝑛𝑟 ∝ 𝛽∗2𝑛𝑟

2/3 on small scale (Eq. (61), while odd order structure
functions scales as 𝑆𝑙𝑝2𝑛+1 ∝ 𝑟 . The numbers 2, 30, 1280. . . are related to the
generalized kurtosis 𝐾2𝑛 (Δ𝑢𝐿 , 𝑟 ) for the limiting distribution of pairwise
velocity Δ𝑢𝐿 when 𝑟 → 0 (Eq. (61)).

Constant 𝛽∗2 ≈ 9.5 can be found from Fig. 22, where the model (56)
is also presented for comparison.
With the model for 𝑆𝑙 𝑝2 (𝑟) in Eq. (56), Eq. (54), and model for

longitudinal correlation 𝐿2 (𝑟) (see Xu 2022e, Eq. (138)),

𝐿2 (𝑟) = 𝑢2
[
1 −

(
𝑟

𝑟1

)𝑛]
, (59)

the dispersion
〈
𝑢2
𝐿

〉
of longitudinal velocity (in Fig. 20) on small

scale can be finally modeled as,〈
𝑢2𝐿

〉
= 𝑢2

[
2 −

(
𝑟

𝑟1

)𝑛
+ 1
2
𝛽∗2

(
𝑟

𝑟𝑠

)2/3]
, (60)

where 𝑛 ≈ 1/4 and 𝑟1 (𝑎) ≈ 19.4𝑎−3𝑀𝑝𝑐/ℎ.
Next, the higher order structure functions can be similarly studied.

Figure 23 plots the variation of even and odd order structure func-
tions 𝑆𝑙 𝑝2𝑛+1 (𝑟) with scale r at z=0. It is now clear that the original
Kolomgrov’s scaling (Eq. (1)) for incompressible flow does not ap-
ply for self-gravitating collisionless dark matter flow. On small scale,
all even order reduced structure functions follow the same scaling
of 𝑆𝑙 𝑝2𝑛𝑟 ∝ 𝛽∗2𝑛𝑟

2/3, while all odd order structure functions follow a
linear scaling such that 𝑆𝑙 𝑝2𝑛+1 ∝ 𝑟 .
The general form for even order structure function 𝑆𝑙 𝑝2𝑛 (𝑟) can be

precisely modeled as,

𝑆
𝑙 𝑝

2𝑛 (𝑟) = 𝑢
2𝑛

[
2𝑛𝐾2𝑛 (Δ𝑢𝐿 , 0) + 𝛽∗2𝑛

(
𝑟

𝑟𝑠

)2/3]
, (61)

where 𝐾2𝑛 (Δ𝑢𝐿 , 𝑟 = 0) is the generalized kurtosis on the smallest
scale that we can find from Fig. 15 (given in Table 4 and modeled by
Eq. (80)). The universal constants 𝛽∗2𝑛 are determined as

𝛽∗2 = 9.5, 𝛽
∗
4 = 300, 𝛽

∗
6 = 2.25 × 10

4, and 𝛽∗8 = 2.75 × 10
6

or approximately

𝛽∗2𝑛 ≈ 101.826𝑛−1.003.

(62)
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Figure 24. The variation of ratio 𝑆𝑙𝑝2𝑛+1 (𝑟 )/[𝑆
𝑙𝑝

1 (𝑟 )𝑆𝑙𝑝2𝑛 (𝑟 ) ] for n = 1, 2,
and 3 with scale r at z=0. For n=1, this ratio is around 3 as predicted by the
generalized stable clustering hypothesis (GSCH) (Xu 2021d).

4.6 GSCH for odd order moments of pairwise velocity

The mean pairwise velocity (first moment) 𝑆𝑙 𝑝1 (𝑟) = −𝐻𝑎𝑟 on small
scale (Fig. 18) is from the stable clustering hypothesis, which can
be precisely demonstrated by a two-body collapse model (TBCM) in
expanding background (see Xu 2021d, Eq. (117)). The same TBCM
model can be extended to higher order moments, i.e. the generalized
stable clustering hypothesis (see Xu 2021d, Eq. (123)),

𝑆
𝑙 𝑝

2𝑛+1 (𝑟) = (2𝑛 + 1) 𝑆𝑙 𝑝1 (𝑟) 𝑆𝑙 𝑝2𝑛 (𝑟) , (63)

or equivalently

𝑆
𝑙 𝑝

2𝑛+1 (𝑟) = −2𝑛 (2𝑛 + 1) 𝐾2𝑛 (Δ𝑢𝐿 , 𝑟 = 0) 𝐻𝑎𝑟𝑢2𝑛 . (64)

The generalized kurtosis on the smallest scale 𝐾2𝑛 (Δ𝑢𝐿 , 𝑟 = 0) is
presented in next section (Table 4 and Eq. (80)). With odd moments
from Fig. 23, Fig. 24 presents the ratio 𝑆𝑙 𝑝2𝑛+1 (𝑟)/[𝑆

𝑙 𝑝

1 (𝑟)𝑆𝑙 𝑝2𝑛 (𝑟)] for
n=1, 2 and 3 at z=0. For n=1, this ratio is around 3 on small scale.
For n = 2 and 3, this ratio slightly deviates from predicted value of
(2𝑛 + 1) with greater noise on small scale (see Xu 2021d, Fig. 8).
Finally, Table 3 presents a complete comparison of velocity field

between incompressible hydrodynamics and self-gravitating colli-
sionless dark matter flow (SG-CFD).

5 REDSHIFT AND SCALE VARIATION OF VELOCITY
DISTRIBUTIONS

5.1 Modeling velocity distributions on small scale

On small scale, velocities 𝑢𝐿 and Σ𝑢𝐿 should have the same lim-
iting distribution with 𝑟 → 0 (Fig. 15). Velocity distribution that
maximizes the system entropy was studied in our previous work (see
Xu 2021c, Fig. 4). Based on the halo description of self-gravitating
system, 𝑢𝐿 on small scale should follow a X distribution to maximize
system entropy. The X distribution reads (see Xu 2021c, Eq. (32)),

𝑋 (𝑣) = 1
2𝛼𝑣0

𝑒
−
√︃
𝛼2+(𝑣/𝑣0)2

𝐾1 (𝛼)
, (65)

Table 3. The velocity fields of incomcpressible flow and SG-CFD

Quantity Incompressible flow Self-gravitating
collisionless flow

〈𝑢𝐿 〉 0 for all scale r
lim

𝑟→0,∞
〈𝑢𝐿 〉 = 0

varying with r〈
𝑢2
𝐿

〉
𝑢2 for all scale r

lim
𝑟→0

〈
𝑢2
𝐿

〉
= 2𝑢2

lim
𝑟→∞

〈
𝑢2
𝐿

〉
= 𝑢2〈

𝑢3
𝐿

〉
0 for all scale r

lim
𝑟→0,∞

〈
𝑢3
𝐿

〉
= 0

varying with r
PDF of 𝑢𝐿 Gaussian Non-gaussian on all scales

〈Δ𝑢𝐿 〉 0 for all scale r
lim

𝑟→0,∞
〈Δ𝑢𝐿 〉 = 0

varying with r〈
Δ𝑢2

𝐿

〉 lim
𝑟→0

〈
Δ𝑢2

𝐿

〉
= 0

lim
𝑟→∞

〈
Δ𝑢2

𝐿

〉
= 𝑢2

lim
𝑟→0

〈
Δ𝑢2

𝐿

〉
= 2𝑢2

lim
𝑟→∞

〈
Δ𝑢2

𝐿

〉
= 2𝑢2

𝐾3 (Δ𝑢𝐿)
lim
𝑟→0

𝐾3 (Δ𝑢𝐿) = −0.4
lim
𝑟→∞

𝐾3 (Δ𝑢𝐿) = 0
lim

𝑟→0,∞
𝐾3 (Δ𝑢𝐿) = 0

varying with r

𝐾4 (Δ𝑢𝐿)

lim
𝑟→0

𝐾4 (Δ𝑢𝐿) ≈ 4
(depends on Re)
lim
𝑟→∞

𝐾4 (Δ𝑢𝐿) = 3
(Gaussian)

lim
𝑟→0

𝐾4 (Δ𝑢𝐿) = 7.5
lim
𝑟→∞

𝐾4 (Δ𝑢𝐿) = 4.2

〈∑𝑢𝐿 〉 0 on all scales 0 on all scales〈∑
𝑢2
𝐿

〉 lim
𝑟→0

〈∑
𝑢2
𝐿

〉
= 4𝑢2

lim
𝑟→∞

〈∑
𝑢2
𝐿

〉
= 2𝑢2

lim
𝑟→0

〈
Δ𝑢2

𝐿

〉
= 6𝑢2

lim
𝑟→∞

〈
Δ𝑢2

𝐿

〉
= 2𝑢2

where 𝛼 is a shape parameter and 𝐾𝑛 (𝑥) is the modified Bessel
function of the second kind. The velocity scale 𝑣0 satisfies

𝛼
𝐾2 (𝛼)
𝐾1 (𝛼)

𝑣20 =
〈
𝑢2𝐿

〉
, (66)

where 〈𝑢2
𝐿
〉 is the dispersion of velocity 𝑢𝐿 in Fig. 19. It can be

estimated that 𝑣20 ≈ 0.84𝑢20 with 〈𝑢2
𝐿
〉(𝑟 = 0.1𝑀𝑝𝑐/ℎ) = 2.5𝑢20

(from Fig. 19) at z=0. With shape parameter 𝛼 ≈ 1.33 and 𝑣20 =

0.84𝑢20, theX distribution is plotted in Fig. 25 for comparisonwith the
distribution of velocity 𝑢𝐿 . The velocity sum Σ𝑢𝐿 should also follow
the same X distribution with a different variance, i.e. 〈(Σ𝑢𝐿)2〉 ≈
3〈(𝑢𝐿)2〉. All distributions are symmetric on small scale.
The longitudinal velocity has a finite limiting correlation 𝜌𝐿 = 1/2

at 𝑟 = 0 (see Xu 2022e, Fig. 16) such that the limiting distribution of
velocity difference (pairwise velocity) Δ𝑢𝐿 must be different from
the distribution of 𝑢𝐿 (different Kurtosis in Fig. 15). This effect, i.e.
the correlation between longitudinal velocities 𝑢𝐿 and 𝑢

′
𝐿
from the

same halo decreases with increasing halo size (Eq. (73)) (also see
Xu 2022e, Section 3.3.1), was not considered in previous work to
find the distribution of Δ𝑢𝐿 (Sheth 1996). The distribution of Δ𝑢𝐿
on small scale cannot be Gaussian because of strong gravitational
interaction (also see Fig. 15), whose moment and kurtosis can be
estimated in next Section.

5.2 Distribution of pairwise velocity on small scale

The limiting distribution of Δ𝑢𝐿 when 𝑟 → 0 is different from
the distribution of 𝑢𝐿 (Figs. 15 and 25). The explicit form of that
distribution is still unknown and should be explored in the future.
However, the moments of Δ𝑢𝐿 when 𝑟 → 0 can be rigourously
estimated. This is required to compute the generalized kurtosis in
Eq. (61) for modeling pairwise velocity on small scale.
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Figure 25. Distributions of 𝑢𝐿 , Δ𝑢𝐿 , and Σ𝑢𝐿 on scale of r=0.1Mpc/h
at z=0, i.e. log10 𝑃𝑢𝐿 vs. 𝑢𝐿/𝑢0. All distributions are symmetric with a
vanishing skewness. The X distribution that maximizes the system entropy
(Eq. (65)) is also plotted and matches the distribution of longitudinal velocity
𝑢𝐿 . Distributions have a Gaussian core for small velocity and exponential
wings for large velocity.

Let’s start from the H distribution for the fraction of particles
with a velocity dispersion 𝜎2𝑣 (i.e. the virial dispersion of a halo that
particle belongs to) (see Xu 2021c,e, Eq. (6)). For system with total
N collisionless particles, total number of particles in a halo group
with all halos of the same size 𝑛𝑝 should be

𝑛𝑝𝑁ℎ = 𝑁𝐻

(
𝜎2𝑣

)
𝑑𝜎2𝑣 , (67)

where 𝑁ℎ is the number of halos in a halo group of size 𝑛𝑝 .
Let’s assume the number of particle pairs 𝑛𝑝𝑎𝑖𝑟 with a small

separation r from halos of size 𝑛𝑝 is proportional to the halo size 𝑛𝑝
with a power law, 𝑛𝑝𝑎𝑖𝑟 = 𝜇𝑝 (𝑛𝑝)𝛼𝑝 , where 𝜇𝑝 is a proportional
constant. The maximum number of pairs for a given halo size 𝑛𝑝 is
𝑛𝑝𝑎𝑖𝑟 = 𝑛𝑝

(
𝑛𝑝 − 1

)
/2 if all 𝑛𝑝 particles in that halo collapse to a

single point, where we should have 𝛼𝑝 = 2. In reality, the exponent
𝛼𝑝 should satisfy 1 < 𝛼𝑝 < 2.
The number of pairs in a halo group (𝑁ℎ halos of size 𝑛𝑝) reads,

𝑁ℎ𝑛𝑝𝑎𝑖𝑟 = 𝑁𝜇𝑝
(
𝑛𝑝

)𝛼𝑝−1 𝐻
(
𝜎2𝑣

)
𝑑𝜎2𝑣 ,

or the total number of pairs with a given separation r in entire N-body
system should be,

𝑁𝑝𝑎𝑖𝑟 =

∫ ∞

0
𝑁𝜇𝑝

(
𝑛𝑝

)𝛼𝑝−1 𝐻
(
𝜎2𝑣

)
𝑑𝜎2𝑣 . (68)

From virial theorem, the halo size 𝜎2𝑣 ∝ (𝑛𝑝)2/3 and we can write
𝑛𝑝 = 𝜇𝑣 (𝜎2𝑣/𝜎2ℎ)

3/2, where 𝜎2
ℎ
is the halo velocity dispersion (the

dispersion of halo velocity in a halo group) that is independent of
halo mass (see Xu 2021f, Fig. 2) and 𝜇𝑣 is a proportional constant.
The H distribution is naturally related to the dimensionless halo

mass function 𝑓 (𝜈) (see Xu 2021e, Eq. (59)),

𝐻

(
𝜎2𝑣

)
𝑑𝜎2𝑣 = 𝑓 (𝜈) 𝑑𝜈, (69)

where the dimensionless variable 𝜈 = 𝜎2𝑣/𝜎2ℎ . Therefore, Eq. (68)

can be transformed to
𝑁𝑝𝑎𝑖𝑟

𝑁𝜇𝑝 (𝜇𝑣 )𝛼𝑝−1
=

∫ ∞

0
𝑓 (𝜈) 𝜈

3
2 (𝛼𝑝−1)𝑑𝜈

or equivalently,∫ ∞

0
𝛽𝑝 𝑓 (𝜈) 𝜈𝑝𝑑𝜈 = 1,

(70)

i.e. 𝛽𝑝 𝑓 (𝜈) 𝜈𝑝𝑑𝜈 is the fraction of pairs in halo group with a given
size where the exponent

𝑝 = 3
(
𝛼𝑝 − 1

)
/2. (71)

Since velocity 𝑢𝐿 from the same halo group is nearly Gaussian
(see Xu 2021c, Fig. 3), the distribution of Δ𝑢𝐿 = 𝑢

′
𝐿
− 𝑢𝐿 can be

obtained from the joint Gaussian distribution of 𝑢𝐿 and 𝑢
′
𝐿
with a

halo size-dependent correlation coefficient 𝜌𝑐𝑜𝑟
(
𝑛𝑝

)
,

𝑃Δ𝑢𝐿 (𝑥) =
∫ ∞

0

𝑒−𝑥
2/[4(1−𝜌𝑐𝑜𝑟 )𝜎2] 𝛽𝑝 𝑓 (𝜈) 𝜈𝑝𝑑𝜈√

2𝜋
√︁
2 (1 − 𝜌𝑐𝑜𝑟 )𝜎

. (72)

The correlation 𝜌𝑐𝑜𝑟 (seeXu 2022e, Eq. (58)) and the total particle
velocity dispersion 𝜎2 read

𝜌𝑐𝑜𝑟
(
𝑛𝑝

)
= 𝜎2

ℎ
/𝜎2 and 𝜎2

(
𝑛𝑝

)
= 𝜎2𝑣

(
𝑛𝑝

)
+ 𝜎2

ℎ
, (73)

where 𝜎2
ℎ
and 𝜎2𝑣 are the halo velocity dispersion and halo virial

dispersion, respectively.
The moment generating function and the corresponding moments

can be finally obtained from Eq. (72),∫ ∞

−∞
𝑃Δ𝑢𝐿 (𝑥) 𝑒𝑥𝑡𝑑𝑥 =

∫ ∞

0
𝛽𝑝 𝑓 (𝜈) 𝜈𝑝𝑒 (1−𝜌𝑐𝑜𝑟 )𝜎

2𝑡2𝑑𝜈

=

∫ ∞

0
𝛽𝑝 𝑓 (𝜈) 𝜈𝑝𝑒𝜈𝜎

2
ℎ
𝑡2𝑑𝜈,

(74)

𝑀𝑚 (Δ𝑢𝐿) =
𝑚!

(𝑚/2)!

∫ ∞

0
𝛽𝑝 𝑓 (𝜈) 𝜈𝑝+𝑚/2𝑑𝜈𝜎𝑚

ℎ
. (75)

We can use the double-λ mass function (see Xu 2021a, Eq. (98))
that is proposed based on the inverse mass cascade theory, where the
dimensionless mass function 𝑓 (𝜈) reads,

𝑓 (𝜈) = 𝑓𝐷𝜆 (𝜈) =
(
2√𝜂0

)−𝑞
Γ (𝑞/2) 𝜈𝑞/2−1 exp

(
− 𝜈

4𝜂0

)
, (76)

where 𝜂0 = 0.76 and 𝑞 = 0.556 for the best fit of mass function to
simulation data. The normalization factor in Eq. (70) should be

𝛽𝑝 =
𝑁𝜇𝑝 (𝜇𝑣 )𝛼𝑝−1

𝑁𝑝𝑎𝑖𝑟
=

Γ (𝑞/2)(
2√𝜂0

)2𝑝
Γ (𝑝 + 𝑞/2)

. (77)

Finally, the distribution of pairwise velocity 𝑃Δ𝑢𝐿 should satisfy
(from Eq. (74))∫ ∞

−∞
𝑃Δ𝑢𝐿 (𝑥) 𝑒𝑥𝑡𝑑𝑥 = 1(

1 − 4𝜂0𝜎2ℎ𝑡
2
) 𝑝+𝑞/2 , (78)

such that the moments of any order m can be obtained as,

𝑀𝑚 (Δ𝑢𝐿) =
𝑚!

(
2√𝜂0

)𝑚
(𝑚/2)!Γ (𝑝 + 𝑞/2) Γ

(
1
2
(𝑚 + 2𝑝 + 𝑞)

)
𝜎𝑚
ℎ
. (79)

The generalized kurtosis for pairwise velocity Δ𝑢𝐿 on small scale is,

𝐾2𝑛 (Δ𝑢𝐿) =
(2𝑛)!
𝑛!2𝑛

Γ (𝑛 + 𝑝 + 𝑞/2) [Γ (𝑝 + 𝑞/2)]𝑛−1
[Γ (1 + 𝑝 + 𝑞/2)]𝑛 . (80)
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Table 4. Generalized kurtosis of velocity on small and large scales at z=0

Scale Velocity
fields

Distribution 4𝑡ℎ 6𝑡ℎ 8𝑡ℎ

𝑟 → 0 𝑢𝐿 , Σ𝑢𝐿 N-body, z=0, Fig. 15 4.8 57 1200
𝑟 → 0 Δ𝑢𝐿 N-body, z=0, Fig. 15 7.5 160 6000
𝑟 → 0 𝑢𝐿 , Σ𝑢𝐿 𝑋 (𝑥) (Eq. (65)) 4.6 48.9 944.8
𝑟 → 0 Δ𝑢𝐿 Eq. (80) 7.7 159.24 6356

𝑟 → ∞ Δ𝑢𝐿 ,Σ𝑢𝐿 N-body, z=0, Fig. 15 4.181 41.46 670.8
𝑟 → ∞ 𝑢𝐿 N-body, z=0 Fig. 15 5.39 85.78 2800
𝑟 → ∞ Δ𝑢𝐿 ,Σ𝑢𝐿 Logistic (Eq. (82)) 4.2 279/7 685.8
𝑟 → ∞ 𝑢𝐿 𝑃𝑢𝐿 (𝑥)(Eq. (85)) 5.4 78.4 2269.8

Laplace distribution 6 90 2520
Gaussian distribution 3 15 105

With 𝜂0 = 0.76 and 𝑞 = 0.556 for double-λ mass function (see
Xu 2021a, Eq. (98) ), 𝛽𝑝 ≈ 1.5426 from Eq. (77). Using the Kur-
tosis values for Δ𝑢𝐿 on small scale from simulation (Table 4), the
parameter 𝑝 ≈ 0.36 or exponent 𝛼𝑝 ≈ 1.24 (from Eq. (71)) can be
obtained, and the total number of pairs 𝑁𝑝𝑎𝑖𝑟 with 𝑟 → 0 should be
(from Eq. (77))

𝑁𝑝𝑎𝑖𝑟

𝑁
=
𝜇𝑝 (𝜇𝑣 )𝛼𝑝−1

𝛽𝑝
, (81)

where both constants 𝜇𝑝 and 𝜇𝑣 can be obtained from simulation
(𝜇𝑝 ≈ 0.21 and 𝜇𝑣 ≈ 14 from N-body simulation in Section 2 for
particle pairs with a separation of 𝑟=0.1Mpc/h).
The general kurtosis for Δ𝑢𝐿 computed from Eq. (80) are listed

in Table 4 and agrees well with N-body simulation. Table 4 lists the
generalized kurtosis of three types of velocities on small and large
scales, both from simulations and corresponding models.
Again, the pairwise velocity Δ𝑢𝐿 is usually approximated by an

exponential (Laplace) distribution (Sheth 1996). This seems not ac-
curate as the generalized kurtosis of distribution ofΔ𝑢𝐿 fromN-body
simulations does not agree with that of exponential distribution on
both small and large scales.

5.3 Velocity distributions on intermediate scale

Figure 26 presents velocity distributions on the intermediate scale
r𝑡=1.3Mpc/h. Distributions of Δ𝑢𝐿 and 𝑢𝐿 are non-symmetric with
nonzero skewness that is necessary as kinetic energy cascaded from
small scale needs to be consumed to grow halos on the intermediate
scale. The velocity sum Σ𝑢𝐿 is symmetric on all scales.
Figure 27 plots the redshift variation of generalized kurtosis 𝐾4,

𝐾6 and 𝐾8 of pairwise velocity Δ𝑢𝐿 for z=0, 0.3, 1, and 2.0. Kurtosis
ofGaussian distribution is also plotted for reference.All velocities are
initially Gaussian. With most pairs of particles from the same halo,
the distribution of pairwise velocity Δ𝑢𝐿 on small scale converges to
limiting distribution (Eq. (80)) much faster due to strong intra-halo
gravitational interaction. While the distribution of Δ𝑢𝐿for particle
pairs from different halos on large scale converges much slower due
to weaker inter-halo gravitational interaction and greater distance.
We will revisit this in Fig. 30. Kurtosis on the intermediate scales
is much greater than that on both small and large scales. Figure 28
plots the variation of 𝐾3(or skewness) of pairwise velocity Δ𝑢𝐿 for
z=0, 0.3, 1, and 2.0 on small and intermediate scales. The skewness
𝐾3 ≈ 0 on small scale and 𝐾3 < 0 on intermediate scale. A non-zero
skewness is a necessary feature of inverse energy cascade.
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Figure 26.Distributions of𝑢𝐿 ,Δ𝑢𝐿 , andΣ𝑢𝐿 on intermediate scale of r = 1.3
Mpc/h at z=0, i.e. log10 𝑃𝑢𝐿 vs. 𝑢𝐿/𝑢0. Distribution of Σ𝑢𝐿 is symmetric,
while the distribution of Δ𝑢𝐿 is non-symmetric with non-zero (negative)
skewness (Fig. 28) and skew toward positive side. This is a necessary feature
of inverse energy cascade. The distribution of 𝑢𝐿 is also non-symmetric with
a non-zero mean 〈𝑢𝐿 〉.
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Figure 27.The redshift evolution of generalized kurtosis for pairwise velocity
Δ𝑢𝐿 at redshift z= 2.0, 1.0, 0.3, and 0. Kurtosis for Gaussian distribution
are also plotted for reference (purple lines). The distribution of Δ𝑢𝐿 is non-
Gaussian on all scales, while the evolution of distribution is much faster on
small scale due to strong gravitational interaction in halos (also see Fig. 30).

5.4 Modeling velocity distributions on large scale

On large scale, velocities Δ𝑢𝐿 and Σ𝑢𝐿 have the same distribution
with 𝑟 → ∞ (Fig. 15 and Table 4). The distribution of 𝑢𝐿 at 𝑟 → ∞
has greater kurtosis than Δ𝑢𝐿 and Σ𝑢𝐿 . The non-Gaussian feature
on large scale could be a manifestation of the long-range nature of
gravitational interaction. By contrast, velocity is always Gaussian on
large scale for incompressible flow with short range interaction.
The distribution of pairwise velocity Δ𝑢𝐿 on large scale is usually

assumed to be exponential in literature that is not smooth (non-
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Figure 28. The redshift evolution of skewness 𝐾3 (third order generalized
kurtosis) of Δ𝑢𝐿 on intermediate scale. The skewness 𝐾3 ≈ 0 on small scale
and𝐾3 < 0 on intermediate scale. A non-zero skewness is a necessary feature
of inverse energy cascade.
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Figure 29a. Distributions of 𝑢𝐿 , Δ𝑢𝐿 , and Σ𝑢𝐿 on scale of r = 100 Mpc/h
at z=0, i.e. log10 𝑃𝑢𝐿 vs. 𝑢𝐿/𝑢0 (normalized by 𝑢0). On large scale, all
distributions are symmetric. A logistic distribution can be used to model the
distribution of Δ𝑢𝐿 and Σ𝑢𝐿 . At large velocity, all distributions approach an
exponential function.

differentiable) at zero velocity (Fig. 29a and 29b). An improvement
can be aLogistic distribution for bothΔ𝑢𝐿 andΣ𝑢𝐿 with a variance of
(𝑠𝜋)2 /3 = 2𝑢2, where 𝑢2 is the one dimensional velocity dispersion
of the entire N-body system (or the variance of 𝑢𝐿 on large scale),

𝑃Δ𝑢𝐿 (𝑥) = 1
4𝑠
sec ℎ2

( 𝑥
2𝑠

)
.

For large 𝑥, the logistic distribution will reduce to an exponential
distribution,

𝑃Δ𝑢𝐿 (𝑥 → ∞) ≈ 1
𝑠
exp

(
− 𝑥
𝑠

)
. (82)

Let’s assume 𝑃𝑢𝐿 being the limiting distribution of 𝑢𝐿 when 𝑟 →
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Figure 29b. Comparison of proposed distributions with simulation data for
small velocities. Logistic distribution for Δ𝑢𝐿 shows better agreement for
small velocities than exponential approximation.

∞. With 𝜌𝐿 = 0 at 𝑟 → ∞, two distributions should satisfy the
convolution

𝑃Δ𝑢𝐿 (𝑧) =
∫ ∞

−∞
𝑃𝑢𝐿 (𝑥) 𝑃𝑢𝐿 (𝑧 − 𝑥) 𝑑𝑥. (83)

Using the characteristic function, the Fourier transform of two dis-
tributions should satisfy,

𝑃̂Δ𝑢𝐿 (𝑡) =
[
𝑃̂𝑢𝐿 (𝑡)

]2
=

𝜋𝑠𝑡

sinh (𝜋𝑠𝑡) . (84)

The moment-generating function of 𝑢𝐿 can be found from Eq. (84)
with a variance of (𝜋𝑠)2 /6 = 𝑢2,

𝑀𝐺𝐹𝑃𝑢𝐿
(𝑡) =

√︂
𝜋𝑠𝑡

sin (𝜋𝑠𝑡) . (85)

The explicit form of distribution 𝑃𝑢𝐿 (𝑥) from Eq. (84) is not
available but can be obtained numerically from Eq. (85), via inverse
Fourier transform. All distributions (Eqs. (82) and (85)) are plotted in
Fig. 29a and compared against simulation data with good agreement.
All distributions are approximately exponential at large velocity. On
large scale, pair of particles are not likely residing in the same halo.
With pair of particles from different halos, velocity on large scale
should reflect the velocity of halos that particles reside in. Kurtosis
of velocity distributions on large scale is presented in Table 4.

5.5 Redshift evolution of velocity distributions

Finally, the redshift evolution of distributions of all different types of
velocities is summarized in this section. This includes velocity 𝑢𝑝
of all particles, velocity 𝑢ℎ𝑝 of all halo particles, velocity 𝑢𝑜𝑝 of all
out-of-halo particles, velocity 𝑢ℎ of all halos, and three longitudinal
velocities 𝑢𝐿 , Δ𝑢𝐿 , and

∑
𝑢𝐿 on small and large scales, respectively.

If any velocity always follows a family of X distribution with a
time-varying shape parameter 𝛼 (Eq. (65)), the redshift evolution of
that velocity distribution can be reduced to the redshift dependence
of shape parameter 𝛼 ≡ 𝛼(𝑧). Therefore, the redshift evolution of
velocity distributions can be presented as the variation of generalized
kurtosis that is a function of 𝛼(𝑧). Themth order generalized kurtosis
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Figure 30. The redshift evolution of generalized kurtosis 𝐾6, 𝐾8, and 𝐾10
with 𝐾4 for different types of velocities, i.e. velocity 𝑢𝑝 of all particles
in system, velocity 𝑢ℎ𝑝 of all halo particles, velocity 𝑢𝑜𝑝 of all out-of-
halo particles, velocity 𝑢ℎ of all halos, and longitudinal velocity 𝑢𝐿 , pairwise
velocity Δ𝑢𝐿 , and velocity sum

∑
𝑢𝐿 on small and large scales. All velocities

are initially Gaussian with shape parameter 𝛼 = ∞ for X distribution and
gradually evolving toward non-Gaussian with a decreasing 𝛼with time. The
evolution (approximately) follows the prediction (gray lines) ofX distribution.
The distributions of out-of-halo particles 𝑢𝑜𝑝 and halo velocity 𝑢ℎ matches
each other and evolves at a much slower pace compared to halo particles 𝑢𝑝 .
Halos can be treated as macro-particle with similar velocity distribution as
that of out-of-halo particles.

of X distribution can be found as (see Xu 2021c, Eq. (41)),

𝐾𝑚 (𝑋) =
(
2𝐾1 (𝛼)
𝐾2 (𝛼)

)𝑚/2
Γ ((1 + 𝑚) /2)

√
𝜋

·
𝐾(1+𝑚/2) (𝛼)
𝐾1 (𝛼)

. (86)

Figure 30 presents a summary of the redshift evolution of velocity
distributions in terms of the generalized kurtosis of different order
(4𝑡ℎ , 6𝑡ℎ , 8𝑡ℎ , and 10𝑡ℎ kurtosis from both simulation and Eq. (86)).
With increasing time, all velocities become non-Gaussian and the
evolution approximately follows the prediction of X distribution with
a decreasing 𝛼. In principle, the halo velocity (𝑢ℎ), out-of-halo par-
ticle velocity (𝑢𝑜𝑝), and the halo particle velocity (𝑢ℎ𝑝) should all
follow a X distribution to maximize system entropy, just like the lon-
gitudinal velocity on small scale (Eq. (65)). The distributions of halo
velocity (𝑢ℎ) and out-of-halo particle velocity (𝑢𝑜𝑝) have similar
distributions and evolve at a much slower pace than the distributions
of halo particle velocity (𝑢ℎ𝑝) because gravity is much stronger on
small scale. This is also consistent with the finding that virial equilib-
rium is established much faster for particles in halos (due to stronger
gravity) than for halos themselves (see Xu 2021f, Fig. 9).

6 CONCLUSIONS

By identifying all halos in entire N-body system and dividing all par-
ticles into halo particles and out-of-halo particles that do not belong
to any halos, the redshift and scale dependence of density and ve-
locity distributions for halo and out-of-halo particles are extensively
investigated.
Instead of projecting particle field onto structured grid that usually

involves information loss and unnecessary noise, Delaunay tessella-
tion is used to reconstruct the co-moving density field and maximally

preserve information in N-body simulation. The particle over-density
𝛿 evolves from an initial Gaussian to an asymmetric distribution with
a long tail ∝ 𝛿−3 (Fig. 1a). The log-density 𝜂 evolves from Gaussian
to a bimodal distribution at z=0, with two peaks corresponding to the
high density for halo particles and low density for out-of-halo parti-
cles (Fig. 2). The log-density distribution of out-of-halo particles has
a negative mean decreasing with time, while that of halo particles
has an increasing mean, both due to the continuous mass transfer
from out-of-halo to halos (Fig. 5).
Without projecting the density field onto grid, we first compute

the radial distribution function 𝑔 (𝑟) for all scale r from N-body sim-
ulation. The second order density correlation 𝜉 (𝑟) can be obtained
from 𝑔 (𝑟) (Eq. (9)) and plotted in Figs. 6, 8 and 9. The density cor-
relation cannot be positive on all scales due to the normalization (Eq.
(10)). The density spectrum 𝐸𝛿 and fluctuation function 𝜎2𝛿 can be
obtained from 𝜉 (𝑟) using Eqs. (20) and (27), and presented in Figs.
6, 7, 11. Function 𝐸𝛿𝑟 reflects the real-space distribution of density
fluctuation on different scales (Eq. (30) and Fig. 12) and contains
the same information as density spectrum 𝐸𝛿 (Eq. (31)). Analytical
models for correlation and dispersion functions on large scale are
also presented in Eqs. (33), (35), Figs. 6 and 11.
The scale dependence of velocity field is studied for the longi-

tudinal velocity 𝑢𝐿 or 𝑢
′
𝐿
, velocity difference Δ𝑢𝐿 = 𝑢

′
𝐿
− 𝑢𝐿 (or

pairwise velocity), and velocity sum Σ𝑢𝐿 = 𝑢𝐿 + 𝑢′
𝐿
(see Fig. 13).

Fully developed velocity field is never Gaussian on any scale despite
that they can be initially Gaussian (Figs. 14 and 15). By contrast,
velocity distribution is nearly Gaussian on large scale for incom-
pressible flow. Distribution of Σ𝑢𝐿 approaches that of 𝑢𝐿 on small
scale with the correlation (between 𝑢𝐿 and 𝑢

′
𝐿
) 𝜌𝐿 → 0.5. While

on large scale, the distribution of Σ𝑢𝐿 approaches that of Δ𝑢𝐿 with
correlation 𝜌𝐿 → 0.
Combining pair conservation equation and density correlation, the

first moment ofΔ𝑢𝐿 (pairwise velocity) can be analytically modelled
on small and large scales (Eqs. (46), (48) and Fig. 18). The second
moment of three types of velocities is presented in Figs. 19 and 20,
with an initial increase with 𝑟 followed by a sharp decrease on the
intermediate scale.
The second moment of Δ𝑢𝐿 , i.e. the pairwise velocity dispersion

𝑆
𝑙 𝑝

2 (𝑟) = 〈(Δ𝑢𝐿)2〉, approaches 2𝑢2 on small scale (Fig. 21). A two-
thirds law can be identified for a reduced structure function such that
𝑆
𝑙 𝑝

2𝑟 = (𝑆𝑙 𝑝2 − 2𝑢2) ∝ (−𝜀𝑢)2/3𝑟2/3 (Eq. (56) and Fig. 22), where
𝜀𝑢 is the constant rate of energy cascade. A constant length scale
can be introduced as 𝑟𝑠 = 𝑢30/𝜀𝑢 , below which the two-thirds law is
valid. Model for longitudinal velocity dispersion 〈𝑢2

𝐿
〉 on small scale

can be derived (Eq. (60) and Fig. 19). The two-thirds law can be
generalized to all even order structure functions 〈(Δ𝑢𝐿)2𝑛〉 (Eq. (61)
and Fig. 23), while odd order structure functions 〈(Δ𝑢𝐿)2𝑛+1〉 ∝ 𝑟

should satisfy generalized stable clustering hypothesis (GSCH in Eq.
(63) and Fig. 24). A complete comparison between incompressible
flow and SG-CFD is listed in Table 3.
The distributions of three types of different velocities can be an-

alytically modeled on small and large scales, respectively. On small
scale, both velocities 𝑢𝐿 andΣ𝑢𝐿 can bemodelled by aX distribution
to maximize system entropy (Fig. 25 and Eq. (65)). Explicit form for
distribution of pairwise velocity Δ𝑢𝐿 on small scale is still unknown.
However, the moments and kurtosis of Δ𝑢𝐿 can be analytically es-
timated (Eqs. (79) and (80)) using joint Gaussian distribution with
a halo-size dependent correlation coefficient 𝜌𝑐𝑜𝑟 (Eq. (72)). On in-
termediate scale, distributions of 𝑢𝐿 and Δ𝑢𝐿becomes significantly
non-symmetric with non-zero skewness, a necessary feature of in-
verse energy cascade. On large scale, both Δ𝑢𝐿 and Σ𝑢𝐿 approach
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the same distribution and can be modelled by a logistic function (Eq.
(82) and Fig. 29a). The distribution of 𝑢𝐿 can also be analytically
obtained in Eq. (84). The limiting distributions of different velocities
on small and large scales are summarized in Table 4.
The redshift evolution of velocity distributions is summarized in

Fig. 30. With increasing time, all velocities become non-Gaussian
and the redshift evolution approximately follows the prediction of
the X distribution with a decreasing 𝛼(𝑧) to continuously maximize
system entropy. However, the distribution of velocities on large scale
usually evolves at a much slower pace than the distribution of veloc-
ities on small scale because of stronger gravity on small scale.

DATA AVAILABILITY

Two datasets underlying this article, i.e. a halo-based and correlation-
based statistics of dark matter flow, are available on Zenodo (Xu
2022a,b), along with the accompanying presentation slides "A com-
parative study of darkmatter flow&hydrodynamic turbulence and its
applications" (Xu 2022c). All data files are also available on GitHub
(Xu 2022d).
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