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ABSTRACT
By decomposing velocity dispersion into non-spin and spin-induced, mean flow and dispersion are analytically solved for
axisymmetric rotating and growing halos. The polar flow can be neglected and azimuthal flow is directly related to dispersion.
The fictitious ("Reynolds") stress acts on mean flow to enable energy transfer from mean flow to random motion and maximize
system entropy. For large halos (high peak height 𝜈 at early stage of halo life) with constant concentration, there exists a self-similar
radial flow (outward in core and inward in outer region). Halo mass, size and specific angular momentum increase linearly with
time via fast mass accretion. Halo core spins faster than outer region. Large halos rotate with an angular velocity proportional to
Hubble parameter and spin-induced dispersion is dominant. All specific energies (radial/rotational/kinetic/potential) are time-
invariant. Both halo spin (∼0.031) and anisotropic parameters can be analytically derived. For "small" halos with stable core and
slow mass accretion (low peak height 𝜈 at late stage of halo life), radial flow vanishes. Small halos rotate with constant angular
velocity and non-spin axial dispersion is dominant. Small halos are more spherical in shape, incompressible, and isotropic. Radial
and azimuthal dispersion are comparable and greater than polar dispersion. Due to finite spin, kinetic energy is not equipartitioned
with the greatest energy along azimuthal direction. Different from normal matter, small halos are hotter with faster spin. Halo
relaxation (evolution) from early to late stage involves continuous variation of shape, density, mean flow, momentum, and energy.
During relaxation, halo isotopically "stretches" with conserved specific rotational kinetic energy, increasing concentration and
momentum of inertial. Halo "stretching" leads to decreasing angular velocity, increasing angular momentum and spin parameter.
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1 INTRODUCTION

The large-scale structure formation and evolution can be rigorously
studied based on the self-gravitating collisionless fluid dynamics
(SG-CFD) that deals with the motion of collisionless dark matter
under its own gravity. While SG-CFD and hydrodynamic turbulence
are different in many aspects, both contain the same essential ingre-
dients (randomness, nonlinearity, and multiscale nature) and share
many similarities with each other.
Turbulence is ubiquitous in nature and might be the last unre-

solved problems in classical physics.More specifically, homogeneous
isotropic incompressible turbulence has been well-studied for many
decades and of important relevance to SG-CFD. The classical pic-
ture of turbulence is a eddy-mediated cascade process, where large
eddies feed smaller eddies, which feed even smaller eddies, and so
on to the smallest scale when viscous dissipation becomes dominant,
i.e. a direct (kinetic) energy cascade (Richardson 1922). A key ques-
tion for turbulence is "how the kinetic energy is transferred from the
mean flow to turbulence, cascaded through scales, and destroyed by
viscosity?" Or equivalently, how the turbulence initiates, propagates,
and dies out.
The energy cascade in turbulence starts with the kinetic energy

obtained from mean flow by the largest eddies through Reynolds
stress (arising fromvelocity fluctuation) acting on themeanflow.This
kinetic energy is further cascaded successively to smaller and smaller
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eddies until viscosity dominates. The first quantitative description of
energy cascade was proposed based on the similarity principles back
to 1941 (Kolmogoroff 1941a,b). The Reynolds stress arising from
velocity fluctuation acts as a conduit to continuously draw kinetic
energy from mean flow to sustain the energy cascade (Andersson &
Andersson 2012). For high Reynolds flow (or vanishing viscosity),
"vortex stretching" is responsible for the energy transfer from mean
flow and energy cascade down the scales (Taylor 1932, 1938). The
shear stress induced lengthening of vortices along the direction of
vorticity vector implies a thinning of vortices in the perpendicular
direction (Xu2021f). This intensifies the vorticity and leads to a rising
kinetic energy due to the conservation of angular momentum. With
vortices teased out into thinner and thinner filaments, kinetic energy
is passed down to smaller and smaller scales and finally dissipated
by molecular viscosity.
While direct energy cascade is a dominant feature for 3D turbu-

lence, the 2D turbulence exhibits an inverse energy cascade predicted
in the late 1960s (Kraichnan 1967). The fully developed 2D turbu-
lence has both a direct cascade of enstrophy (𝜔2) from large to small
scales and an inverse cascade of kinetic energy from small to large
scales (Xu 2021f). The enstrophy is passed down to smaller scales
until destroyed by viscosity, while kinetic energy is passed up and
destroyed on the largest scale. While vortex stretching cannot oper-
ate in a 2D turbulence, the area-conserved teasing and twisting make
vortex patches thinner and longer. This facilitates a combined direct
cascade of enstrophy and inverse cascade of kinetic energy.
Just like vortex (the building block of turbulance) facilitates the

energy/enstrophy cascade in 2D and 3D turbulence, halo plays a
fundamental role in SG-CFD for dark matter flow. To maximize
system entropy, halos and halo groups of different size are necessary
to form due to the long-range interaction nature of SG-CFD (Xu
2021c,e). Halo structure is a major manifestation of the nonlinear
gravitational collapse and building blocks of large-scale structures
(Neyman & Scott 1952; Cooray & Sheth 2002). The halo-mediated
inverse mass cascade is a key feature of dark matter flow (Xu 2021a):
"Little halos have big halos, That feed on their mass; And big halos
have greater halos, And so on to growth".
There exists a broad spectrum of halo sizes. Halos pass their mass

onto larger and larger halos, until mass growth becomes dominant
over mass propagation. The effects of mass cascade on halo mass
function have been previously studiedwith newmass function formu-
lated without resorting to any specific spherical or ellipsoid collapse
models (Xu 2021a). The effects ofmass cascade on halo deformation,
energy, size and density profile are also discussed in detail (Xu 2021b,
2022g). Along with the halo-mediated mass cascade, kinetic energy
(or potential energy) is simultaneously inversely (directly) cascaded
with energy transfer rate proportional to the rate of mass transfer (Xu
2021f). The mass and energy cascades facilitate the development of
statistical theory for dark matter flow (Xu 2022e,f,h) with important
applications for predicting dark matter particle mass and properties
(Xu 2022i), interpreting theMOND (modified Newtonian dynamics)
theory (Xu 2022j), and developing the baryonic-to-halo mass rela-
tion (Xu 2022k). However, how halos facilitate the energy transfer
and cascade in SG-CFD is not completely understood.
While "vortex stretching" (the shape change of vortex) is respon-

sible for energy transfer and cascade in turbulence, the shape change
of halo seems not sufficiently strong to be responsible for the energy
cascade in SG-CFD (Xu 2021f). To better understand the role of
halos in energy cascade, a complete knowledge of the mean flow,
velocity dispersion, and the evolution of rotating and growing halos
are required. Existing study mostly focus on the non-rotating spher-
ical halos with vanishing radial flow (Hoeft et al. 2004; Binney &

Table 1. Numerical parameters of N-body simulation

Run Ω0 Λ ℎ Γ 𝜎8
L

(Mpc/h) 𝑁
𝑚𝑝

𝑀�/ℎ
𝑙𝑠𝑜 𝑓 𝑡
(Kpc/h)

SCDM1 1.0 0.0 0.5 0.5 0.51 239.5 2563 2.27×1011 36

Tremaine 1987). Solutions for non-rotating growing halos with a
nonzero radial flow were recently studied (Xu 2021b). While vortex
is volume/mass conserved for incompressible flow, halos are much
more complex and dynamic objects that are constantly growing, spin-
ning, shape-changing, with a nonuniform density profile, and usually
not volume- or mass-conserved. The purpose of this paper is to ex-
plore relevant solutions and evolution of rotating and growing halos
and the role of halos in energy transfer and cascade in SG-CFD.
The rest of paper is organized as follows: Section 2 introduces

the simulation and numerical data used for this work. Section 3
presents solutions for the mean flow and velocity dispersions of an
axisymmetric rotating and growing halo (the building block of SG-
CFD) at their early and late stage of life. The momentum and energy
solutions of rotating and growing halos are presented in Section 4.
The energy transfer between mean flow and random motion in halos
is discussed in Section 5, along with the halo evolution from early to
late stage in Section 6. A halo stretching mechanism (counterpart of
vortex stretching) is proposed and studied extensively along with the
energy and momentum evolution.

2 N-BODY SIMULATIONS AND NUMERICAL DATA

The numerical data for this work is publicly available and generated
from the N-body simulations carried out by the Virgo consortium,
an international collaboration that aims to perform large N-body
simulations of the formation of large-scale structures. A compre-
hensive description of the simulation data can be found in (Frenk
et al. 2000; Jenkins et al. 1998). The same set of simulation data has
been widely used in a number of different studies from clustering
statistics (Jenkins et al. 1998) to the formation of halo clusters in
large scale environments (Colberg et al. 1999), and testing models
for halo abundance and mass functions (Sheth et al. 2001). Some key
parameters of N-body simulations are listed in Table 1.
Two relevant datasets from this N-boby simulation, i.e. halo-based

and correlation-based statistics of dark matter flow, can be found at
Zenodo.org (Xu 2022a,b), along with the accompanying presentation
slides, "A comparative study of dark matter flow & hydrodynamic
turbulence and its applications" (Xu 2022c). All data files are also
available on GitHub (Xu 2022d).

3 SOLUTIONS FOR ROTATING AND GROWING HALOS

3.1 Continuity and momentum equations and azimuthal flow

Jeans’ equation and solutions for spherical, stationary, and non-
rotating halos can be found in many literature (Hoeft et al. 2004;
Binney & Tremaine 1987). Solutions for spherical, growing, and
non-rotating halos were also studied, where the effect of nonzero ra-
dial flow on halo density is formulated (Xu 2021b). Here we consider
an even more general case, i.e. spherical, growing, and rotating halos
with a given angular velocity𝜔ℎ (𝑡). Halos growwith a time-varying
halo mass 𝑚ℎ = 𝑚ℎ (𝑡) and scale radius 𝑟𝑠 = 𝑟𝑠 (𝑡) due to the in-
verse mass cascade and mass accretion. Halo size (the virial radius)
𝑟ℎ = 𝑐 (𝑡) 𝑟𝑠 (𝑡), where c is the concentration parameter. As shown
in Fig. 1, spherical coordinates (𝑟, 𝜃, 𝜑) are introduced, where r is
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Figure 1. Spherical coordinates (𝑟 , 𝜃 , 𝜑) for a halo with angular velocity
𝜔ℎ (𝑡) , where r is the radius, 𝜃 is the polar angle between radial vector r and
axis of rotation, and 𝜑 is the azimuthal angle in plane perpendicular to that
axis. Distance to that axis is 𝑟𝑧 = 𝑟 sin 𝜃 .

the radius, 𝜃 is the polar angle between the radial vector r and the
axis of rotation, and 𝜑 is the azimuthal angle in plane perpendicular
to the axis of rotation. The distance to that axis reads 𝑟𝑧 = 𝑟 sin 𝜃.
The starting point of our formulation is the continuity equation in

spherical coordinates,

𝜕𝜌ℎ

𝜕𝑡
+ 1
𝑟2

𝜕

(
𝑟2𝜌ℎ𝑢𝑟

)
𝜕𝑟

+ 1
𝑟 sin 𝜃

(
𝜕 (𝜌ℎ𝑢𝜃 sin 𝜃)

𝜕𝜃
+
𝜕

(
𝜌ℎ𝑢𝜑

)
𝜕𝜑

)
︸                                            ︷︷                                            ︸

1

= 0,

(1)

where 𝜌ℎ ≡ 𝜌ℎ (𝑟, 𝑡) is the halo density. Mean flow along three
coordinates are introduced as the radial flow 𝑢𝑟 , polar flow (merid-
ional flow) 𝑢𝜃 , and azimuthal flow (zonal flow) 𝑢𝜑 . By considering
the axisymmetry about axis of rotation, the mean azimuthal flow
𝑢𝜑 = 𝑢𝜑 (𝑟, 𝜃, 𝑡) should be independent of the azimuthal angle 𝜑.
The polar flow 𝑢𝜃 = 𝑢𝜃 (𝑟, 𝜃, 𝑡) is also independent of 𝜑 with sym-
metry 𝑢𝜃 (𝑟, 𝜃, 𝑡) = −𝑢𝜃 (𝑟, 𝜋 − 𝜃, 𝑡) such that 𝑢𝜃 (𝑟, 𝜋/2, 𝑡) = 0.
Observations of flow on rotating sphere strongly suggest that as the

rotation rate increases, the azimuthal flow (zonal flow) will become
dominant and the polar flow (meridional flow) 𝑢𝜃 may be neglected
(𝑢𝜃 ≈ 0) (also discussed in Fig. 2). The original continuity Eq. (1)
reduces to

𝜕𝜌ℎ

𝜕𝑡
+ 1
𝑟2

𝜕

(
𝑟2𝜌ℎ𝑢𝑟

)
𝜕𝑟

= 0, (2)

where the density 𝜌ℎ = 𝜌ℎ (𝑟, 𝑡) and the radial flow 𝑢𝑟 = 𝑢𝑟 (𝑟, 𝑡) are
functions of r and t only. Equation (2) has been extensively studied in
our previous work (Xu 2021a) and used to solve for the mean radial
flow 𝑢𝑟 = 𝑢𝑟 (𝑟, 𝑡) for a given halo density 𝜌ℎ . In current model,
(in-plane) flow in concentric spherical shells is incompressible (term
1 in Eq. (1) vanishes). However, radial flow (out-of-plane) is not
incompressible with 𝑢𝑟 ≠ 0. The special case is an isothermal density
profile where 𝑢𝑟 = 0 such that the mean flow of entire halo is
incompressible everywhere.

The full momentum equations (Jeans’ equation) along three spher-
ical coordinates read

𝜕𝑢𝑟

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
+ 𝑢𝜃
𝑟

𝜕𝑢𝑟

𝜕𝜃
+

𝑢𝜑

𝑟 sin 𝜃
𝜕𝑢𝑟

𝜕𝜑
−
𝑢2
𝜃
+ 𝑢2𝜑
𝑟

= − 𝜕𝜙𝑟
𝜕𝑟

+
𝜎2
𝜃 𝜃

+ 𝜎2𝜑𝜑
𝑟

− 1
𝜌ℎ


1
𝑟2

𝜕

(
𝑟2𝜌ℎ𝜎

2
𝑟𝑟

)
𝜕𝑟

+ 1
𝑟 sin 𝜃

©­­«
𝜕

(
𝜌ℎ𝜎

2
𝜃𝑟
sin 𝜃

)
𝜕𝜃

+
𝜕

(
𝜌ℎ𝜎

2
𝜑𝑟

)
𝜕𝜑

ª®®¬
 ,

(3)

𝜕𝑢𝜃

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝜃

𝜕𝑟
+ 𝑢𝜃
𝑟

𝜕𝑢𝜃

𝜕𝜃
+

𝑢𝜑

𝑟 sin 𝜃
𝜕𝑢𝜃

𝜕𝜑
+ 𝑢𝑟𝑢𝜃

𝑟
−
𝑢2𝜑 cot 𝜃

𝑟

= −1
𝑟

𝜕𝜙𝑟

𝜕𝜃
+
𝜎2𝜑𝜑 cot 𝜃 − 𝜎2𝜃𝑟 + 𝜎

2
𝑟 𝜃

𝑟

− 1
𝜌ℎ


1
𝑟3

𝜕

(
𝑟3𝜌ℎ𝜎

2
𝑟 𝜃

)
𝜕𝑟

+ 1
𝑟 sin 𝜃

©­­«
𝜕

(
𝜌ℎ𝜎

2
𝜃 𝜃
sin 𝜃

)
𝜕𝜃

+
𝜕

(
𝜌ℎ𝜎

2
𝜑𝜃

)
𝜕𝜑

ª®®¬
 ,

(4)

and

𝜕𝑢𝜑

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝜑

𝜕𝑟
+ 𝑢𝜃
𝑟

𝜕𝑢𝜑

𝜕𝜃
+

𝑢𝜑

𝑟 sin 𝜃
𝜕𝑢𝜑

𝜕𝜑
+
𝑢𝑟𝑢𝜑

𝑟
+
𝑢𝜑𝑢𝜃 cot 𝜃

𝑟

= − 1
𝑟 sin 𝜃

𝜕𝜙𝑟

𝜕𝜑
+
𝜎2𝑟 𝜑 − 𝜎2𝜑𝑟 − 𝜎2𝜑𝜃 cot 𝜃

𝑟

− 1
𝜌ℎ


1
𝑟3

𝜕

(
𝑟3𝜌ℎ𝜎

2
𝑟 𝜑

)
𝜕𝑟

+ 1
𝑟 sin 𝜃

©­­«
𝜕

(
𝜌ℎ𝜎

2
𝜃𝜑
sin 𝜃

)
𝜕𝜃

+
𝜕

(
𝜌ℎ𝜎

2
𝜑𝜑

)
𝜕𝜑

ª®®¬
 ,

(5)

where the gravitational potential 𝜙𝑟 is related to halo density via the
halo mass 𝑚𝑟 = 𝑚𝑟 (𝑟, 𝑡) within a shell of radius r,

𝜕𝜙𝑟

𝜕𝑟
=
𝐺𝑚𝑟 (𝑟, 𝑡)

𝑟2
and 𝜌ℎ =

1
4𝜋𝑟2

𝜕𝑚𝑟 (𝑟, 𝑡)
𝜕𝑟

. (6)

By assuming vanishing off-diagonal velocity dispersions and the fact
that all variables should be independent of the azimuthal angle 𝜑 due
to axisymmetry, i.e.

𝜎2𝑟𝑟 = 𝜎2𝑟𝑟 (𝑟, 𝜃, 𝑡) , 𝜎2𝜃 𝜃 = 𝜎2𝜃 𝜃 (𝑟, 𝜃, 𝑡) , 𝜎
2
𝜑𝜑 = 𝜎2𝜑𝜑 (𝑟, 𝜃, 𝑡) , (7)

and

𝜎2𝑟 𝜃 = 0, 𝜎2𝑟 𝜑 = 0, 𝜎2𝜑𝜃 = 0, (8)

momentum equations (Eq. (3)-(5)) can be significantly reduced to

𝜕𝑢𝑟

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
+ 1
𝜌ℎ

𝜕

(
𝜌ℎ𝜎

2
𝑟𝑟

)
𝜕𝑟

+ 2
𝑟
𝜎2𝑟𝑟

(
1 −

𝜎2
𝜃 𝜃

+ 𝜎2𝜑𝜑 + 𝑢2𝜑
2𝜎2𝑟𝑟

)
︸                         ︷︷                         ︸

1

+ 𝜕𝜙𝑟
𝜕𝑟

= 0,
(9)

𝑢2𝜑 = 𝜎2𝜃 𝜃 − 𝜎
2
𝜑𝜑 + sin 𝜃

cos 𝜃
𝜕𝜎2

𝜃 𝜃

𝜕𝜃
, (10)
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𝜕𝑢𝜑

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝜑

𝜕𝑟
+
𝑢𝑟𝑢𝜑

𝑟
= 0. (11)

Themean azimuthal flow 𝑢2𝜑 is directly related to in-plane velocity
dispersions 𝜎2

𝜃 𝜃
and 𝜎2𝜑𝜑 in Eq. (10). The azimuthal flow 𝑢𝜑 can be

solved from Eq. (11) if 𝑢𝑟 is known. Note that an exact definition of
the halo anisotropic parameter 𝛽ℎ1 should be (term 1 in Eq. (9))

𝛽ℎ1 = 1 −
𝜎2
𝜃 𝜃

+ 𝜎2𝜑𝜑 + 𝑢2𝜑
2𝜎2𝑟𝑟

, (12)

where the effect of azimuthal flow due to halo spin should be in-
cluded. However, 𝑢2𝜑 might be relatively small compared to in-plane
velocity dispersions 𝜎2

𝜃 𝜃
and 𝜎2𝜑𝜑 for massive halos with large ve-

locity dispersion such that 𝑢2𝜑 can be neglected. If the azimuthal flow
𝑢𝜑 can be neglected, the anisotropic parameter 𝛽ℎ1 reduces to the
standard definition in literature,

𝛽ℎ = 1 −
𝜎2
𝜃 𝜃

+ 𝜎2𝜑𝜑
2𝜎2𝑟𝑟

. (13)

Clearly, the two definitions are only consistent with each other for
massive or large halos, where azimuthal flow 𝑢2𝜑 can be neglected
when compared to in-plane velocity dispersions. However, small
halos spin much faster than large halos at the same redshift (see Xu
2021f, Fig. 15) and the effect of 𝑢2𝜑 can be strong. Two definitions
are different with 𝛽ℎ1 ≈ 0 and 𝛽ℎ > 0 for small and fast spinning
halos. We will discuss and compare two definitions in Fig. 9.
We will close this section by presenting the mean flow from N-

body simulations. For every halo identified in the system, the axis
of rotation can be determined first by calculating the halo angular
momentum vector Hℎ (see Xu 2021f, Eq. (56)). All halos are posi-
tioned and aligned by the axis of rotation as shown in Fig. 1 such that
𝑢𝜙 > 0 is always true. The mean flow of every particle in halo can
be obtained by projecting its peculiar velocity along three spherical
coordinates. The statistics is then taken over all particles in the same
spherical shell (spherical averaging) and for all halos in the same
group (group averaging) to increase signal noise ratio. Groups of
small halos have enough halos for reliable statistics, while groups
of large halos may not have sufficient number of halos, where the
average can be taken over multiple halo groups of similar sizes of a
given range.
Figure 2 plots the variation of the mean (peculiar) radial (𝑢𝑟 𝑝 =

𝑢𝑟 − 𝐻𝑟 in square symbols), azimuthal flow (𝑢𝜑 in circles), and
polar flow (𝑢𝜃 in diamond symbols) with radius r for halo groups of
different sizes at z=0. For 𝑛𝑝 = 2, planar motion leads to a vanishing
polar flow 𝑢𝜃 = 0. The azimuthal flow is predicted to be 𝑢𝜑 ∼ 𝑟−1/2
for 𝑛𝑝 = 2 (predicted by two-body collapse model (TBCM) (Xu
2021d, Eq. (103))) and gradually shifts to 𝑢𝜑 ∼ 𝑟1/2 for larger halos.
For all halos in figure, the radial flow 𝑢𝑟 𝑝 ≈ −𝐻𝑟 (from the stable
cluster hypothesis that can be demonstrated by TBCM (Xu 2021d))
can be a good approximation. The mean polar flow 𝑢𝜃 is negligible
when compared to the mean radial and azimuthal flow, i.e. 𝑢𝜃 ≈ 0
almost everywhere.
Figure 3 plots the variation of angular velocity 𝜔𝑟 (𝑟𝑧) = 𝑢𝜑/𝑟𝑧

about the axis of rotation with 𝑟𝑧 (the distance to axis of rotation) for
halo groups of different sizes. Again, for 𝑛𝑝 = 2, the angular velocity
is predicted to be𝜔𝑟 ∼ 𝑟𝑧−3/2 (see Xu 2021d, Eq. (103)). Large halo
spins slower with 𝜔𝑟 decreases with 𝑟𝑧 and approaches a constant
𝜔𝑟 in the outer region. The variation of effective angular velocity of
entire halo (𝜔ℎ) with halo size 𝑛𝑝 and redshift 𝑧 is presented in our
previous work of inverse energy cascade (see Xu 2021f, Fig. 15).
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Figure 2. The variation of spherical and group averaged mean (peculiar)
radial (−𝑢𝑟 𝑝 : ’square’), azimuthal (𝑢𝜑 :‘circles’), and polar (𝑢𝜃 : ‘diamond’)
flow (unit: km/s) with radius r for halo groups of size 𝑛𝑝=2, 3, 4, 10 and 20
at z=0. For 𝑛𝑝 = 2, planar motion leads to 𝑢𝜃 = 0. The azimuthal flow is
predicted to be 𝑢𝜑 ∼ 𝑟−1/2 for 𝑛𝑝 = 2and gradually shifts to 𝑢𝜑 ∼ 𝑟1/2 for
inner region and approaching 𝑢𝜑 ∼ 𝑟 for outer region. For all size of halos in
figure, the peculiar radial flow 𝑢𝑟 𝑝 ≈ −𝐻𝑟 from stable cluster hypothesis (Xu
2021d). The mean polar flow is negligible, i.e. 𝑢𝜃 ≈ 0 almost everywhere.
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Figure 3. The variation of angular velocity 𝜔𝑟 (𝑟𝑧 ) = 𝑢𝜑/𝑟𝑧
(unit:𝑘𝑚/𝑠/(𝑀𝑝𝑐/ℎ)) with 𝑟𝑧 (distance from axis of rotation) for halo
groups of size 𝑛𝑝 = 2, 3, 4, 10, 20 and 40. For 𝑛𝑝 = 2, the angular velocity
is predicted to be 𝜔𝑟 ≈ 13𝑟−3/2 (see Xu 2021d, Eq. (103)). Angular velocity
𝜔𝑟 decreases with halo size. For a given size, 𝜔𝑟 decreases with distance 𝑟𝑧
and approaches a constant 𝜔𝑟 in outer region of halos. Halo core spins faster
than outer region.

3.2 Evolution of halo momentum and energy

The evolution of halo momentum and energy can be studied exactly
by the continuity and momentum equations. The first example is to
multiply the continuity equation (Eq. (2)) and momentum Eq. (9)
with 𝑢𝑟 and 𝜌ℎ respectively and add them together that leads to an
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equation for the evolution of radial momentum 𝜌ℎ𝑢𝑟 ,

𝜕𝜌ℎ𝑢𝑟

𝜕𝑡
+ 1
𝑟2
𝜕𝜌ℎ𝑢

2
𝑟 𝑟
2

𝜕𝑟
+
𝜕

(
𝜌ℎ𝜎

2
𝑟𝑟

)
𝜕𝑟

+ 2 𝜌ℎ
𝑟
𝛽ℎ1𝜎

2
𝑟𝑟 + 𝜌ℎ

𝜕𝜙𝑟

𝜕𝑟
= 0.

(14)

The integration of Eq. (14) over the entire halo by applying∫ 𝑟ℎ
0 2𝜋𝑟2

∫ 𝜋
0 (•) sin 𝜃𝑑𝜃𝑑𝑟 to both sides of Eq. (14) leads to

𝜕𝐿̄ℎ

𝜕𝑡
+ 4𝜋𝑟2

ℎ
𝜌ℎ (𝑟ℎ) 𝑢𝑟 (𝑟ℎ)

[
𝑢𝑟 (𝑟ℎ) −

𝜕𝑟ℎ

𝜕𝑡

]
+

2𝜋𝑟2
ℎ
𝜌ℎ (𝑟ℎ)

∫ 𝜋

0
𝜎2𝑟𝑟 (𝑟ℎ , 𝜃) sin 𝜃𝑑𝜃 +

∫ 𝑟ℎ

0
4𝜋𝑟2𝜌ℎ

𝜕𝜙𝑟

𝜕𝑟
𝑑𝑟

− 1
2

∫ 𝑟ℎ

0
4𝜋𝑟𝜌ℎ

∫ 𝜋

0

(
𝜎2𝜑𝜑 + 𝜎2𝜃 𝜃 + 𝑢

2
𝜑

)
sin 𝜃𝑑𝜃𝑑𝑟 = 0,

(15)

where the (zeroth order) halo radial momentum is defined as

𝐿̄ℎ (𝑎) =
∫ 𝑟ℎ

0
𝑢𝑟 (𝑟, 𝑎) 4𝜋𝑟2𝜌ℎ (𝑟, 𝑎) 𝑑𝑟. (16)

The integration of Eq. (14) over the entire halo by applying∫ 𝑟ℎ
0 2𝜋𝑟2

∫ 𝜋
0 (•) 𝑟 sin 𝜃𝑑𝜃𝑑𝑟 leads to a complete virial theorem for

rotating and growing halos,

𝜕𝐺̄ℎ

𝜕𝑡︸︷︷︸
1

+ 4𝜋𝑟3
ℎ
𝜌ℎ (𝑟ℎ) 𝑢𝑟 (𝑟ℎ)

[
𝑢𝑟 (𝑟ℎ) −

𝜕𝑟ℎ

𝜕𝑡

]
︸                                             ︷︷                                             ︸

2

+ 2𝜋𝑟3
ℎ
𝜌ℎ (𝑟ℎ)

∫ 𝜋

0
𝜎2𝑟𝑟 (𝑟ℎ , 𝜃) sin 𝜃𝑑𝜃︸                                           ︷︷                                           ︸
3

−
∫ 𝑟ℎ

0
4𝜋𝑟2𝜌ℎ𝑢2𝑟 𝑑𝑟︸                 ︷︷                 ︸
4

− 1
2

∫ 𝑟ℎ

0
4𝜋𝑟2𝜌ℎ

(∫ 𝜋

0
𝑢2𝜑 sin 𝜃𝑑𝜃

)
𝑑𝑟︸                                           ︷︷                                           ︸

5

− 1
2

∫ 𝑟ℎ

0
4𝜋𝑟2𝜌ℎ

[∫ 𝜋

0

(
𝜎2𝑟𝑟 + 𝜎2𝜃 𝜃 + 𝜎

2
𝜑𝜑

)
sin 𝜃𝑑𝜃

]
𝑑𝑟︸                                                                   ︷︷                                                                   ︸

6

+
∫ 𝑟ℎ

0
4𝜋𝑟3𝜌ℎ

𝜕𝜙𝑟

𝜕𝑟
𝑑𝑟︸                    ︷︷                    ︸

7

= 0,

(17)

where halo virial quantity (first order radial momentum) is defined
as

𝐺̄ℎ (𝑎) =
∫ 𝑟ℎ

0
𝑢𝑟 (𝑟, 𝑎) 4𝜋𝑟3𝜌ℎ (𝑟, 𝑎) 𝑑𝑟. (18)

Term 2 is the surface energy due to radial flow and mass accretion at
halo surface and term 3 is the surface energy due to radial velocity
dispersion. Term 4 is for halo radial kinetic energy and term 5 is for
the halo rotational kinetic energy, both of which are from mean flow
of halo (coherent motion). Term 6 is for the kinetic energy due to the
random motion. Term 7 is for the halo potential energy. The similar
equation has been extensively studied (see Xu 2021a, Eq. (75)) for
an isotropic, growing, and non-rotating halo, where term 5 is not
present. For virialized, non-rotating, and non-growing halos, 𝑢𝑟 = 0
and 𝜕𝑟ℎ/𝜕𝑡 = 0 such that terms 2, 4, and 5 are not preent.
The second example is for the radial kinetic energy. Multiplying

Eqs. (9) and (14) with 𝜌ℎ𝑢𝑟 and 𝑢𝑟 respectively and adding them

together leads to the evolution of radial kinetic energy
(
𝜌ℎ𝑢

2
𝑟

)
,

𝜕

(
𝜌ℎ𝑢

2
𝑟

)
𝜕𝑡︸      ︷︷      ︸

𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒

+ 1
𝑟2

𝜕

[(
𝜌ℎ𝑢

2
𝑟

)
𝑢𝑟 𝑟
2
]

𝜕𝑟︸                    ︷︷                    ︸
𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛

+ 4𝛽ℎ1
𝑢𝑟

𝑟
𝜌ℎ𝜎

2
𝑟𝑟︸             ︷︷             ︸

𝑃1

+ 2𝑢𝑟
𝜕

(
𝜌ℎ𝜎

2
𝑟𝑟

)
𝜕𝑟︸             ︷︷             ︸

𝑃3

+ 2𝑢𝑟 𝜌ℎ
𝜕𝜙𝑟

𝜕𝑟︸        ︷︷        ︸
𝑃2

= 0,

(19)

where the first term is the time derivative of radial kinetic energy.
The second term is the advection in radial direction. The last three
terms are the production of radial kinetic energy including two con-
tributions, i.e. 𝑃1 and 𝑃3 from velocity radial dispersion 𝜎2𝑟𝑟 and 𝑃2
from the gravitational interaction. With 𝑃2 + 𝑃3 ≈ 0 (gravitational
force balances the pressure gradient), there is a net energy transfer
between the radial mean flow 𝜌ℎ𝑢2𝑟 and randommotion 𝜌ℎ𝜎2𝑟𝑟 (term
𝑃1). The direction of transfer depends on the sign of 𝑢𝑟 . Using the
radial momentum equation Eq. (9), we have the identity

𝜕

(
𝜌ℎ𝑢

2
𝑟

)
𝜕𝑡

+ 1
𝑟2

𝜕

[(
𝜌ℎ𝑢

2
𝑟

)
𝑢𝑟 𝑟
2
]

𝜕𝑟
− 2𝜌ℎ𝑢𝑟

(
𝜕𝑢𝑟

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟

)
= 0,

(20)

which will be further used to study two contributions (𝑃1 + 𝑃3 and
𝑃2) for the production of radial kinetic energy (see Eq. (122)).
Integrating

(
𝜌ℎ𝑢

2
𝑟

)
in Eq. (19) leads to the total halo radial kinetic

energy 𝐾̄𝑟 ,

𝐾̄𝑟 (𝑎) =
1
2

∫ 𝑟ℎ

0
𝑢2𝑟 (𝑟, 𝑎) 4𝜋𝑟2𝜌ℎ (𝑟, 𝑎) 𝑑𝑟. (21)

Integrating Eq. (19) over the entire halo by applying∫ 𝑟ℎ
0 2𝜋𝑟2

∫ 𝜋
0 (•) sin 𝜃𝑑𝜃𝑑𝑟 leads to the evolution of halo radial ki-

netic energy,

𝜕𝐾̄𝑟

𝜕𝑡
+ 2𝜋𝑟2

ℎ
𝜌ℎ (𝑟ℎ) 𝑢𝑟 (𝑟ℎ)

[
𝑢𝑟 (𝑟ℎ)

(
𝑢𝑟 (𝑟ℎ) −

𝜕𝑟ℎ

𝜕𝑡

)
+
∫ 𝜋

0
𝜎2𝑟𝑟 (𝑟ℎ , 𝜃) sin 𝜃𝑑𝜃

]
+

∫ 𝑟ℎ

0
4𝜋𝑟2𝜌ℎ𝑢𝑟

𝜕𝜙ℎ

𝜕𝑟
𝑑𝑟

− 1
2

∫ 𝑟ℎ

0
4𝜋𝑟𝜌ℎ𝑢𝑟

∫ 𝜋

0

(
𝜎2𝜃 𝜃 + 𝜎

2
𝜑𝜑 + 𝑢2𝜑

)
sin 𝜃𝑑𝜃𝑑𝑟

−
∫ 𝑟ℎ

0
2𝜋𝑟2𝜌ℎ

𝜕𝑢𝑟

𝜕𝑟

∫ 𝜋

0
𝜎2𝑟𝑟 sin 𝜃𝑑𝜃𝑑𝑟 = 0.

(22)

The third example is for halo angular momentum. Multiplying the
continuity equation (Eq. (2)) and Eq. (11) with 𝑢𝜑 and 𝜌ℎ respec-
tively and adding them together leads to the equation for the evolution
of 𝜌ℎ𝑢𝜑 that is relevant to the angular momentum,

𝜕
(
𝜌ℎ𝑢𝜑

)
𝜕𝑡

+ 1
𝑟2
𝜕

[ (
𝜌ℎ𝑢𝜑

)
𝑢𝑟 𝑟
2]

𝜕𝑟
+ 𝑢𝑟
𝑟

(
𝜌ℎ𝑢𝜑

)
= 0. (23)

Multiplying all terms with 𝑟𝑧 = 𝑟 sin 𝜃 and integrating Eq. (23) over
the entire halo, i.e. applying the integration∫ 𝑟ℎ

0

∫ 𝜋

0

∫ 2𝜋

0
[(•) 𝑟 sin 𝜃] 𝑟2 sin 𝜃𝑑𝜑𝑑𝜃𝑑𝑟

=

∫ 𝑟ℎ

0
2𝜋𝑟2

∫ 𝜋

0
(•) 𝑟 sin2 𝜃𝑑𝜃𝑑𝑟,

(24)

leads to the time variation of halo angular momentum 𝐻̄ℎ

𝜕𝐻̄ℎ

𝜕𝑡
= 2𝜋𝑟3

ℎ
𝜌ℎ (𝑟ℎ)

∫ 𝜋

0
𝑢𝜑 (𝑟ℎ , 𝜃) sin 2𝜃𝑑𝜃

(
𝜕𝑟ℎ

𝜕𝑡
− 𝑢𝑟 (𝑟ℎ)

)
,
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(25)

where angular momentum 𝐻̄ℎ is defined as

𝐻̄ℎ =

∫ 𝑟ℎ

0
2𝜋𝑟3𝜌ℎ (𝑟)

(∫ 𝜋

0
𝑢𝜑 sin2 𝜃𝑑𝜃

)
𝑑𝑟. (26)

Note that integration of the first term in Eq. (23) can be separated
into two contributions using the Leibniz’s rule (the integration limit
𝑟ℎ = 𝑟ℎ (𝑡) is a function of t),∫ 𝑟ℎ (𝑡)

0
2𝜋𝑟2

∫ 𝜋

0

𝜕
(
𝜌ℎ𝑢𝜑

)
𝜕𝑡

𝑟 sin2 𝜃𝑑𝜃𝑑𝑟

=
𝜕𝐻̄ℎ

𝜕𝑡
− 2𝜋𝑟3

ℎ
𝜌ℎ (𝑟ℎ)

𝜕𝑟ℎ

𝜕𝑡

∫ 𝜋

0
𝑢𝜑 (𝑟ℎ , 𝜃) sin 2𝜃𝑑𝜃.

(27)

Here we demonstrate that the change of halo momentum comes only
from the halo growth and radial flow at halo surface (infall of matter)
(Eq. (25)). Mean radial and azimuthal flow in halos do not contribute
to the change of halo angular momentum. Since 𝜕𝑟ℎ/𝜕𝑡 > 0 and
𝑢𝑟 (𝑟ℎ) < 0 for a growing halo, the angular momentum 𝐻̄ℎ should
be always increasing with time for growing halos. The halo angular
momentum is conserved only if 𝜕𝑟ℎ/𝜕𝑡 = 𝑢𝑟 (𝑟ℎ) = 0.
TheTidal TorqueTheory relates the origin and evolution of angular

momentum to the gravitational tidal torques from the environment
in which halos form (Peebles 1969; White 1984). The Tidal Torque
Theory (TTT) predicts a linear increase of 𝐻̄ℎ with time t for a
halo with a fixed given mass. Most of the halo angular momentum is
obtained from themisalignment between the tidal shear field and halo
shape. However, a growing halo may obtain its momentum through
continuous mass acquisition (see Eq. (25)). Similar ideas were also
discussed before (Vitvitska et al. 2002). Mass accretion leads to a
linear increase of the specific angular momentum 𝐻ℎ ∼ 𝑡 (or total
angular momentum 𝐻̄ℎ ∼ 𝑡2) at the early stage of halos (Table 3).
The final example is the halo rotational kinetic energy.Multiplying

Eqs. (11) and (23) with 𝜌ℎ𝑢𝜑 and 𝑢𝜑 respectively and adding them
together leads to the evolution for term

(
𝜌ℎ𝑢

2
𝜑

)
,

𝜕

(
𝜌ℎ𝑢

2
𝜑

)
𝜕𝑡︸      ︷︷      ︸

𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒

+ 1
𝑟2

𝜕

[(
𝜌ℎ𝑢

2
𝜑

)
𝑢𝑟 𝑟
2
]

𝜕𝑟︸                     ︷︷                     ︸
𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛

+ 2𝜌ℎ𝑢2𝜑
𝑢𝑟

𝑟︸      ︷︷      ︸
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

= 0. (28)

Since 𝑢𝑟 > 0 in the halo core region and 𝑢𝑟 < 0 in the halo outer
region for fast growing halos (see Xu 2021b, Fig. 2), the rotational
kinetic energy is consumed in the halo core region and generated in
outer region.
In hydrodynamic turbulence, Reynolds stress arising from velocity

fluctuation continuously transfers kinetic energy from mean flow to
turbulence and sustain the energy cascade. Note that 𝑢2𝜑 is closely
related to the in-plane velocity dispersion (Eq. (10)), the production
term in Eqs. (19) and (28) describe the energy transfer between the
mean flow and random motion (turbulence) in halos. The fictitious
stresses 𝜌ℎ𝜎2𝑟𝑟 and 𝜌ℎ𝑢2𝜑 (equivalent to the "Reynolds stress") acts
on the gradient of mean flow (𝑢𝑟 /𝑟) to facilitate the energy transfer
between mean flow and random motion.
While the energy transfer in turbulence is always one-way from

mean flow to random motion, the energy transfer is two-way in halos
of dark matter flow, where energy can be drawn from randommotion
to mean flow in outer region (𝑢𝑟 < 0 in Eq. (28)) or from mean flow
to random motion in core region (𝑢𝑟 > 0), depending on the local
sign of 𝑢𝑟 . However, for entire halo, there is a net transfer from mean
flow to random flow (see Table 4).
Just like the radial kinetic energy in Eq. (21), halo rotational kinetic

energy is defined as,

𝐾̄𝑎 =
1
2

∫ 𝑟ℎ

0
2𝜋𝑟2

∫ 𝜋

0

(
𝜌ℎ𝑢

2
𝜑

)
sin 𝜃𝑑𝜃𝑑𝑟. (29)

Integrating Eq. (28) with
∫ 𝑟ℎ
0 2𝜋𝑟2

∫ 𝜋
0 1/2 (•) sin 𝜃𝑑𝜃𝑑𝑟 leads to the

evolution of the total rotational kinetic energy for entire halo,

𝜕𝐾̄𝑎

𝜕𝑡
= 𝜋𝑟2

ℎ
𝜌ℎ (𝑟ℎ)

∫ 𝜋

0
𝑢2𝜑 (𝑟ℎ , 𝜃) sin 𝜃𝑑𝜃

(
𝜕𝑟ℎ

𝜕𝑡
− 𝑢𝑟 (𝑟ℎ)

)
︸                                                                ︷︷                                                                ︸

1

−
∫ 𝑟ℎ

0
2𝜋𝑟2

𝑢𝑟

𝑟
𝜌ℎ

(∫ 𝜋

0
𝑢2𝜑 sin 𝜃𝑑𝜃

)
𝑑𝑟︸                                            ︷︷                                            ︸

2

,

(30)

where the rotational kinetic energy can be changed due to halo growth
and radial flow (term 1 in Eq. (30)) on surface and the energy transfer
with the random motion in bulk of halo (term 2 in Eq. (30)). By
contrast, angular momentum can only be changed due to the surface
term (see Eq. (25)).
A complete understanding of the evolution and transfer of radial

and rotational kinetic energies will require solutions of mean flow
and velocity dispersions. Obviously Eqs. (2), (9), (10), and (11) is
not a closed system. Additional assumptions are required to obtain
complete solutions of the mean flow and velocity dispersions, which
will be discussed in the next section.

3.3 General solutions for axisymmetric rotating&growing halos

We now turn to the axisymmetric solutions of a rotating and grow-
ing spherical halo with a non-zero angular velocity. In principle,
such halos can be characterized by four time-varying parameters,
i.e. the halo mass 𝑚ℎ (𝑡), the angular velocity 𝜔ℎ (𝑡), concentration
parameter 𝑐 (𝑡) and scale radius 𝑟𝑠 (𝑡). The halo size (virial radius)
is 𝑟ℎ (𝑡) = 𝑐 (𝑡) 𝑟𝑠 (𝑡). A reduced spatial-temporal variable x is in-
troduced (see Xu 2021b, Eq. (60)),

𝑥 (𝑟, 𝑡) = 𝑟

𝑟𝑠 (𝑡)
=
𝑐 (𝑡) 𝑟
𝑟ℎ (𝑡)

. (31)

The time and spatial derivatives with respect to t and r can be derived
in terms of the reduced variable x using the chain rule,

𝜕

𝜕𝑡
=
𝜕

𝜕𝑥

𝜕𝑥

𝜕𝑡
= − 𝑥

𝑡

𝜕 ln 𝑟𝑠
𝜕 ln 𝑡

𝜕

𝜕𝑥
and

𝜕

𝜕𝑟
=
𝜕

𝜕𝑥

𝜕𝑥

𝜕𝑟
=
1
𝑟𝑠

𝜕

𝜕𝑥
. (32)

A unknown function 𝐹 (𝑥) is introduced such that halo density 𝜌ℎ
and the mass 𝑚𝑟 enclosed in the radius r can all be expressed in
terms of function 𝐹 (𝑥),

𝜌ℎ (𝑟, 𝑡) =
𝑚ℎ (𝑡)
4𝜋𝑟3𝑠

𝐹
′ (𝑥)

𝑥2𝐹 (𝑐)
and 𝑚𝑟 (𝑟, 𝑡) = 𝑚ℎ (𝑡)

𝐹 (𝑥)
𝐹 (𝑐) . (33)

The total mass of a virialized halo is expected to be proportional to
the background density 𝜌̄0 at present epoch,

𝑚
ℎ
(𝑡) = 4

3
𝜋𝑟3
ℎ
Δ𝑐 𝜌̄0𝑎

−3, (34)

where the critical ratio Δ𝑐 = 18𝜋2 can be obtained from a spherical
collapse model or a two-body collapse model (see Xu 2021d, Eq.
(89)) for a matter dominant universe. The circular velocity at the
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surface of a halo and at any given radius r can be defined as,

𝑣2𝑐𝑖𝑟 (𝑎) =
𝐺𝑚ℎ (𝑎)
𝑟ℎ (𝑎)

=
4𝜋2𝑟2

ℎ

𝑡2
= (3𝜋𝐻𝑟ℎ)2

and

𝑣2𝑐 (𝑟, 𝑎) =
𝐺𝑚𝑟 (𝑟, 𝑎)

𝑟
=
𝑐𝐹 (𝑥)
𝐹 (𝑐) 𝑥 𝑣

2
𝑐𝑖𝑟 .

(35)

A relation between 𝑐 (𝑡), 𝑟𝑠 (𝑡), and 𝑚ℎ (𝑡) is found from Eq. (34),
𝜕 ln 𝑐
𝜕 ln 𝑡

+ 𝜕 ln 𝑟𝑠
𝜕 ln 𝑡

=
1
3
𝜕 ln𝑚ℎ
𝜕 ln 𝑡

+ 2
3
. (36)

We will focus on the solutions for two limiting situations in terms
of a reduced amplitude parameter (peak height) of density fluctuation
(Despali et al. 2014),

𝜈 = 𝛿𝑐𝑟 /𝜎 (𝑚ℎ , 𝑧), (37)

where 𝛿𝑐𝑟 ≈ 1.68 is the critical overdensity from spherical collapse
model and 𝜎 (𝑚ℎ , 𝑧) is the rms (root mean square) fluctuation of
the smoothed density field. Halos at their early stage with fast mass
accretion have their angular momentum increasing with time. The
mass accretion and increase of angular momentum will gradually
slower down with halos evolving toward the late stage of their life.
At the same redshift, large halos tend to have a higher 𝜈 and small

halos have a lower 𝜈. From this point on, "large" halos refer to the
halos at early stage of its life with fast mass accretion (high 𝜈) and
a growing core such that the concentration 𝑐 (𝑡) is relatively time-
invariant and the halo mass 𝑚ℎ (𝑡) ∼ 𝑡 from inverse mass cascade
(see Xu 2021a, Fig. 7). From Eq. (36), we should have

𝑟ℎ (𝑡) ∼ 𝑡 and 𝑟𝑠 (𝑡) ∼ 𝑡. (38)

"Small" halos refer to low 𝜈 halos at the late stage of halo life with
slow mass accretion and a stable core, where the scale radius 𝑟𝑠 (𝑡)
and the halo core mass (mass enclosed within 𝑟𝑠) 𝑚𝑟 (𝑟𝑠 , 𝑡) are all
relatively time-invariant such that (from Eqs. (33) and (36))

𝑚𝑟 (𝑟𝑠 , 𝑡)
𝑚ℎ (𝑡)

=
𝐹 (1)
𝐹 (𝑐) = 𝐶𝐹 and 𝑐3 ∼ 𝐹 (𝑐)

𝐹 (1) 𝑡
2 =

𝑡2

𝐶𝐹
. (39)

Here 𝐶𝐹 is the ratio of core mass to halo mass and concentration
𝑐 ∼ 𝑡2/3 ∼ 𝑎 for small halos with halo mass increases slowly with
𝑚ℎ (𝑡) ∝ 𝐹 (𝑐). This simple relation is consistent with concentration
models in (Bullock et al. 2001b; Wechsler et al. 2002).
The complete solution of the mean radial flow 𝑢𝑟 can be obtained

by solving the continuity equation (Eq. (2)) for a given unknown
function 𝐹 (𝑥) (see Xu 2021b, Eq. (23)),

𝑢𝑟 (𝑟) = 𝑢ℎ
𝑟𝑠

𝑡

and the normalized radial flow

𝑢ℎ (𝑥) = 𝑥
𝜕 ln 𝑟𝑠
𝜕 ln 𝑡

+
(
𝜕 ln 𝐹 (𝑐)
𝜕 ln 𝑡

− 𝜕 ln𝑚ℎ
𝜕 ln 𝑡

)
𝐹 (𝑥)
𝐹

′ (𝑥)
.

(40)

Obviously, 𝑢ℎ (𝑥) = 0 for small halos with a stable core (using Eq.
(39) with constant 𝑟𝑠 , halo mass 𝑚ℎ ∝ 𝐹 (𝑐)). While for large halos
(using Eq. (38) with a constant concentration c),

𝑢ℎ (𝑥) = 𝑥 −
𝐹 (𝑥)
𝐹

′ (𝑥)
. (41)

To derive full solutions for mean flow and velocity dispersions, the
first assumption we made here is to use the separation of variables to
express the mean azimuthal flow 𝑢𝜑 as

𝑢𝜑 (𝑟, 𝜃, 𝑡) = 𝜔ℎ (𝑡) 𝑟𝑠 (𝑡) 𝐹𝜑 (𝑥) 𝐾𝜑 (𝜃) , (42)

where 𝐹𝜑 (𝑥) and 𝐾𝜑 (𝜃) are the radial and angular functions for 𝑢𝜑 ,

respectively. The azimuthal flow 𝑢𝜑 is expected to be proportional to
the effective halo angular velocity 𝜔ℎ . The exact solution of 𝐹𝜑 (𝑥)
can be derived from the momentum equation for 𝑢𝜑 (Eq. (11)) with
help of chain rule from Eq. (32),

𝜕 ln 𝐹𝜑
𝜕 ln 𝑥

=

𝑢ℎ (𝑥) + 𝑥
(
𝜕 ln 𝜔ℎ
𝜕 ln 𝑡 + 𝜕 ln 𝑟𝑠

𝜕 ln 𝑡

)
𝑥
𝜕 ln 𝑟𝑠
𝜕 ln 𝑡 − 𝑢ℎ (𝑥)

. (43)

Velocity dispersions are expected to be isotropic for non-rotating
halos with a spherical symmetry. The halo spin (𝜔ℎ ≠ 0) breaks the
spherical symmetry and leads to the anisotropy in velocity disper-
sion. For spherical halos with a finite angular velocity 𝜔ℎ , velocity
dispersions are only isotropic along the axis of rotation (𝑟𝑧 = 0 or
𝜃 = 0 such that 𝑢𝜑 = 0 on that axis),

𝜎2𝑟𝑟 (𝑟, 𝜃 = 0, 𝑡) = 𝜎2𝜃 𝜃 (𝑟, 𝜃 = 0, 𝑡)

= 𝜎2𝜑𝜑 (𝑟, 𝜃 = 0, 𝑡) = 𝜎2
𝑟0 (𝑟, 𝑡) ,

(44)

where 𝜎2
𝑟0 (𝑟, 𝑡) is the axial velocity dispersion along the axis of ro-

tation. With spin causing the velocity dispersion anisotropy, velocity
dispersions can be a function of azimuthal flow 𝑢2𝜑 .
The second assumption is to express velocity dispersions as func-

tions of the azimuthal flow 𝑢2𝜑 . The first order approximation for
three dispersions should read

𝜎2𝜃 𝜃 (𝑟, 𝜃, 𝑡) = 𝜎
2
𝑟0 (𝑟, 𝑡)︸     ︷︷     ︸
1

+𝛼𝜑 (𝑟, 𝑡) 𝑢2𝜑 (𝑟, 𝜃, 𝑡)︸                   ︷︷                   ︸
2

, (45)

𝜎2𝜑𝜑 (𝑟, 𝜃, 𝑡) = 𝜎2
𝑟0 (𝑟, 𝑡) + 𝛽𝜑 (𝑟, 𝑡) 𝑢2𝜑 (𝑟, 𝜃, 𝑡) , (46)

𝜎2𝑟𝑟 (𝑟, 𝜃, 𝑡) = 𝜎2𝑟0 (𝑟, 𝑡) + 𝛾𝜑 (𝑟, 𝑡) 𝑢2𝜑 (𝑟, 𝜃, 𝑡) , (47)

where expansion coefficients𝛼𝜑 , 𝛽𝜑 and 𝛾𝜑 will be determined later.
This approximation decomposes the velocity dispersions into a non-
spin induced axial dispersion (term 1) and a spin-induced dispersion
(term 2). Substitution of Eqs. (45) and (46) into the momentum
equation in polar direction (Eq. (10)) leads to the solution for angular
function 𝐾𝜑 (𝜃),

𝜕 ln 𝑢𝜑
𝜕 ln sin 𝜃

=
𝜕 ln𝐾𝜑
𝜕 ln sin 𝜃

=
1 + 𝛽𝜑 − 𝛼𝜑
2𝛼𝜑

. (48)

With expression of 𝑢𝜑 in Eq. (42), the angular function 𝐾𝜑 (𝜃) is

𝐾𝜑 (𝜃) = (sin 𝜃)𝛼𝜃 and 𝛼𝜃 =
1 + 𝛽𝜑 − 𝛼𝜑
2𝛼𝜑

. (49)

Next, substitution of velocity dispersions (Eqs. (45)-(47)) into the
momentum equation in radial direction (Eq. (9)) leads to two separate
equations, i.e. an equation for the isotropic velocity dispersion 𝜎2

𝑟0
(term 1 in Eq. (45)),

𝜕𝑢𝑟

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
+ 1
𝜌ℎ

𝜕

(
𝜌ℎ𝜎

2
𝑟0

)
𝜕𝑟

+ 𝜕𝜙𝑟
𝜕𝑟

+ 𝐹𝑎 (𝑟, 𝑡) = 0, (50)

and an equation for anisotropic velocity dispersions via coefficients
𝛼𝜑 , 𝛽𝜑 and 𝛾𝜑 (term 2 in Eqs. (45)-(47)),

𝜕 ln 𝛾𝜑
𝜕 ln 𝑥

+ 2
𝜕 ln 𝑢𝜑
𝜕 ln 𝑥

+ 𝜕 ln 𝜌ℎ
𝜕 ln 𝑥

+ 2 − 2𝛼𝑎 =
𝑟𝐹𝑎 (𝑟, 𝑡)
𝛾𝜑𝑢

2
𝜑

. (51)

Here 𝛼𝑎 is a dimensionless coefficient for the effect of anisotropy on
the radial velocity dispersion through functions 𝛼𝜑 , 𝛽𝜑 , and 𝛾𝜑 ,

𝛼𝑎 =
(
𝛼𝜑 + 𝛽𝜑 + 1

)
/2𝛾𝜑 , (52)
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where 𝛼𝑎 can be related to the anisotropic parameter 𝛽ℎ1. The new
and the old (standard) anisotropy parameters defined in Eqs. (12) and
(13) can be expressed in terms of the coefficients 𝛼𝜑 , 𝛽𝜑 and 𝛾𝜑 as,

𝛽ℎ1 =
1 −

(
1 + 𝛼𝜑 + 𝛽𝜑

)
/
(
2𝛾𝜑

)
1 + 𝜎2

𝑟0/
(
𝛾𝜑𝑢

2
𝜑

) =
1 − 𝛼𝑎

1 + 𝜎2
𝑟0/

(
𝛾𝜑𝑢

2
𝜑

) (53)

and

𝛽ℎ =
1 −

(
𝛼𝜑 + 𝛽𝜑

)
/
(
2𝛾𝜑

)
1 + 𝜎2

𝑟0/
(
𝛾𝜑𝑢

2
𝜑

) . (54)

The coupling function 𝐹𝑎 (𝑟, 𝑡) (with a unit of acceleration) reflects
the coupling between term 1 and term 2 in Eq. (45), i.e. how velocity
dispersion 𝛾𝜑𝑢2𝜑 due to halo spin and the axial dispersion 𝜎2𝑟0 are
coupled. Two terms are decoupled if and only if 𝐹𝑎 (𝑟, 𝑡) = 0.
The radial velocity dispersion 𝜎2𝑟 (𝑟, 𝑡) for a non-rotating isotropic

spherical growing halo (𝜔
ℎ
= 0 and 𝛽

ℎ1 = 0 in Eq. (9)) has been
extensively studied previously (Xu 2021b), where

𝜕𝑢𝑟

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
+ 1
𝜌ℎ

𝜕

(
𝜌ℎ𝜎

2
𝑟

)
𝜕𝑟

+ 𝜕𝜙𝑟
𝜕𝑟

= 0. (55)

The logarithmic slope of pressure can be obtained from Eq. (55) (see
Xu 2021b, Eq. (73)),

𝜕 ln
(
𝜌ℎ𝜎

2
𝑟

)
𝜕 ln 𝑥

=
𝑣2
𝑐𝑖𝑟

𝜎2𝑟

(
𝑥2 − 𝑥𝑢ℎ
4𝜋2𝑐2

𝜕𝑢ℎ

𝜕𝑥
− 𝑣2𝑐
𝑣2
𝑐𝑖𝑟

)
. (56)

Obviously, 𝜎2
𝑟0 = 𝜎2𝑟 and Eq. (50) reduces to Eq. (55) only if the

coupling term 𝐹𝑎 (𝑟, 𝑡) = 0. Comparison of Eq. (55) with (50) leads
to a relation between two dispersions

𝜕 ln
[
𝜌ℎ

(
𝜎2𝑟 − 𝜎2

𝑟0

)]
𝜕 ln 𝑟

=
𝑟𝐹𝑎 (𝑟, 𝑡)(
𝜎2𝑟 − 𝜎2

𝑟0

) , (57)

where the coupling term 𝐹𝑎 (𝑟, 𝑡) contributes to the difference be-
tween 𝜎2𝑟 of an isotropic non-rotating halo and the axial dispersion
𝜎2
𝑟0 of a rotating halo. The relation between the other two radial
dispersions is obtained by subtracting Eq. (55) from Eq. (9),

𝜕 ln
[
𝜌ℎ

(
𝜎2𝑟𝑟 − 𝜎2𝑟

)]
𝜕 ln 𝑟

= − 2𝛽ℎ1𝜎2𝑟𝑟(
𝜎2𝑟𝑟 − 𝜎2𝑟

) , (58)

where 𝛽ℎ1 is the new anisotropic parameter defined in Eq. (12).
However,𝜎2𝑟𝑟 does not necessarily equal𝜎2𝑟 even for 𝛽ℎ1 = 0 because
of the additional dependence of 𝜎2𝑟𝑟 on 𝑢2𝜑 in Eq. (47).
Finally, the difference between radial velocity dispersion 𝜎2𝑟𝑟 and

axial dispersion 𝜎2
𝑟0 reads

𝜕 ln
[
𝜌ℎ

(
𝜎2𝑟𝑟 − 𝜎2𝑟0

)]
𝜕 ln 𝑟

=
𝑟𝐹𝑎 (𝑟, 𝑡) − 2𝛽ℎ1𝜎2𝑟𝑟(

𝜎2𝑟𝑟 − 𝜎2𝑟0
) , (59)

which is consistent with Eq. (51) and includes two contributions from
𝐹𝑎 (𝑟, 𝑡) and 𝛽ℎ1, respectively.

3.4 Solutions for small halos at late stage (low peak height 𝜈)

We first focus on small halos with a stable core and slow mass
accretion rate. Figure 4 plots the variation of (spherical and group
averaged) velocity dispersions and mean azimuthal flow 𝑢2𝜑 with the
radius r for all halos with a size 𝑛𝑝 between [20 40]. For velocity
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Figure 4. The variation of velocity dispersions and mean azimuthal flow
𝑢2𝜑 with radius r for all halos with a size 𝑛𝑝 between [20 40] at z=0 (unit:
(𝑘𝑚/𝑠)2). For all three velocity dispersions, the contribution from 𝜎2

𝑟0 is
dominant at small r, while contributions from 𝑢2𝜑 is dominant at large r. A
good relation 𝑢2

𝜙
= 𝜎2𝜑𝜑 − 𝜎2

𝜃 𝜃
between mean flow and in-plane velocity

dispersions can be clearly identified (Eq. (63)).

dispersions (Eqs. (45) to (47)), the contribution from 𝜎2
𝑟0 (term

1) is dominant at small r, while the contribution from 𝑢2𝜑 (term
2) can be dominant at large r. We also found a good agreement of
𝑢2
𝜙
= 𝜎2𝜑𝜑−𝜎2𝜃 𝜃 for large x (Eq. (63)), i.e. a surprisingly simple result

that directly connects the mean flow and randommotion (turbulence)
at halo scale.
For small halos with a stable core, coupling term 𝐹𝑎 (𝑟, 𝑡) = 0 is

expected such that 𝜎2
𝑟0 = 𝜎2𝑟 (Eqs. (50) and (57)). For core region

with a small r, 𝜎2𝑟𝑟 ≈ 𝜎2
𝑟0 = 𝜎

2
𝑟 , while 𝜎2𝑟𝑟 � 𝜎2

𝑟0 = 𝜎
2
𝑟 for outer

region due to a significant contribution from azimuthal flow 𝑢2𝜑 at
large r (see Fig. 4). In addition, the radial flow vanishes with 𝑢𝑟 (𝑟) =
0 (see Eq. (40) small halos are well bound and virialized structure).
Small halos are incompressible in (proper) velocity field with 𝑢𝑟 =

𝑢𝜃 = 0 and 𝑢𝜑 = 𝑢𝜑 (𝑟, 𝜃, 𝑡), i.e. ∇ · u = 0. While in comoving
system, the peculiar velocity v field has constant divergence with

∇ · v =
1
𝑟2

𝜕

(
𝑟2𝑣𝑟

)
𝜕𝑟

= −3𝐻𝑎, (60)

where peculiar radial flow 𝑣𝑟 = 𝑢𝑟 − 𝐻𝑎𝑟 = −𝐻𝑎𝑟 if 𝑢𝑟 = 0
(also from stable clustering hypothesis demonstrated by a two-body
collapse model (Xu 2021d)). The constant divergence flow in small
halos was also supported by the correlation-based statistical analysis,
where dark matter flow is shown to be constant divergence on small
scale and irrotational on large scale (Xu 2022e,f).
The angular velocity 𝜔ℎ of small halos is relatively time-invariant

(small halos grow slowly with a constant 𝑟𝑠 and vanishing radial flow
𝑢𝑟 = 0). Small halos with a stable core are expected to be relatively
isotropic with the anisotropic parameter 𝛽ℎ1 = 0 (Eq. (54)) (however,
the old definition of anisotropic parameter in Eq. (13) 𝛽ℎ ≠ 0 for
small halos), i.e.

𝛼𝑎 =
𝛼𝜑 + 𝛽𝜑 + 1
2𝛾𝜑

= 1 or 2𝜎2𝑟𝑟 = 𝜎2𝜑𝜑 + 𝜎2𝜃 𝜃 + 𝑢
2
𝜙 . (61)

With 𝛽ℎ1 = 0 (or equivalently 𝛼𝑎 = 1) and 𝐹𝑎 (𝑟, 𝑡) = 0, Eq. (51)
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Table 2. Dispersions and mean flow for rotating and non-rotating halos

Radial (𝑟 ) Azimuthal (𝜑) Polar (𝜃)
Rotating
(Eq. (9))

Random 𝜎2𝑟𝑟 = 𝜎2
𝑟0 +

2𝑢2𝜑
𝜎2𝜑𝜑 = 𝜎2

𝑟0 +
2𝑢2𝜑

𝜎2
𝜃 𝜃

= 𝜎2
𝑟0 +

𝑢2𝜑
Mean
flow

0 𝑢2𝜑 0

Non-
rotating
(Eq. (50))

Random 𝜎2𝑟𝑟 = 𝜎2𝑟 =

𝜎2
𝑟0

𝜎2𝜑𝜑 = 𝜎2
𝑟0 𝜎2

𝜃 𝜃
= 𝜎2

𝑟0

Mean
flow

0 0 0

for 𝛾𝜑 reduces to,

𝜕 ln 𝛾𝜑
𝜕 ln 𝑥

+ 2
𝜕 ln 𝑢𝜑
𝜕 ln 𝑥

+ 𝜕 ln 𝜌ℎ
𝜕 ln 𝑥

= 0. (62)

For outer region (large x) of small halos with an isothermal density
profile (the logarithmic slope of density is -2) and 𝑢𝜑 ∼ 𝜔ℎ𝑟𝑧 ∼
𝜔ℎ𝑟𝑠𝑥 sin 𝜃 (as shown in Figs. 2 and 3), Eq. (62) predicts 𝜕𝛾𝜑/𝜕𝑥 =
0, i.e. 𝛾𝜑 (𝑟, 𝑡) is almost a constant of location r. If we also expect
𝜎2𝑟𝑟 = 𝜎2𝜑𝜑 , i.e. 𝛾𝜑 = 𝛽𝜑 (as shown in Figs. 4 and 8) for large r, Eq.
(61) requires 1 + 𝛼𝜑 = 𝛽𝜑 such that

𝜎2𝑟𝑟 = 𝜎2𝜑𝜑 = 𝜎2𝜃 𝜃 + 𝑢
2
𝜙 and 𝑢𝑟 = 𝑢𝜃 = 0, (63)

as shown in both Fig. 4 and Fig. 8 for small halos. Equation (63)
may be considered as how energy is partitioned along each direction
for isotropic (𝛽ℎ1 = 0), incompressible, fully virialized (𝑢𝑟 = 0),
and rotating halos with extremely slow mass accretion. As shown
in Table 2, the total kinetic energy (both random motion and mean
flow) is partitioned along each coordinate:

𝜎2𝑟𝑟 = 𝜎2𝜑𝜑 (radial), 𝜎2𝜑𝜑 + 𝑢2𝜑 (azimuthal),

and 𝜎2𝜃 𝜃 = 𝜎2𝜑𝜑 − 𝑢2𝜑 (polar),
(64)

Energy is not equipartitioned along each direction, with the largest
kinetic energy in azimuthal direction and the smallest kinetic energy
in polar direction. The exponent 𝛼𝜃 = 1/𝛼𝜑 for angular function
𝐾𝜑 (𝜃) can be obtained from Eq. (49). For 𝐾𝜑 (𝜃) ∼ sin 𝜃 such that
𝛼𝜃 = 1, we should have 𝛼𝜑 = 1 and 𝛽𝜑 = 𝛾𝜑 = 2 for small halos.
This can be confirmed by simulation data in Fig. 8.
Now let’s compare the energy of an initially virialized non-rotating

halo that has an isotropic velocity dispersion 𝜎2𝑟 with the energy of
a rotating halo of the same size. The density profile and the potential
energy should be the same for both halos. The axial dispersions of
rotating halo is always 𝜎2

𝑟0 = 𝜎2𝑟 (Eq. (57) with 𝐹𝑎 (𝑟, 𝑡) = 0). For
a rotating halo with a rotational kinetic energy of 𝐾̄𝑎 (see Eq. (29)
for definition), there will be around 5𝐾̄𝑎 extra kinetic energy in the
form of random motion with 𝛽𝜑 = 𝛾𝜑 = 2𝛼𝜑 = 2 when compared
with non-rotating halo (see Table 2). In addition, small halos with
a finite spin will have an additional spin-induced pressure ∝ 𝜌ℎ𝑢

2
𝜑

when compared to a non-rotating halo. The spin-induced pressure
is independent of r for an isothermal density profile (𝜌ℎ ∝ 𝑟−2 and
𝑢𝜑 ∝ 𝑟) such that the gradient of spin-induced pressure vanishes.
Total pressure gradient of rotating halos is the same as the non-
rotating halo to balance the gravitational force (Eq. (9)).
In contrast to normal object whose temperature is independent of

the speed of spin, faster rotating halos (with fixed mass) are expected
to be hotter with greater entropy due to the random motion asso-
ciated with velocity dispersion. Figure 5 plots the variation of two
parameters 𝛼𝑎 (Eq. (52)) and 𝛼𝜃 (Eq. (49)) with radius r for halo
groups of different sizes 𝑛𝑝 . For small halos, 𝛼𝑎 = 1 and halo is
isotropic with 𝛽ℎ1 = 0 almost everywhere. Large halos tend to have
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Figure 5. The variation of two dimensionless parameters 𝛼𝑎 (Eq. (52)) and
𝛼𝜃 (Eq. (49)) with radius r for halo groups of different sizes 𝑛𝑝 . For small
halos with a stable core, 𝛼𝑎 = 1 and halo is relatively isotropic with 𝛽ℎ1 = 0
everywhere. Large halos tend to have an anisotropic outer region with 𝛼𝑎 < 1
and an isotropic core with 𝛼𝑎 ≈ 1. The azimuthal flow 𝑢𝜑 tends to have a
stronger dependence on polar angle 𝜃 for small halos, while 𝛼𝜃 � 1 for
large halos such that 𝑢𝜑 is less dependent on angle 𝜃 .

an anisotropic outer region with 𝛼𝑎 < 1 and an isotropic core with
𝛼𝑎 ≈ 1. In addition, the azimuthal flow 𝑢𝜑 tends to strongly depend
on the polar angle 𝜃 for small halos. While 𝛼𝜃 � 1 for large halos,
i.e. 𝑢𝜑 is less dependent on 𝜃 for large halos. More discussion for the
solutions of large halos is presented in next section 3.5.

3.5 Solutions for large halos at early stage (high peak height 𝜈)

We now turn to solutions for the other limiting situation, i.e. large
halos (high peak height 𝜈) with an expanding core, fast mass accre-
tion, and constant halo concentration c. We first focus on the solution
for azimuthal flow 𝑢𝜑 . For large halos with fast mass accretion, there
exists a non-zero radial flow 𝑢𝑟 (Eq. (41)), where the normalized
radial flow 𝑢ℎ is

𝑢ℎ (𝑥) =
𝑢𝑟 (𝑟) 𝑡
𝑟𝑠 (𝑡)

= 𝑥 − 𝐹 (𝑥)
𝐹

′ (𝑥)
and 𝑢ℎ (𝑐) = 𝑐

(
1 − 1

𝛼ℎ

)
. (65)

A halo deformation parameter is introduced here as

𝛼ℎ = 𝑐𝐹
′ (𝑐) /𝐹 (𝑐) (66)

to quantify the radial deformation at halo surface (no deformation
if 𝛼ℎ = 1 for isothermal density profile). The (normalized) peculiar
radial flow that excludes the Hubble flow is

𝑢𝑝 (𝑥) = 𝑢𝑟 𝑝 (𝑟)
𝑡

𝑟𝑠 (𝑡)
= [𝑢𝑟 (𝑟) − 𝐻𝑟]

𝑡

𝑟𝑠 (𝑡)

= 𝑢ℎ (𝑥) −
2
3
𝑥 =
1
3
𝑥 − 𝐹 (𝑥)

𝐹
′ (𝑥)

(67)

and

𝑢𝑝 (𝑥 = 𝑐) = 𝑐
(
1
3
− 1
𝛼ℎ

)
. (68)

With radial flow from Eq. (65), the logarithmic slope of density at
halo center can be related to a halo deformation rate parameter 𝛾ℎ
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(see Xu 2021b, Eq. (38)),(
𝜕 ln 𝜌ℎ
𝜕 ln 𝑥

+ 2
)����
𝑥=0

=
𝜕 ln 𝐹′

𝜕 ln 𝑥

�����
𝑥=0

=
𝛾ℎ

1 − 𝛾ℎ
and

𝜕 ln 𝐹
𝜕 ln 𝑥

����
𝑥=0

=
1

1 − 𝛾ℎ
,

(69)

where the deformation rate parameter 𝛾ℎ = (𝜕𝑢ℎ/𝜕𝑥) |𝑥=0 quantifies
the rate of deformation at the center of halo (𝛾ℎ=0, 1/2, and 2/3 for
isothermal, NFW and Einasto profiles, respectively).
The complete solution of the radial function (𝐹𝜑 (𝑥) in Eq. (42))

for azimuthal flow is obtained by substituting 𝑢ℎ (𝑥) from Eq. (65)
into Eq. (43) and reads,

𝐹𝜑 (𝑥) = 𝛼 𝑓
𝐹 (𝑥)𝛼𝜔

𝑥
with 𝛼𝜔 = 2 + 𝜕 ln𝜔ℎ

𝜕 ln 𝑡
, (70)

where the dimensionless constant 𝛼 𝑓 will be determined later. The
angular velocity of large halos is expected to decrease with time as
𝜔ℎ ∼ 𝑎−3/2 ∼ 𝐻 ∼ 𝑡−1 (Eq. (81)) such that 𝛼𝜔 = 1. From Eq. (69),

𝜕 ln 𝐹𝜑
𝜕 ln 𝑥

����
𝑥=0

=
𝜕 ln 𝐹′

𝜕 ln 𝑥

�����
𝑥=0

=
𝛾ℎ

1 − 𝛾ℎ
. (71)

The final solution of the mean azimuthal flow 𝑢𝜑 is

𝑢𝜑 (𝑟, 𝜃, 𝑡) = 𝑢𝜑 (𝑥, 𝜃) = 𝛼 𝑓 𝜔ℎ (𝑡) 𝑟𝑠 (𝑡) (sin 𝜃)𝛼𝜃
𝐹 (𝑥)
𝑥

. (72)

Next, we need to determine the dimensionless constant 𝛼 𝑓 and
effective angular velocity𝜔ℎ for entire halo. For a given halo density
profile 𝜌ℎ (𝑥) that is determined by function 𝐹 (𝑥) (Eq. (33)), the
root mean square radius 𝑟𝑔 is (see Xu 2021f, Fig. 13)

𝑟2𝑔 =
1
𝑚ℎ

∫ 𝑟ℎ

0
4𝜋𝑟2𝜌ℎ (𝑟) 𝑟2𝑑𝑟

= 𝑟2
ℎ

[
1 − 2

𝑐2𝐹 (𝑐)

∫ 𝑐

0
𝑥𝐹 (𝑥) 𝑑𝑥

]
= 𝛾2𝑔𝑟

2
ℎ
,

(73)

where 𝛾𝑔 = 𝑟𝑔/𝑟ℎ is a dimensionless ratio of root mean square radius
to halo size. The moment of inertia 𝐼𝜔 for that halo is given by,

𝐼𝜔 =

∫ 𝑟ℎ

0

∫ 𝜋

0

∫ 2𝜋

0
𝜌ℎ𝑟

2
𝑧𝑟
2 sin 𝜃𝑑𝜑𝑑𝜃𝑑𝑟

=

∫ 𝑟ℎ

0
2𝜋𝑟2𝜌ℎ

(∫ 𝜋

0
(𝑟 sin 𝜃)2 sin 𝜃𝑑𝜃

)
𝑑𝑟 =

2
3
𝑚ℎ𝑟

2
𝑔,

(74)

where the radius of gyration about axis of rotation is given by 𝑟2𝑟𝑔 =

𝐼𝜔/𝑚ℎ =2𝑟2𝑔/3. The halo (specific) angular momentum 𝐻ℎ is

𝐻ℎ = 𝜔ℎ𝑟
2
𝑟𝑔 =

𝜔ℎ 𝐼𝜔

𝑚ℎ

=
2
3
𝜔ℎ𝑟

2
ℎ

[
1 − 2

𝑐2𝐹 (𝑐)

∫ 𝑐

0
𝑥𝐹 (𝑥) 𝑑𝑥

]
=
2
3
𝜔ℎ𝑟

2
𝑔 .

(75)

The specific angular momentum𝐻ℎ can also be derived by a direct
integration of azimuthal flow 𝑢𝜑 using Eq. (24), where

𝐻ℎ =
1
𝑚ℎ

∫ 𝑟ℎ

0
2𝜋𝑟3𝜌ℎ (𝑟)

(∫ 𝜋

0
𝑢𝜑 sin2 𝜃𝑑𝜃

)
𝑑𝑟

=
𝑟
ℎ

2𝑐𝐹 (𝑐)

∫ 𝑐

0
𝑥𝐹

′ (𝑥)
(∫ 𝜋

0
𝑢𝜑 sin2 𝜃𝑑𝜃

)
𝑑𝑥.

(76)

With solution of 𝑢𝜑 given by Eq. (72), the dimensionless constant
𝛼 𝑓 can be determined by comparing Eqs. (75) and (76),

𝛼 𝑓 =
8𝑐2

3𝐹 (𝑐)

[
1 − 2

𝑐2𝐹 (𝑐)

∫ 𝑐

0
𝑥𝐹 (𝑥) 𝑑𝑥

]
Γ (2 + 𝛼𝜃/2)√
𝜋Γ (3/2 + 𝛼𝜃/2)

.

(77)

The peculiar radial velocity at halo virial radius 𝑟 = 𝑟ℎ is propor-
tional to circular velocity with a proportional constant 1/3𝜋 (using
Eq. (68))

𝑢𝑟 𝑝 (𝑟ℎ) = 𝑢𝑟 (𝑟ℎ) − 𝐻𝑟ℎ

= 𝑢𝑝 (𝑐)
𝑟𝑠 (𝑡)
𝑡

=
𝑟ℎ

𝑡

(
1
3
− 1
𝛼ℎ

)
= − 𝑣𝑐𝑖𝑟

3𝜋
.

(78)

This is true for an isothermal density profile with 𝑢𝑟 = 0 and 𝛼ℎ = 1,
where 𝑣𝑐𝑖𝑟 is the circular velocity at the virial radius. The propor-
tional constant 1/3𝜋 is essentially related to the angle of incidence
(see Xu 2021b, Section 3.4), i.e. the angle for single merger merging
with halos in mass cascade (see Xu 2021a, Fig. 8). It is also required
to interpret the critical MOND (modified Newtonian dynamics) ac-
celeration 𝑎0 by the mass and energy cascade in dark matter flow
(see Xu 2022j, Eq. (12) and Fig. 8).
Specifically, for large halos with an isothermal profile, 𝐹 (𝑥) = 𝑥/𝑐

and 𝛼𝜃 = 1, we have 𝛼 𝑓 = 2𝑐2/3 and the mean azimuthal flow

𝑢𝜑 (𝑟, 𝜃, 𝑡) = 2
3
𝜔ℎ (𝑡) 𝑟ℎ (𝑡) sin 𝜃 (79)

that is independent of the radius r.
Here if we assume the mean azimuthal flow 𝑢𝜑 on halo surface

with a polar angle of 𝜋/2 (halo equator) is equal to the peculiar radial
flow (two velocities are equal on the halo equator), from Eq. (78),

𝑢𝜑

(
𝑟ℎ ,

𝜋

2
, 𝑡

)
= −𝑢𝑟 𝑝 (𝑟ℎ , 𝑡) = −𝑢𝑝 (𝑥 = 𝑐)

𝑟𝑠

𝑡
≈ 𝑣𝑐𝑖𝑟

3𝜋
. (80)

Substitution of expression for 𝑢𝜑 from Eq. (72) and 𝑢𝑝 from Eq. (68)
into Eq. (80) leads to the expression of halo angular velocity,

𝜔ℎ =

(
3
2𝛼ℎ

− 1
2

)
𝑐2

𝐹 (𝑐) 𝛼 𝑓
𝐻, (81)

where the angular velocity of large halos 𝜔ℎ ∼ 𝐻 ∼ 𝑡−1 ∼ 𝑎−3/2.
Now we can compare our solution of the mean azimuthal flow 𝑢𝜑

with N-body simulation. The spherical averaged azimuthal flow 𝑢𝑛𝜑
(normalized by the Hubble flow) can be defined as (with solutions of
𝑢𝜑 and 𝜔ℎ from Eqs. (72) and (81)),

𝑢𝑛𝜑 =
1/2

∫ 𝜋
0 𝑢𝜑 (𝑟, 𝜃, 𝑡) sin 𝜃𝑑𝜃

𝐻𝑟

=
1
2

(
3
2𝛼ℎ

− 1
2

) √
𝜋Γ (1 + 𝛼𝜃/2)

Γ (3/2 + 𝛼𝜃/2)
𝑐2𝐹 (𝑥)
𝑥2𝐹 (𝑐)

.

(82)

Figure 6 presents the variation of normalized (spherical and group
averaged) azimuthal flow 𝑢𝑛𝜑 with radius r for different size of halos.
Function 𝐹 (𝑥) for a NFW density profile

𝐹 (𝑥) = ln (1 + 𝑥) − 𝑥

1 + 𝑥 (83)

is used for comparison along with other parameters 𝑐 = 3.5, 𝑟𝑠 =

0.34𝑀𝑝𝑐/ℎ, and 𝛼𝜃 = 1/2.
Halos of the same size 𝑛𝑝 are first aligned by the axis of rotation

and assembled into a composite halo containing all particles from the
same halo group. The average is taken over the normalized azimuthal
flow 𝑢𝑛𝜑 of all particles in the same spherical shell of radius r of
composite halos. Next, average is also taken over all halo groups
with size 𝑛𝑝 in the given range as indicated in Fig. 6. The azimuthal
flow 𝑢𝜑 approaches around 10 times of Hubble flow 𝐻𝑟 at the halo
core region and is comparable to Hubble flow at halo outer region.
This solution also suggests a faster spinning core and slower spinning
outer region of halos with 𝜔𝑟 ∼ 𝐻 (Fig. 3).
Next let us turn to solutions for velocity dispersions of large halos.
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Figure 6. The variation of normalized mean azimuthal flow 𝑢𝜑/(𝐻𝑟 ) with
radius r for halo groups of different sizes 𝑛𝑝 . The average is taken over all
particles in the same spherical shell of radius r, and over all halos with a size
𝑛𝑝 in the range given in figure. The analytical solution (Eq. (82)) is obtained
using a NFW profile along with 𝑐 = 3.5, 𝑟𝑠 = 0.34𝑀𝑝𝑐/ℎ, and 𝛼𝜃 = 1/2.
Solution suggests a faster spinning core and slower spinning outer region.
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Figure 7. The variation of (spherical averaged) velocity dispersion in unit of
(𝑘𝑚/𝑠)2 and the azimuthal flow 𝑢2𝜑 with radius r for halo groups of size 𝑛𝑝
between [500 1000] at z=0. By contrast to velocity dispersion for small halos
in Fig. 4, the spin-induced dispersion from azimuthal flow 𝑢2𝜑 is dominant in
large halos over the axial dispersion 𝜎2

𝑟0.

Figure 7 plots velocity dispersions and azimuthal flow 𝑢2𝜑 varying
with radius r for halos of size 𝑛𝑝 between [500 1000] at z=0. The
spin-induced contributions from 𝑢2𝜑 are dominant for dispersions,
where we should have 𝜎2𝑟 ≈ 𝜎2𝑟𝑟 ≈ 𝛾𝜑𝑢2𝜑 � 𝜎2

𝑟0 , i.e. the term 2 in
Eqs. (45)-(47) is dominant over the term 1 with 𝛼𝜑 � 1, 𝛽𝜑 � 1,
and 𝛾𝜑 � 1 (see Fig. 8 for more details).
The coupling function 𝐹𝑎 (𝑟, 𝑡) < 0 in Eqs. (50) and (51) such that

(from Eqs. (56) and (57)),

𝑟𝐹𝑎 (𝑟, 𝑡)
𝜎2𝑟

≈
𝜕 ln

[
𝜌ℎ𝜎

2
𝑟

]
𝜕 ln 𝑟

=
𝑣2
𝑐𝑖𝑟

𝜎2𝑟

(
𝑥2 − 𝑥𝑢ℎ
4𝜋2𝑐2

𝜕𝑢ℎ

𝜕𝑥
− 𝑣2𝑐
𝑣2
𝑐𝑖𝑟

)
≈ 𝑥2 − 𝑥𝑢ℎ
4𝜋2𝑐2

𝜕𝑢ℎ

𝜕𝑥

𝑣2
𝑐𝑖𝑟

𝛾𝜑𝑢
2
𝜑

− 𝑣2𝑐
𝛾𝜑𝑢

2
𝜑

.

(84)

This can be further reduced to (with 𝑢ℎ from Eq. (65))

𝑟𝐹𝑎 (𝑟, 𝑡)
𝛾𝜑𝑢

2
𝜑

≈


𝑥2

4𝜋2𝑐2

(
𝜕 ln 𝐹
𝜕 ln 𝑥

)−2
𝜕 ln 𝐹′

𝜕 ln 𝑥︸                            ︷︷                            ︸
1

− 𝑐𝐹 (𝑥)
𝑥𝐹 (𝑐)︸  ︷︷  ︸
2


𝑣2
𝑐𝑖𝑟

𝛾𝜑𝑢
2
𝜑

≈ − 𝑐𝐹 (𝑥)
𝑥𝐹 (𝑐)

𝑣2
𝑐𝑖𝑟

𝛾𝜑𝑢
2
𝜑

= − 𝑣2𝑐
𝛾𝜑𝑢

2
𝜑

(85)

that is in terms of the unknown function 𝐹 (𝑥). Term 1 in Eq. (85) is
the contribution from mean radial flow and is expected to be much
smaller when compared to term 2 from the gravitational potential.
The approximation of coupling function 𝐹𝑎 (from Eq. (85))

𝐹𝑎 (𝑟, 𝑡) ≈ −𝐹 (𝑥)
𝐹 (𝑐)

𝑟ℎ

𝑟2
𝑣2𝑐𝑖𝑟 = − 𝜕𝜙𝑟

𝜕𝑟
(86)

can be obtained and used in Eq. (50) for large halos.
With 𝛼𝜑 and 𝛽𝜑 are comparable and both are much greater than

1 , we will have 𝛼𝜃 (exponent of sin 𝜃 in Eq. (72) for 𝑢𝜑),

𝛼𝜃 =
1 + 𝛽𝜑 − 𝛼𝜑
2𝛼𝜑

� 1 with 𝛼𝜑 � 1 and 𝛽𝜑 � 1, (87)

such that the dependence on the coordinate variable 𝜃 can be elimi-
nated, i.e. all variables are only weakly dependent on 𝜃. This is also
clearly shown in the plot of 𝛼𝜃 in Fig. 5, where azimuthal flow 𝑢𝜑 is
weakly dependent on 𝜃 for large halos.
With approximation of coupling function 𝐹𝑎 (𝑟, 𝑡) in Eq. (86), Eq.

(50) for axial velocity dispersion 𝜎2
𝑟0 reduces to

𝜕𝑢𝑟

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
+ 1
𝜌ℎ

𝜕

(
𝜌ℎ𝜎

2
𝑟0

)
𝜕𝑟

= 0, (88)

where 𝜎2
𝑟0 is entirely determined by the mean radial flow 𝑢𝑟 . Using

solution of 𝑢𝑟 in Eq. (65), the solution of 𝜎2𝑟0 reads

𝜎2
𝑟0 (𝑥) =

𝑣2
𝑐𝑖𝑟
𝑥2

4𝜋2𝑐2𝐹′ (𝑥)

{
𝐹2 (𝑥)
𝑥2𝐹′ (𝑥)

����∞
𝑥

−
∫ ∞

𝑥

[
2𝐹 (𝑥)
𝑥2

− 2𝐹
2 (𝑥)

𝐹
′ (𝑥) 𝑥3

]
𝑑𝑥

}
,

(89)

which is the first term in the solution for radial dispersion 𝜎2𝑟 of
isotropic and non-rotating halos (see Xu 2021b, Eq. (68)).
Next, Eqs. (51) and (85) are now used to solve for the in-plane and

radial velocity dispersions. The equation for 𝛾𝜑 now reads,

𝜕 ln 𝛾𝜑
𝜕 ln 𝑥

+2
𝜕 ln 𝑢𝜑
𝜕 ln 𝑥

+ 𝜕 ln 𝜌ℎ
𝜕 ln 𝑥

+2−
(
1 + 𝛼𝜑 + 𝛽𝜑

)
𝛾𝜑

= − 𝑐𝐹 (𝑥)
𝑥𝐹 (𝑐)

𝑣2
𝑐𝑖𝑟

𝛾𝜑𝑢
2
𝜑

.

(90)

Substitution of the solution of 𝑢𝜑 (Eq. (72)) into Eq. (90) leads to

𝜕 ln 𝛾𝜑
𝜕 ln 𝑥

+2 𝜕 ln 𝐹
𝜕 ln 𝑥

−2+ 𝜕 ln 𝐹
′

𝜕 ln 𝑥
+

𝜆 𝑓 𝑥

𝐹 (𝑥) 𝛾𝜑
=

(
1 + 𝛼𝜑 + 𝛽𝜑

)
𝛾𝜑

= 2𝛼𝑎 .

(91)
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Figure 8. The variation of 𝐶2 = 𝛽𝜑 − 𝛼𝜑 (solid line) and 𝐶1 = 𝛾𝜑 − 𝛼𝜑
(dash line), i.e. 𝜎2𝜑𝜑 − 𝜎2

𝜃 𝜃
= 𝐶2𝑢

2
𝜑 and 𝜎2𝑟𝑟 − 𝜎2𝜃 𝜃 = 𝐶1𝑢

2
𝜑 , with radius

r for halo groups of different sizes at z=0. Small halos are entirely isotropic
with 𝐶1 = 𝐶2 = 1 , i.e. 𝜎2𝜑𝜑 − 𝜎2

𝜃 𝜃
= 𝑢2𝜑 and 𝜎2𝑟𝑟 = 𝜎2𝜑𝜑 such that the

anisotropic parameter 𝛽ℎ1 = 0. For large halos,𝐶1 and𝐶2 are more likely to
be dependent on r with 𝐶1 � 𝐶2. At halo surface, 𝐶1 = 𝛾𝜑 − 𝛼𝜑 ≈ 10 and
𝐶2 = 𝛽𝜑 − 𝛼𝜑 ≈ 1.

With 𝑣2
𝑐𝑖𝑟
from Eq. (35) and 𝜔

ℎ
from Eq. (81), the dimensionless

constant 𝜆 𝑓 is defined as

𝜆 𝑓 =
𝑐𝑣2
𝑐𝑖𝑟

𝛼2
𝑓
𝜔2
ℎ
𝑟2𝑠𝐹 (𝑐)

=
9𝜋2𝐹 (𝑐)

(3/(2𝛼ℎ) − 1/2)2 𝑐
. (92)

To obtain a solution of 𝛾𝜑 and hence the solution of velocity dis-
persions, we need to introduce some additional constraints between
three expansion coefficients,

𝛽𝜑 = 𝛼𝜑 + 𝐶2 (𝑥) and 𝛾𝜑 = 𝛼𝜑 + 𝐶1 (𝑥) , (93)

where 𝐶1 and 𝐶2 are two functions of x that can be determined from
simulation. This requires

𝐶2𝑢
2
𝜑 = 𝜎2𝜑𝜑 − 𝜎2𝜃 𝜃 and 𝐶1𝑢

2
𝜑 = 𝜎2𝑟𝑟 − 𝜎2𝜃 𝜃 , (94)

i.e. the difference between velocity dispersions is always proportional
to 𝑢2𝜑 . Figure 8 presents the variation of 𝐶1 and 𝐶2 with radius r for
halo groups of different sizes. Clearly, 𝐶1 = 𝐶2 = 1 for small halos,
as predicted in the previous section since small halos are relatively
isotropic with anisotropic parameter 𝛽ℎ1 = 0. However, large halos
are anisotropic with 𝛽ℎ1 > 0, where 𝐶1 and 𝐶2 are r-dependent with
𝐶1 � 𝐶2. At halo surface,𝐶1 = 𝛾𝜑−𝛼𝜑 ≈ 10 and𝐶2 = 𝛽𝜑−𝛼𝜑 ≈ 1.

We first look at a special case: large halos with extremely fast mass
accretion and infinitesimal halo lifespan, where the radial flow 𝑢𝑟
vanishes (see Xu 2021b, Fig. 3) and axial velocity dispersion 𝜎2

𝑟0 =
0 from Eq. (88)). These halos should have an isothermal density
profile with 𝐹 (𝑥) = 𝑥/𝑐 (see Xu 2021d, Section 3.7). Therefore, from
Eq. (91), the expansion coefficients for large halos with isothermal
density profile should be,

𝛼𝜙 =
9𝜋2 − 𝐶2 − 1

2
, 𝛽𝜙 =

9𝜋2 + 𝐶2 − 1
2

, 𝛾𝜙 =
9𝜋2 − 𝐶2 − 1 + 2𝐶1

2
(95)

For a general density profile, with these relations, the final equation

for the expansion coefficient 𝛾𝜑 reads (from Eq. (91))

𝜕𝛾𝜑

𝜕𝑥
+
𝛾𝜑

𝑥


𝜕 ln

(
𝐹2𝐹

′/𝑥4
)

𝜕 ln 𝑥

 +
𝜆 𝑓

𝐹 (𝑥) =
𝐶2
𝑥︸︷︷︸
1

+1 − 2𝐶1
𝑥

. (96)

Exact solution of 𝛾𝜑 will depend on the model of 𝐶1 and 𝐶2. One
reasonable simplification is to neglect term 1 in Eq. (96) because
of 𝐶1 � 𝐶2 ≈ 1 and assume a constant 𝐶1 (𝑥) = 𝐶1 = 10. The
corresponding solution for 𝛾𝜑 can be obtained in terms of 𝐹 (𝑥),

𝛾𝜑 (𝑥) = 𝑥4

𝐹2 (𝑥) 𝐹′ (𝑥)

©­­­­­«
(2𝐶1 − 1 − 𝐶2)

∫ ∞

𝑥

𝐹2 (𝑦) 𝐹′ (𝑦)
𝑦5

𝑑𝑦︸                      ︷︷                      ︸
1

+𝜆 𝑓
∫ ∞

𝑥

𝐹 (𝑦) 𝐹′ (𝑦)
𝑦4

𝑑𝑦︸                    ︷︷                    ︸
2

ª®®®®®¬
.

(97)

With 𝐹 (𝑥) ∼ 𝑥2 for small x (NFW profile), we should expect 𝛾𝜑 ∼
𝑥−1 from Eq. (96). For any given density profile (or function 𝐹 (𝑥)),
the velocity dispersions (Eqs. (45) to (47)) can be eventually obtained
with solution of 𝜎2

𝑟0 from Eq. (89) and solutions of 𝑢
2
𝜑 and 𝛾𝜑 from

Eqs. (72) and (97), respectively. For NFW profile, the two terms in
Eq. (97) can be obtained analytically,

term1 =
2 + 83𝑥 + 147𝑥2 + 68𝑥3

6𝑥 (1 + 𝑥)3
+ 35
12
ln 𝑥

+ ln (−𝑥)
12

[−35 + 8 ln (1 + 𝑥) (5 + 6 ln (1 + 𝑥))]

+ ln (1 + 𝑥)
3𝑥3 (1 + 𝑥)2

[
−2𝑥 + 6𝑥2 + 45𝑥3 + 34𝑥4

]
− ln

2 (1 + 𝑥)
3𝑥3 (1 + 𝑥)

[
−1 + 2𝑥 + 𝑥2 (𝑥 − 2) (3 + 5𝑥)

]
+ 2
3
[5 + 12 ln (1 + 𝑥)] 𝑝𝑜𝑙𝑦 log (2, 1 + 𝑥)

− 8𝑝𝑜𝑙𝑦 log (3, 1 + 𝑥) + 5𝜋 (21𝑖 − 8𝜋)
36

− 4
3
ln3 (1 + 𝑥)

and

term2 =
ln (1 + 𝑥)
2𝑥2 (1 + 𝑥)2

+ 1
2𝑥 (1 + 𝑥)2

{
−1 − 9𝑥 − 7𝑥2

+
[
−2 − 8𝑥 − 4𝑥2 + 𝑥3

]
ln (1 + 𝑥)

+
[
𝜋2 + 6polylog (2,−𝑥) − ln 𝑥 + 3 (ln (1 + 𝑥))2

]
𝑥 (1 + 𝑥)2

}
,

(98)

For large halos with 𝜎2
𝑟0 � 𝛾𝜑𝑢

2
𝜑 , the anisotropy parameters 𝛽ℎ1

and 𝛽ℎ (Eq. (54)) are equal and reduced to the same expression in
terms of 𝛾𝜑 ,

𝛽ℎ1 ≈ 1 −
1 + 𝛼𝜑 + 𝛽𝜑
2𝛾𝜑

≈ 2𝐶1 − 1 − 𝐶2
2𝛾𝜑

≈ 𝛽ℎ , (99)

which is inversely proportional to coefficient 𝛾𝜑 in Eq. (97).
Figure 9 plots the variation of anisotropy parameters 𝛽ℎ1 (dash

lines) and 𝛽ℎ (solid lines) with radius r for halo groups of different
sizes 𝑛𝑝 . For small halos that are isotropic, 𝛽ℎ1 ≈ 0 while 𝛽ℎ ≠ 0
since 𝛽ℎ does not include the effect of azimuthal flow 𝑢2𝜑 . However,
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Figure 9. The variation of new anisotropy parameters 𝛽ℎ1 (dash lines) and
conventional anisotropy parameters 𝛽ℎ (solid lines) with radius r for halo
groups of different sizes 𝑛𝑝 . Small halos are isotropic with 𝛽ℎ1 ≈ 0, while
𝛽ℎ ≠ 0 since 𝛽ℎ does not include the effect of azimuthal flow 𝑢2𝜑 (Eqs. (12)
and (13)). However, 𝛽ℎ1 ≈ 𝛽ℎ for large halos and increases with radius r.
The predicted 𝛽ℎ1 (dash-dot line) from Eq. (99) is also presented showing
good agreement with simulation results.

𝛽ℎ1 ≈ 𝛽ℎ for large halos and increases with radius r. The predicted
𝛽ℎ1 (dash-dot line) from Eqs. (97) to (99) is also presented showing
good agreement with simulation results. This prediction is made with
function 𝐹 (𝑥) for a NFW profile given in Eq. (83) and 𝑐 = 3.5 such
that 𝜆 𝑓 = 10.89 from Eq. (92). Other relevant parameters used to
make this prediction are 𝐶1 = 10, 𝐶2 = 1, and 𝑟𝑠 = 0.34𝑀𝑝𝑐/ℎ.

4 MOMENTUM AND ENERGY OF AXISYMMETRIC
ROTATING GROWING HALOS

4.1 Momentum and energy solutions

With full solutions developed for large halos in the previous section,
this section summarize the momentum and energy solutions for large
halos. With radial flow 𝑢𝑟 from Eq. (65), the physical and peculiar
radial linear momentum (zeroth order moment) read

𝐿ℎ =
1
𝑚ℎ

∫ 𝑟ℎ

0
4𝜋𝑟2𝜌ℎ𝑢𝑟 𝑑𝑟 =

3
2

(
1 − 2

𝑐𝐹 (𝑐)

∫ 𝑐

0
𝐹 (𝑥) 𝑑𝑥

)
𝐻𝑟ℎ ,

(100)

𝐿ℎ𝑝 =
1
𝑚ℎ

∫ 𝑟ℎ

0
4𝜋𝑟2𝜌ℎ𝑢𝑟 𝑝𝑑𝑟 =

1
2

(
1 − 4

𝑐𝐹 (𝑐)

∫ 𝑐

0
𝐹 (𝑥) 𝑑𝑥

)
𝐻𝑟ℎ .

(101)

The virial quantity (the first order moment of mean radial flow) is

𝐺ℎ =
1
𝑚ℎ

∫ 𝑟ℎ

0
4𝜋𝑟3𝜌ℎ𝑢𝑟 𝑑𝑟 =

3
2

[
1 − 3

𝑐2𝐹 (𝑐)

∫ 𝑐

0
𝑥𝐹 (𝑥) 𝑑𝑥

]
𝐻𝑟2
ℎ
.

(102)

The peculiar virial quantity (excluding Hubble flow) is (Eq. (67)),

𝐺ℎ𝑝 =
1
𝑚ℎ

∫ 𝑟ℎ

0
4𝜋𝑟3𝜌ℎ𝑢𝑟 𝑝𝑑𝑟

=
1
2

[
1 − 5

𝑐2𝐹 (𝑐)

∫ 𝑐

0
𝑥𝐹 (𝑥) 𝑑𝑥

]
𝐻𝑟2
ℎ
.

(103)

For any density profiles, the specific halo angular momentum reads

𝐻ℎ =

(
1
𝛼ℎ

− 1
3

)
𝑐2

𝐹 (𝑐) 𝛼 𝑓
(
𝐺ℎ − 𝐺ℎ𝑝

)
=

(
1
𝛼ℎ

− 1
3

)
𝑐2

𝐹 (𝑐) 𝛼 𝑓
𝐻𝑟2𝑔

(104)

from Eqs. (75), (102), (103), and (81).
With Eq. (73) for relations between 𝑟2𝑔 and 𝑟2ℎ , the halo angular

momentum from Eq. (104) can be finally written in terms of 𝑟ℎ ,

𝐻ℎ = 𝛾𝐻𝐻𝑟
2
ℎ
=
1
8

(
3
𝛼ℎ

− 1
) √

𝜋Γ (3/2 + 𝛼𝜃/2)
Γ (2 + 𝛼𝜃/2)

𝐻𝑟2
ℎ
, (105)

where the coefficient 𝛾𝐻 for angular momentum is

𝛾𝐻 =
1
8

(
3
𝛼ℎ

− 1
) √

𝜋Γ (3/2 + 𝛼𝜃/2)
Γ (2 + 𝛼𝜃/2)

. (106)

The specific momentum tensor of a spherical halo reads (from Eqs.
(76) and (103)),

1
𝑚ℎ

∫
𝑉

x ⊗ u𝑝𝜌ℎ𝑑𝑉 =


𝐺ℎ𝑝/3 −𝐻ℎ/2 0
𝐻ℎ/2 𝐺ℎ𝑝/3 0
0 0 𝐺ℎ𝑝/3

 . (107)

It can be found the diagonal terms of halo momentum tensor are
the virial quantity in Eq.(103), while the off-diagonal terms are the
angular momentum in Eq. (105). The evolution of momentum tensor
on both halo and large scales is extensively studied in a separate
paper (see Xu 2022g, Section 5).
Finally, the halo specific radial kinetic energy is derived as (with

Eq. (65) for 𝑢𝑟 ) (also see Xu 2021b, Eq. (54)),

𝐾𝑟 =
1
2𝑚ℎ

∫ 𝑟ℎ

0
𝑢2𝑟 (𝑟, 𝑎) 4𝜋𝑟2𝜌ℎ (𝑟, 𝑎) 𝑑𝑟

=
9
8

(
1 − 4

𝑐2𝐹 (𝑐)

∫ 𝑐

0
𝑥𝐹 (𝑥) 𝑑𝑥 + 1

𝑐2𝐹 (𝑐)

∫ 𝑐

0

𝐹2 (𝑥)
𝐹

′ (𝑥)
𝑑𝑥

)
𝐻2𝑟2

ℎ
.

(108)

The halo (specific) peculiar radial kinetic energy (excluding Hubble
flow) can be obtained as (with Eq. (68) for 𝑢𝑟 𝑝),

𝐾𝑟 𝑝 =
1
2𝑚ℎ

∫ 𝑟ℎ

0
𝑢2𝑟 𝑝4𝜋𝑟2𝜌ℎ (𝑟, 𝑎) 𝑑𝑟

=

(
1
8
− 1
𝑐2𝐹 (𝑐)

∫ 𝑐

0
𝑥𝐹 (𝑥) 𝑑𝑥 + 9

8𝑐2𝐹 (𝑐)

∫ 𝑐

0

𝐹2 (𝑥)
𝐹

′ (𝑥)
𝑑𝑥

)
𝐻2𝑟2

ℎ
.

(109)

The halo (specific) rotational kinetic energy is derived as (with Eq.
(72) for 𝑢𝜑),

𝐾𝑎 =
1
𝑚ℎ

∫ 𝑟ℎ

0
2𝜋𝑟3𝜌ℎ (𝑟)

(∫ 𝜋

0

1
2
𝑢2𝜑 sin 𝜃𝑑𝜃

)
𝑑𝑟

=
1
4

(
3
2𝛼ℎ

− 1
2

)2
𝑐2

𝐹 (𝑐)3

√
𝜋Γ (1 + 𝛼𝜃 )

Γ (3/2 + 𝛼𝜃 )

∫ 𝑐

0

𝐹2 (𝑥) 𝐹′ (𝑥)
𝑥2

𝑑𝑥𝐻2𝑟2
ℎ
.

(110)

All these momentum and energy quantities are derived in terms of
function 𝐹 (𝑥) (Eq. (33)) that is dependent on halo density profile (Xu
2021b) and summarized in Table 3 for isothermal and NFW profiles.
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4.2 Calculation of halo spin parameter

The halo spin parameter 𝜆𝑝 is commonly used to characterize the
importance of angular momentum to the randommotion. The energy
solutions obtained can be used to estimate the value of 𝜆𝑝 for large
halos with fast mass accretion. With angular momentum explicitly
derived in Eq. (105), the two usual definitions of dimensionless spin
parameter can be defined as (Peebles 1969; Bullock et al. 2001a),

𝜆𝑝 =
𝐻ℎ |𝐸ℎ |1/2
𝐺𝑚ℎ

and 𝜆
′
𝑝 =

𝐻ℎ√
2𝑣𝑐𝑖𝑟 𝑟ℎ

, (111)

where 𝐸ℎ = Φℎ + 𝐾ℎ is the total specific energy. The halo specific
potential energy

Φℎ = −𝛾Φ
𝐺𝑚ℎ

𝑟ℎ

= − 1
𝑚ℎ

∫ 𝑟ℎ

0
4𝜋𝑟2𝜌ℎ (𝑟, 𝑎)

𝐺𝑚𝑟

𝑟
𝑑𝑟 = −1

2
𝛾ΦΔ𝑐𝐻

2𝑟2
ℎ
,

(112)

where the coefficient 𝛾Φ for potential energy is

𝛾Φ =

(
𝑐

𝐹2 (𝑐)

∫ 𝑐

0

𝐹 (𝑥) 𝐹′ (𝑥)
𝑥

𝑑𝑥

)
≈ 1. (113)

The critical density ratio Δ𝑐 = 18𝜋2 can be obtained from spherical
collapse model or two-body collapse model (Xu 2021d). The halo
specific kinetic energy 𝐾ℎ = 3/2𝜎2𝑣 = (𝑛𝑒/2)Φℎ , with 𝑛𝑒 ≈ −1.3
for large halos is the effective potential exponent for virial theorem
that considers surface energy due to non-zero radial flow and velocity
dispersion (see Xu 2021b, Eq. (96)).
It should be noted that Eq. (112) can be used to derive the relation

for virial kinetic energy 𝜎2𝑣 . Halo size 𝑟𝑔 = 𝛾𝑔𝑟ℎ can be written as
(see Xu 2021f, Eq. (61)) ,

𝑟𝑔 = 𝛾𝑔𝑎

(
2𝐺𝑚ℎ
Δ𝑐𝐻

2
0

)1/3
(114)

such that (with Eq. (112) for Φℎ)

𝜎2𝑣 = −Φℎ
𝛾𝑣

3
=
1
3
𝛾Φ𝛾𝑣

(
Δ𝑐

2

)1/3
(𝐺𝑚ℎ𝐻0)2/3 𝑎−1, (115)

where 𝛾𝑣 ≈ −𝑛𝑒 is the virial ratio and Δ𝑐 is the critical density
ratio. Here 𝛾𝑣 ≈ 1.3 for NFW profile and 𝛾𝑣 = 1.5 for isothermal
profile, (Xu 2021b, Eq. (96)). Combining Eq. (115) with the model
of 𝜎2𝑣 from N-body simulation (Xu 2021f, Eq. (19)) leads to a good
equation for velocity dispersion 𝑢2 of entire N-body system (see Xu
2022g, Fig. 1a),

𝑢2 = 𝛾Φ𝛾𝑣 (Δ𝑐)1/3
(
𝐺𝐻0 · 5.8 × 1012

𝑀�
ℎ

)2/3
𝑡

𝑡0
. (116)

Rotational kinetic energy 𝐾𝑎 can be approximated as (Eq. (75))

𝐾𝑎 ≈ 1
2
|Hℎ |𝜔ℎ =

3
4

(
|Hℎ | /𝑟𝑔

)2
. (117)

With Eq. (73) for root mean square radius 𝑟𝑔 and Eq. (111), the two
halo spin parameters read

𝜆𝑝 = 𝛾Φ𝛾𝑔

√︄
4
3

(
1 + 𝑛𝑒

2

) 𝐾𝑎

|Φℎ |
=
2
3
𝛾Φ𝛾𝑔

√︄
𝛾𝑣

(
1 − 𝛾𝑣

2

) 𝐾𝑎
𝜎2𝑣

and

𝜆
′
𝑝 = 𝛾𝑔

√︄
2𝛾Φ𝐾𝑎
3 |Φℎ |

=
1
3
𝛾𝑔

√︄
2𝛾Φ𝛾𝑣

𝐾𝑎

𝜎2𝑣
,

Table 3. Relevant parameters for two different density profiles

Symbol Physical mean-
ing

Equation Isothermal
profile
with 𝛼𝜃 = 1

NFW profile
with 𝛼𝜃 = 0
and 𝑐 = 3.5

𝐹 (𝑥) Function for
density 𝜌ℎ

Eq. (33) 𝑥/𝑐 ln (1 + 𝑥) −
𝑥/(1 + 𝑥)

𝛼ℎ Deformation
parameter

Eq. (66) 1.0 0.833

𝛾ℎ Deformation
rate parameter

Eq. (69) 0 1/2

𝛼 𝑓 Constant for
function𝐹𝜑 (𝑥)

Eq. (77) 2𝑐2/3 9.20

𝜆 𝑓 Constant for
equation for 𝛾𝜑

Eq. (92) 9𝜋2/𝑐 10.895

𝛾𝐻 Coefficient for
𝐻ℎ

Eq. (106) 1/3 0.511

𝛾Φ Coefficient for
potential Φℎ

Eq. (113) 1 0.936

𝛾𝑣 Virial ratio Eq. (115) 1.5 1.3
𝛾2𝑔 Ratio of two

halo sizes
Eq. (73) 1/3 0.3214

𝐿ℎ Specific radial
momentum

Eq. (100) 0 0

𝐿ℎ𝑝 Peculiar radial
momentum

Eq. (101) −𝐻𝑟ℎ/2 −0.501𝐻𝑟ℎ

𝐺ℎ Specific virial
quantity

Eq. (102) 0 −0.027𝐻𝑟2
ℎ

𝐺ℎ𝑝 Peculiar virial
quantity

Eq. (103) −𝐻𝑟2
ℎ
/3 −0.348𝐻𝑟2

ℎ

𝐻ℎ Specific angu-
lar momentum

Eq. (105) 𝐻𝑟2
ℎ
/3 0.511𝐻𝑟2

ℎ

𝜔ℎ Angular veloc-
ity

Eq. (81) 1.5𝐻 2.38𝐻

𝐾𝑟 Radial kinetic
energy

Eq. (108) 0 0.0062𝐻 2𝑟2
ℎ

𝐾𝑟 𝑝 Peculiar radial
kinetic energy

Eq. (109) 𝐻 2𝑟2
ℎ
/6 0.1937𝐻 2𝑟2

ℎ

𝐾𝑎 Rotational ki-
netic energy

Eq. (110) 𝐻 2𝑟2
ℎ
/3 0.7658𝐻 2𝑟2

ℎ

Φℎ Halo potential
energy

Eq. (112) −9𝜋2𝐻 2𝑟2
ℎ

−8.424𝜋2𝐻 2𝑟2
ℎ

𝜆𝑝 First halo spin
parameter

Eq. (119) 0.018 0.031

𝜆
′
𝑝 Second halo

spin parameter
Eq. (119) 0.025 0.038

(118)

where both definitions reflect the ratio of rotational kinetic energy
𝐾𝑎 to virial kinetic energy 𝜎2𝑣 .
With Eq. (105) for 𝐻ℎ , circular velocity 𝑣𝑐𝑖𝑟 =

√︁
Δ𝑐/2𝐻𝑟ℎ =

3𝜋𝐻𝑟ℎ (Δ𝑐 is the critical density ratio), and Eq. (111), spin parame-
ters 𝜆𝑝 and 𝜆

′
𝑝 finally read (for NFW profile in Table 3)

𝜆𝑝 =
𝛾𝐻

3𝜋

√︂
𝛾Φ

(
1 + 𝑛𝑒

2

)
≈ 0.03, 𝜆

′
𝑝 =

𝛾𝐻

3𝜋
√
2
≈ 0.038. (119)

Results for halo spin parameter agrees well with other simulations
(Hetznecker & Burkert 2006). In addition, the halo mass dependence
of spin parameter that decreases with halo size is discussed in a
separate paper (Xu 2022g). All relevant parameters are summarized
in Table 3 for two density profiles.
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5 ENERGY TRANSFER BETWEEN MEAN FLOW AND
RANDOM MOTION

The energy exchange between mean flow and random motion is
the key to understand how the turbulence initiates, propagates and
evolves in dark matter flow to maximize system entropy.

5.1 General formulation for energy transfer

First, we present a generalized formulation for the evolution of an
arbitrary scalar quantity 𝑆 (𝑟, 𝜃, 𝑡). Using continuity Eq. (2), it is easy
to write down the evolution of an arbitrary quantities 𝜌ℎ𝑆𝑛 (𝑛 = 1
for momentum and 𝑛 = 2 for kinetic energy if S is velocity),

𝜕 (𝜌ℎ𝑆𝑛)
𝜕𝑡

+ 1
𝑟2
𝜕

[
(𝜌ℎ𝑆𝑛) 𝑢𝑟 𝑟2

]
𝜕𝑟

−𝑛𝜌ℎ𝑆𝑛−1
(
𝜕𝑆

𝜕𝑡
+ 𝑢𝑟

𝜕𝑆

𝜕𝑟

)
︸                           ︷︷                           ︸

𝑃𝑆

= 0,

(120)

where the term 𝑃𝑆 stands for the production or consumption of scalar
S. Integrating Eq. (120) with

∫ 𝑟ℎ
0 2𝜋𝑟2𝑟𝑘

∫ 𝜋
0 (•) sin𝑚 𝜃𝑑𝜃𝑑𝑟 leads

to the time evolution of the kth moment of 𝑆𝑛 in entire halo,

𝜕

𝜕𝑡

[∫ 𝑟ℎ

0
2𝜋𝜌ℎ𝑟2+𝑘

(∫ 𝜋

0
𝑆𝑛 (𝑟, 𝜃) sin𝑚 𝜃𝑑𝜃

)
𝑑𝑟

]
= 2𝜋𝜌ℎ (𝑟ℎ) 𝑟2+𝑘ℎ

(∫ 𝜋

0
𝑆𝑛 (𝑟ℎ , 𝜃) sin𝑚 𝜃𝑑𝜃

) (
𝜕𝑟ℎ

𝜕𝑡
− 𝑢𝑟 (𝑟ℎ)

)
︸                                                                           ︷︷                                                                           ︸

𝑆2

+
∫ 𝑟ℎ

0
2𝜋𝜌ℎ𝑟𝑘+1

[
𝑘𝑢𝑟

(∫ 𝜋

0
𝑆𝑛 (𝑟, 𝜃) sin𝑚 𝜃𝑑𝜃

)
︸                                                          ︷︷                                                          ︸

𝑆1

+ 𝑛𝑟
(∫ 𝜋

0
𝑆𝑛−1

(
𝜕𝑆

𝜕𝑡
+ 𝑢𝑟

𝜕𝑆

𝜕𝑟

)
sin𝑚 𝜃𝑑𝜃

)]
𝑑𝑟︸                                                     ︷︷                                                     ︸

𝑆1

.

(121)

In general, the rate of change of scalar 𝑆 includes two parts: the sur-
face contribution from mass accretion (𝑆2) and the bulk contribution
from exchange between mean flow and random motion (𝑆1). By re-
placing S with the mean flow 𝑢𝑟 and 𝑢𝜑 , we can choose appropriate
values for k,m and n to recover the equations for radial and rotational
momentum and energy evolution (Eqs. (14) to (30)).
The evolution of radial & peculiar radial kinetic energy, and ro-

tational kinetic energy can be easily obtained by applying Eq. (120)
with S replaced by 𝑢𝑟 , 𝑢𝑟 𝑝 , and 𝑢𝜑 , respectively,

𝜕

(
𝜌ℎ𝑢

2
𝑟

)
𝜕𝑡

+ 1
𝑟2

𝜕

[(
𝜌ℎ𝑢

2
𝑟

)
𝑢𝑟 𝑟
2
]

𝜕𝑟
−2𝜌ℎ𝑢𝑟

[
𝜕𝑢𝑟

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟

]
︸                           ︷︷                           ︸

𝑃𝑢𝑟

= 0,

(122)

𝜕

(
𝜌ℎ𝑢

2
𝑟 𝑝

)
𝜕𝑡

+ 1
𝑟2

𝜕

[(
𝜌ℎ𝑢

2
𝑟 𝑝

)
𝑢𝑟 𝑟
2
]

𝜕𝑟
−2𝜌ℎ𝑢𝑟 𝑝

[
𝜕𝑢𝑟 𝑝

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑟 𝑝

𝜕𝑟

]
︸                                 ︷︷                                 ︸

𝑃𝑢𝑟 𝑝

= 0,

(123)

𝜕

(
𝜌ℎ𝑢

2
𝜑

)
𝜕𝑡

+ 1
𝑟2

𝜕

[(
𝜌ℎ𝑢

2
𝜑

)
𝑢𝑟 𝑟
2
]

𝜕𝑟
−2𝜌ℎ𝑢𝜑

[
𝜕𝑢𝜑

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝜑

𝜕𝑟

]
︸                             ︷︷                             ︸

𝑃𝑢𝜑

= 0.

(124)

These equations can be used to illustrate the energy transfer between
mean flow and the random motion.

5.2 Energy transfer between mean flow and random motion

We first substitute Eq. (88) for large halos into Eq. (122) to show that

𝜕

(
𝜌ℎ𝑢

2
𝑟

)
𝜕𝑡

+ 1
𝑟2

𝜕

[(
𝜌ℎ𝑢

2
𝑟

)
𝑢𝑟 𝑟
2
]

𝜕𝑟
+ 2

𝜕

(
𝜌ℎ𝜎

2
𝑟0

)
𝜕 ln 𝑟

𝑢𝑟

𝑟︸              ︷︷              ︸
𝑃𝑢𝑟

= 0, (125)

i.e. the mean radial flow 𝑢2𝑟 exchanges kinetic energy with the radial
velocity dispersion 𝜎2

𝑟0 (the axial velocity dispersion).
The momentum Eq. (11) and Eq. (124) can be used to derived the

energy exchange between azimuthal flow and velocity dispersions,

𝜕

(
𝜌ℎ𝑢

2
𝜑

)
𝜕𝑡

+ 1
𝑟2

𝜕

[(
𝜌ℎ𝑢

2
𝜑

)
𝑢𝑟 𝑟
2
]

𝜕𝑟
+ 2𝜌ℎ𝑢2𝜑

𝑢𝑟

𝑟︸      ︷︷      ︸
𝑃𝑢𝜑

= 0, (126)

which is essentially the same as Eq. (28) that has been directly
derived from the continuity and momentum equations. Here since
𝑢2𝜑 in production term 𝑃𝑢𝜑 is actually related to in-plane velocity
dispersions as shown in Eq. (10), Eq. (126) describes the energy
transfer between azimuthal flow and random motion (the in-plane
velocity dispersions) of SG-CFD via a fictitious stress 𝜌ℎ𝑢2𝜑 (similar
to Reynolds stress) acting on the mean flow gradient 𝑢𝑟 /𝑟 .
The production terms in Eqs. (122)-(124) can be explicitly written

in terms of function 𝐹 (𝑥) (using Eqs. (33), (65), (68) and (72)),

𝑃𝑢𝑟 =
2𝜌ℎ𝑣2𝑐𝑖𝑟

𝑡

(𝑥 − 𝑢ℎ)
4𝜋2𝑐2

𝑢ℎ
𝜕𝑢ℎ

𝜕𝑥

=
2𝜌̄ℎ𝑣2𝑐𝑖𝑟

𝑡

(𝑥 − 𝑢ℎ)
12𝜋2𝑥2

𝑐𝐹
′ (𝑥)

𝐹 (𝑐) 𝑢ℎ
𝜕𝑢ℎ

𝜕𝑥
,

(127)

𝑃𝑢𝑟 𝑝 =
2𝜌ℎ𝑣2𝑐𝑖𝑟

𝑡

(𝑥 − 𝑢ℎ)
4𝜋2𝑐2

𝑢𝑝
𝜕𝑢𝑝

𝜕𝑥

=
2𝜌̄ℎ𝑣2𝑐𝑖𝑟

𝑡

(𝑥 − 𝑢ℎ)
12𝜋2𝑥2

𝑐𝐹
′ (𝑥)

𝐹 (𝑐) 𝑢𝑝
𝜕𝑢𝑝

𝜕𝑥
,

(128)

𝑃𝑢𝜑 =
2𝜌̄ℎ𝑣2𝑐𝑖𝑟

𝑡

𝑐4𝐹
′ (𝑥)

3𝜆 𝑓 𝐹 (𝑐)2
(sin 𝜃)2𝛼𝜃 𝑢ℎ (𝑥)

𝑥5
𝐹2 (𝑥) , (129)

where 𝜌̄ℎ is the mean halo density. The 𝑃2 contribution of 𝑃𝑢𝑟 in
Eq. (19) reads,

𝑃2 =
2𝜌̄ℎ𝑣2𝑐𝑖𝑟

𝑡

𝑐4𝐹 (𝑥) 𝐹′ (𝑥)
3𝑥4𝐹 (𝑐)2

𝑢ℎ , (130)

while the contributions 𝑃1 and 𝑃3 (from radial velocity dispersions
in Eq. (19)) of 𝑃𝑢𝑟 can be obtained as 𝑃1 + 𝑃3 = 𝑃𝑢𝑟 − 𝑃2.
Figure 10 presents the variation of function 𝐹 (𝑥), normalized
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Figure 10. The variation of function 𝐹 (𝑥) , normalized radial flow 𝑢ℎ (𝑥) ,
peculiar radial flow 𝑢𝑝 (𝑥) , and production terms 𝑃𝑢𝑟 (𝑥) , 𝑃𝑢𝑟 𝑝 (𝑥) and
𝑃𝑢𝜑 (𝑥) (Eqs. (127)-(129)) with a reduced coordinate 𝑥 = 𝑟/𝑟𝑠 (𝑡) for NFW
profile. The radial flow 𝑢ℎ (𝑥) is positive (out-flow) at halo core region,
reaching its maximum at 𝑥 = 1, and become negative (in-flow) at around
𝑥 = 𝑥0 for outer region with 𝑥0 ≈ 2.15, as indicated by the ’+’ and ’-’ signs
in figure. The peculiar radial flow 𝑢𝑝 (𝑥) is always negative. The production
terms for radial and rotational kinetic energies are normalized by 2𝜌̄ℎ𝑣2𝑐𝑖𝑟/𝑡 .
A positive production term means the energy transfer from mean flow to
random motion, and vice versa. The radial flow loses its energy to random
motion in halo core region 𝑥 < 1 and gains energy for 𝑥 = [1, 2], and loses it
energy again for outer region with 𝑥 > 𝑥0. The production term 𝑃𝑢𝜑 (𝑥) > 0
for 𝑥 < 𝑥0 means the rotational flow loses its energy to random motion in
core region, while gains energy from random motion in outer region.

radial flow 𝑢ℎ (𝑥), peculiar radial flow 𝑢𝑝 (𝑥), and production terms
𝑃𝑢𝑟 (𝑥), 𝑃𝑢𝑟 𝑝 (𝑥) and 𝑃𝑢𝜑 (𝑥) (Eqs. (127)-(129) ) with a reduced
coordinate 𝑥 = 𝑟/𝑟𝑠 (𝑡) for NFWprofile. Themean radial flow 𝑢ℎ (𝑥)
is positive (out-flow) at halo core region, reaching its maximum at
𝑥 = 1, and become negative (in-flow) at 𝑥 = 2 for outer region. The
peculiar radial flow 𝑢𝑝 (𝑥) is always negative. A positive production
term means the energy transfer from mean flow to random motion in
SG-CFD, and vice versa. The radial flow loses its energy to random
motion in core region 𝑥 < 1, gains energy for 𝑥 = [1, 𝑥0] with
𝑥0 ≈ 2.15, and loses it energy again at outer region with 𝑥 > 𝑥0. The
term 𝑃𝑢𝜑 (𝑥) > 0 (with 𝛼𝜃 = 0) for 𝑥 < 𝑥0 means the azimuthal
flow loses its energy to random motion in core region, while gains
energy from random motion in outer region for 𝑥 > 𝑥0.
The net rate of change of quantity 𝜌ℎ𝑆𝑛 for the entire halo has two

contributions (as shown in the general Eq. (121)), i.e. term 𝑆1 due to
the energy transfer with the random motion inside halo, and the term
𝑆2 from the halo surface due to the halo mass accretion (growth) and
mass cascade. One example is for radial momentum 𝐿̄ℎ by replacing
S with 𝑢𝑟 in Eq. (121) and 𝑛 = 1, 𝑚 = 1, and 𝑘 = 0,

𝜕𝐿̄ℎ

𝜕𝑡
= 4𝜋𝜌ℎ (𝑟ℎ) 𝑟2ℎ𝑢𝑟 (𝑟ℎ)

(
𝜕𝑟ℎ

𝜕𝑡
− 𝑢𝑟 (𝑟ℎ)

)
+

∫ 𝑟ℎ

0
4𝜋𝜌ℎ𝑟2

(
𝜕𝑢𝑟

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟

)
𝑑𝑟.

(131)

With Eq. (65) for 𝑢𝑟 and Eq. (32) for derivatives, the final expression

Table 4. The rate of change of halo momentum and energy

Symbol Physical meaning Isothermal
profile with
𝛼𝜃 = 0

NFW profile with
𝛼𝜃 = 0 and 𝑐 = 3.5

𝜕𝐿̄ℎ
𝜕𝑡

Radial momentum 0 0
𝑆1 Bulk contribution 0 0.2𝑟ℎ

𝑚ℎ

𝑡2

𝑆2 Surface contribution 0 −0.2𝑟ℎ
𝑚ℎ

𝑡2

𝜕𝐻̄ℎ
𝜕𝑡

Angular momentum 𝜋
4
𝑚ℎ𝐻𝑟

2
ℎ

𝑡
𝜋
4
𝑚ℎ𝐻𝑟

2
ℎ

𝑡

(
3
2𝛼ℎ

− 12
)

𝑆1 Bulk contribution 0 0

𝑆2 Surface contribution 𝜋
4
𝑚ℎ𝐻𝑟

2
ℎ

𝑡
𝜋
4
𝑚ℎ𝐻𝑟

2
ℎ

𝑡

(
3
2𝛼ℎ

− 12
)

𝜕𝐾̄𝑟
𝜕𝑡

Radial kinetic energy 0 0.0062𝐻 2𝑟2
ℎ

𝑚ℎ
𝑡

𝑆1 Bulk contribution 0 −0.0391𝐻 2𝑟2
ℎ

𝑚ℎ
𝑡

𝑆2 Surface contribution 0 0.0453𝐻 2𝑟2
ℎ

𝑚ℎ
𝑡

𝜕𝐾̄𝑟 𝑝
𝜕𝑡

Peculiar radial kinetic
energy

𝐻2𝑟2
ℎ
𝑚ℎ

(6𝑡 ) 0.1937𝐻 2𝑟2
ℎ

𝑚ℎ
𝑡

𝑆1 Bulk contribution
−𝐻2𝑟2

ℎ
𝑚ℎ

(3𝑡 ) −0.6525𝐻 2𝑟2
ℎ

𝑚ℎ
𝑡

𝑆2 Surface contribution
𝐻2𝑟2

ℎ
𝑚ℎ

(2𝑡 ) 0.8462𝐻 2𝑟2
ℎ

𝑚ℎ
𝑡

𝜕𝐾̄𝑎
𝜕𝑡

Rotational kinetic en-
ergy

𝐻2𝑟2
ℎ
𝑚ℎ

(2𝑡 ) 0.7661𝐻 2𝑟2
ℎ

𝑚ℎ
𝑡

𝑆1 Bulk contribution 0 −0.0801𝐻 2𝑟2
ℎ

𝑚ℎ
𝑡

𝑆2 Surface contribution
𝐻2𝑟2

ℎ
2 0.8462𝐻 2𝑟2

ℎ

𝑚ℎ
𝑡

can be expressed as,

𝜕𝐿̄ℎ

𝜕𝑡
=
𝑚ℎ𝑟ℎ

𝑡2


(
1 − 1

𝛼ℎ

)
︸     ︷︷     ︸

𝑆2

+
(
1
𝛼ℎ

− 2
𝑐𝐹 (𝑐)

∫ 𝑐

0
𝐹 (𝑥) 𝑑𝑥

)
︸                                ︷︷                                ︸

𝑆1


, (132)

with two contributions, i.e. 𝑆2 from halo surface and 𝑆1 from bulk
respectively. For different kinetic energy, i.e. 𝐾̄𝑟 (radial), 𝐾̄𝑟 𝑝 (pe-
culiar radial), and 𝐾̄𝑎 (rotational), two terms 𝑆1 and 𝑆2 can all be
computed with given density profiles and listed in Table 4.
Finally, this section describes the evolution of momentum and

energies and the energy transfer between coherent (mean) flow and
random motion for large halos with fast mass accretion. For radial
momentum 𝐿̄ℎ , 𝑆1 = −𝑆2 > 0 and the total 𝐿̄ℎ = 0 is time-invariant
for large halos (see Xu 2021b, Eq. (51)). For angular momentum
𝐻̄ℎ , 𝑆1 = 0 and 𝑆2 > 0 such that the total angular momentum
𝐻̄ℎ increases as 𝐻̄ℎ ∝ 𝑡2 (specific angular momentum 𝐻ℎ ∝ 𝑡 and
angular velocity 𝜔ℎ ∝ 𝑡−1) with all contributions from 𝑆2 due to
the mass accretion (𝑚ℎ (𝑡) ∼ 𝑡 and 𝑟ℎ (𝑡) ∼ 𝑡 in Eq. (38)). The
radial and rotational kinetic energies of mean flow (𝐾̄𝑟 and 𝐾̄𝑎)
increase proportional to t with 𝑆1 < 0 and 𝑆2 > 0 , i.e. the mean
flow kinetic energy of entire halo is increasing mainly due to the
mass accretion (𝑆2 > 0). The energy transfer between mean flow and
random motion is described by Eqs. (122) to (129) and Fig. 10. The
local energy transfer can be two-way between coherent and random
motion. For entire halo, a net kinetic energy is transferred frommean
flow to random motion in SG-CFD (the bulk contribution is always
negative 𝑆1 < 0).

6 HALO RELAXATION FROM EARLY TO LATE STAGE

Previous sections provide the mean flow and velocity dispersion
solutions for large halos (high 𝜈 at the early stage of halo life with
fastmass accretion and constant concentration)with a non-zero radial
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flow (Eq. (41)). The other limiting situation consists of halos with a
stable core, low mass accretion and vanishing radial flow (low peak
height 𝜈 at the late stage of halo life with a constant core mass, scale
radius and a time-varying concentration). This section focuses on the
transition (relaxation) of halos from their early to late stages.
Let’s assume a typical large halo of mass 𝑚𝐿

ℎ
(𝑡) that is constantly

growing with the waiting time exactly to be 𝜏𝑔 ∼ 𝑎𝑚
−2/3
ℎ

for every
single merging event during its entire mass accretion history (see Xu
2021a, Eq. (45)). With 𝑚𝐿

ℎ
(𝑡) ∼ 𝑎3/2, the life span of that typical

halo 𝜏𝐿𝑔 ≡ 𝜏𝑔 ∼ 𝑡0 should be time-invariant. The actual halo lifespan
𝜏𝑔𝑟 can be random in nature and either less or greater than 𝜏𝑔. If
for any merging event, the random waiting time 𝜏𝑔𝑟 > 𝜏𝑔 such that
the actual halo mass 𝑚ℎ (𝑡) < 𝑚𝐿ℎ (𝑡) after that merging. A positive
feedback process is established since the waiting time 𝜏𝑔 ∝ 𝑎𝑚−2/3

ℎ
in the propagation range such that 𝑚ℎ (𝑡) will increase slower and
slower with longer and longer waiting time or lifespan 𝜏𝑔. On the
other hand, if the random waiting time 𝜏𝑔𝑟 < 𝜏𝑔 for a merging event
such that halo mass 𝑚ℎ (𝑡) > 𝑚𝐿ℎ (𝑡) is in the deposition range after
that merging, where the average waiting time for a single merging
is significantly longer. A negative feedback will be established to
self-limit and slower down the further growth of 𝑚ℎ (𝑡) such that
rare halos can have mass much greater than 𝑚𝐿

ℎ
(𝑡).

The feedback process leads to the transition (relaxation) from high
𝜈 to low 𝜈 halos with slower mass accretion. During halo relaxation,
there is a continuous variation of halo shape, density profile, mean
flow, momentum, and energies. We will start from the general solu-
tion for mean radial flow, which facilitates the mass and momentum
exchange between different spherical shells and the energy transfer
between random motion and mean flow (Eqs. (19) and (28)).

6.1 Evolution of mean radial flow from early to late stage

To discuss the halo relaxation, the starting point is to extend the key
function 𝐹 ≡ 𝐹 (𝑥) (Eq. (33)) to amore general form of 𝐹 ≡ 𝐹 (𝑥, 𝛼),
where an additional shape parameter 𝛼 ≡ 𝛼 (𝑡) is introduced. A good
example is the function 𝐹 (𝑥, 𝛼) of an Einasto profile in Eq. (146).
During halo relaxation, we assume a continues variation of function
𝐹 (𝑥, 𝛼) with time-dependent shape parameter 𝛼 and concentration
c. Like Eq. (33), the halo density and mass 𝑚𝑟 within radius r is,

𝜌ℎ (𝑟, 𝑡) =
1
4𝜋𝑟2

𝜕𝑚𝑟 (𝑟, 𝑎)
𝜕𝑟

=
𝑚ℎ (𝑡)
4𝜋𝑟3𝑠

𝐹
′ (𝑥, 𝛼)

𝑥2𝐹 (𝑐, 𝛼)
(133)

and

𝑚𝑟 (𝑟, 𝑡) = 𝑚ℎ (𝑡)
𝐹 (𝑥, 𝛼)
𝐹 (𝑐, 𝛼) . (134)

The time derivative of halo density is obtained from Eq. (133),

𝜕𝜌ℎ (𝑟, 𝑎)
𝜕𝑡

=
1
4𝜋𝑟2

𝜕2𝑚𝑟 (𝑟, 𝑎)
𝜕𝑟𝜕𝑡

. (135)

Using the continuity Eq. (2) and Eq. (135), the time derivative of
𝑚𝑟 (𝑟, 𝑎) reads

𝜕𝑚𝑟 (𝑟, 𝑎)
𝜕𝑡

= −4𝜋𝑟2𝑢𝑟 (𝑟, 𝑎) 𝜌ℎ (𝑟, 𝑎) . (136)

A general expression of the mean radial flow reads,

𝑢𝑟 = − 1
4𝜋𝑟2

𝜕 ln𝑚𝑟
𝜕 ln 𝑡

𝑚𝑟 (𝑟, 𝑎)
𝜌ℎ (𝑟, 𝑎) 𝑡

= − 𝑟𝑠
𝑡

𝜕 ln𝑚𝑟
𝜕 ln 𝑡

𝐹 (𝑥, 𝛼)
𝐹

′ (𝑥, 𝛼)
. (137)

From the definition of 𝑚𝑟 (𝑟, 𝑎) in Eq. (134), the logarithmic

derivative of 𝑚𝑟 (𝑟, 𝑎) reads,
𝜕 ln𝑚𝑟
𝜕 ln 𝑡

=
𝜕 ln𝑚ℎ
𝜕 ln 𝑡

− 𝜕 ln 𝐹 (𝑥, 𝛼)
𝜕 ln 𝑥

𝜕 ln 𝑟𝑠
𝜕 ln 𝑡

− 𝜕 ln 𝐹 (𝑐, 𝛼)
𝜕 ln 𝑐

𝜕 ln 𝑐
𝜕 ln 𝑡

+
𝜕 ln 𝐹 (𝑥,𝛼)

𝐹 (𝑐,𝛼)
𝜕 ln𝛼

𝜕 ln𝛼
𝜕 ln 𝑡

.

(138)

Substitution of Eq. (138) into Eq. (137) leads to the dimensionless
radial flow 𝑢ℎ = 𝑢𝑟 𝑡/𝑟𝑠 ,

𝑢ℎ = 𝑥
𝜕 ln 𝑟𝑠
𝜕 ln 𝑡

− 𝐹 (𝑥, 𝛼)
𝐹

′ (𝑥, 𝛼)
𝜕 ln𝑚ℎ
𝜕 ln 𝑡︸                               ︷︷                               ︸

1

+ 𝐹 (𝑥, 𝛼)
𝐹

′ (𝑥, 𝛼)


𝜕 ln 𝐹 (𝑐, 𝛼)

𝜕 ln 𝑐
𝜕 ln 𝑐
𝜕 ln 𝑡︸                  ︷︷                  ︸

2

−
𝜕 ln 𝐹 (𝑥,𝛼)

𝐹 (𝑐,𝛼)
𝜕 ln𝛼

𝜕 ln𝛼
𝜕 ln 𝑡︸                  ︷︷                  ︸

3


,

(139)

where terms 1, 2 and 3 represent the contributions from mass ac-
cretion, change of concentration, and change of the shape of halo
density profile, respectively. Here 𝐹′ (𝑥, 𝛼) stands for the derivative
with respect to x, not 𝛼. For constant 𝛼 and 𝑐, Eq. (139) reduces to
Eq. (41) for large halos (high 𝜈) with fast mass accretion. The mean
radial flow is given by 𝑢ℎ = 𝑢ℎ𝑚 + 𝑢ℎ𝑐 + 𝑢ℎ𝛼 from Eq. (139) with
contributions from mass accretion (𝑢ℎ𝑚), concentration (𝑢ℎ𝑐) and
shape parameter (𝑢ℎ𝛼),

𝑢ℎ𝑚 (𝑥, 𝑡) = 𝑥
𝜕 ln 𝑟𝑠
𝜕 ln 𝑡

− 𝐹 (𝑥, 𝛼)
𝐹

′ (𝑥, 𝛼)
𝜕 ln𝑚ℎ
𝜕 ln 𝑡

, (140)

𝑢ℎ𝑐 (𝑥, 𝑡) =
𝜕 ln 𝑐
𝜕 ln 𝑡

𝐹 (𝑥, 𝛼)
𝐹

′ (𝑥, 𝛼)
𝜕 ln 𝐹 (𝑐, 𝛼)

𝜕 ln 𝑐
, (141)

𝑢ℎ𝛼 (𝑥, 𝑡) =
𝜕 ln𝛼
𝜕 ln 𝑡

𝐹 (𝑥, 𝛼)
𝐹

′ (𝑥, 𝛼)

[
𝜕 ln 𝐹 (𝑐, 𝛼)
𝜕 ln𝛼

− 𝜕 ln 𝐹 (𝑥, 𝛼)
𝜕 ln𝛼

]
, (142)

and the relevant boundary conditions are

𝑢ℎ (0, 𝑡) = 0,
𝜕𝑢ℎ𝑚

𝜕𝑥

����
𝑥=1

= 0,

𝑢ℎ𝑐 (𝑐, 𝑡) = 𝑐
𝜕 ln 𝑐
𝜕 ln 𝑡

, and 𝑢ℎ𝛼 (𝑐, 𝑡) = 0.
(143)

It can be easily verified that

𝑢ℎ𝑐 (𝑐, 𝑡)
𝑟𝑠

𝑡
=
𝜕 ln 𝑐
𝜕 ln 𝑡

𝑟ℎ

𝑡
=

(
𝜕 ln 𝑟ℎ
𝜕 ln 𝑡

− 𝜕 ln 𝑟𝑠
𝜕 ln 𝑡

)
𝑟ℎ

𝑡
=
𝜕𝑟ℎ

𝜕𝑡
− 𝑟ℎ
𝑡

𝜕 ln 𝑟𝑠
𝜕 ln 𝑡

.

(144)

For large halos with high peak height 𝜈 and constant concentration
𝑐, 𝑢ℎ𝑐 = 𝑢ℎ𝛼 = 0 and only radial flow 𝑢ℎ𝑚 < 0 is dominant
such that halo angular momentum increases with time (Eq. (25)).
However, halo relaxation involves an increasing concentration with
a fixed scale radius 𝑟𝑠 , i.e. an isotropic "halo stretching" along all
directions with increasing c and halo size 𝑟ℎ . The radial flow 𝑢ℎ𝑐 on
halo surface is (Eq. (144))

𝑢ℎ𝑐 (𝑐, 𝑡)
𝑟𝑠

𝑡
=
𝜕𝑟ℎ

𝜕𝑡
. (145)

From Eq. (25), the concentration flow 𝑢ℎ𝑐 by itself does not change
the angular momentum of halos. Since 𝑢ℎ𝑐 > 0 for all x and using
Eq. (145), the radial flow 𝑢ℎ𝑐 leads to decreasing rotational kinetic
energy (Eq. (30)). This can be understood as the increase of moment
of inertia from halo stretching (Eq. (154)). The shape induced radial
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flow 𝑢ℎ𝛼 vanishes on halo surface (𝑢ℎ𝛼 (𝑐, 𝑡) = 0) and can be
neglected for small change in 𝛼. Hence, both radial flows 𝑢ℎ𝑐 and
𝑢ℎ𝛼 does not lead to the change of halo angular momentum (Eq.
(25)). This is important as the halo angular momentum should be
conserved if no mass accretion (𝑢ℎ𝑚 = 0) if the halo mass 𝑚ℎ is also
fixed with no mass accretion (see Eq. (140)).
However, we do expect a slow but nonzero mass accretion during

halo relaxation. Halo angular momentum slowly increases with time
and should not be conserved. Instead, during halo stretching, a van-
ishing total radial flow 𝑢ℎ = 0 is expected in Eq. (139) that requires
the radial flow 𝑢ℎ𝑚 from mass accretion to cancel the concentration
flow 𝑢ℎ𝑐 , i.e. 𝑚ℎ ∝ 𝐹 (𝑐, 𝛼) from Eqs. (140) and (141). It turns out
a conserved rotational kinetic energy during halo relaxation (Section
6.4).
For Einasto profile, 𝐹 (𝑥, 𝛼) reads,

𝐹 (𝑥, 𝛼) = Γ (3/𝛼) − Γ
(
3/𝛼, 2𝑥𝛼/𝛼

)
, (146)

where 𝑢ℎ𝑐 can be explicitly obtained from Eq. (141)

𝑢ℎ𝑐 =
𝜕 ln 𝑐
𝜕 ln 𝑡

Γ (3/𝛼) − Γ (3/𝛼, 2𝑥𝛼/𝛼)
Γ (3/𝛼) − Γ (3/𝛼, 2𝑐𝛼/𝛼)

𝑐3

𝑥2
exp

[
− 2
𝛼

(
𝑐𝛼 − 𝑥𝛼

) ]
.

(147)

6.2 Path of evolution in (c, 𝛼) space from early to late stage

To better describe the halo evolution from early stage (high 𝜈) to late
stage (low 𝜈), a relation between shape parameter𝛼 and concentration
𝑐 can be identified from Eq. (134),

𝐹 (1, 𝛼)
𝐹 (𝑐, 𝛼) =

𝑚𝑟 (𝑟𝑠)
𝑚ℎ

= 𝐶𝐹 (𝑡) , (148)

where 𝐶𝐹 < 1 is the ratio of core mass to total mass of halo. The
ratio 𝐶𝐹 should approach a constant for small halos (𝜈 → 0) with
extremely slow mass accretion, where the scale radius 𝑟𝑠 , core mass
𝑚𝑟 (𝑟𝑠) and halo mass 𝑚ℎ are all relatively time-invariant.
Shape parameter 𝛼 and concentration 𝑐 for halos of different sizes

at different redshifts can be conveniently expressed in terms of the
peak height 𝜈 = 𝛿𝑐/𝜎 (𝑚ℎ , 𝑧) of density fluctuation (Klypin et al.
2016). The relevant expressions read,

𝛼 = 0.115 + 0.0165𝜈2 and 𝑐 = 6.5𝜈−1.6
(
1 + 0.21𝜈2

)
, (149)

where 𝛿𝑐 ≈ 1.68 is the critical overdensity from spherical col-
lapse model and 𝜎 (𝑚ℎ , 𝑧) is the root mean square fluctuation of
the smoothed density field. This equation gives minimum values of
min (𝛼) = 0.115 and min (𝑐) = 3.08 for arbitrary peak height 𝜈.
Figure 11 plots different paths of halo evolution in the space of

shape parameter𝛼 and concentration 𝑐. The thick red line gives a path
of evolution in (𝑐, 𝛼) space that follows a constant ratio 𝐶𝐹 = 0.27.
Other solid lines plot different paths along different ratio 𝐶𝐹 using
Eq. (148). All paths end with a limiting shape parameter 𝛼 when
concentration 𝑐 → ∞ and 𝜕𝛼/𝜕𝑐 → 0. The corresponding evolution
path in (𝑐, 𝛼) space (for halos in N-body simulations from Eq. (149))
is presented as the green dash line with peak height 𝜈 between [0.5
5.0]. Halos with fast mass accretion and vanishing radial momentum
should have a constant 𝛼 = 0.2, a limiting concentration 𝑐 = 3.5
(see Xu 2021b, Eq. (53)) and 𝐶𝐹 = 0.27 (Eq. (148)) that is denoted
by the blue dot in Fig. 11. Halos at their early stage of life (high 𝜈)
will gradually evolving to the low 𝜈 (late stage) along the green dash
line in N-body simulation. Both the shape parameter 𝛼 and ratio 𝐶𝐹
are decreasing along that path, while 𝑐 is increasing along that path.
With 𝜈 → 0 along the green line, we have limiting 𝛼 = 0.115 and

10
0

10
1

10
2

Concentration c

10
-2

10
-1

10
0

10
1

S
h
ap

e 
p

ar
am

te
r 

C
F
=0.1

C
F
=0.15

C
F
=0.2

C
F
=0.27

C
F
=0.3

C
F
=0.35

C
F
=0.4

Evolution Path (N-body)

Small

=0.5

Large

=5.0

c=3.5;

=0.2;

=2.27;

Figure 11. The path of halo evolution in the space of shape parameter 𝛼 and
concentration 𝑐 for different ratio 𝐶𝐹 of core mass to halo mass. An Einasto
profile is used for the calculation. Each curve describes the variation of 𝛼with
respect to 𝑐 for a constant𝐶𝐹 . The blue dot in figure gives 𝛼 and 𝑐 of typical
halos (high 𝜈 and early stage) with fast mass accretion where 𝐶𝐹 = 0.27
and 𝛼 = 0.2. Three paths of evolution can be identified: 1) Constant halo
mass𝑚ℎ and constant𝐶𝐹 where halos evolve along the thick red curve until
a constant 𝛼 ≈ 0.7; 2) The green dash line for the evolution of halos from
N-body simulations with a decreasing 𝛼 and increasing 𝑐; 3) The blue dash
line with two segments as a simplified path for green dash line: constant c
before blue dot (high 𝜈) and constant 𝛼after blue dot (low 𝜈). First segment
does not present for a NFW profile (𝛼is not present). Double arrow indicates
the range of 𝛼 from the distribution of all particles in the same halo group
(halos of same mass) from N-body simulation (see Xu 2021b, Fig. 9).

𝐶𝐹 ≈ 0.03 for halos reaching their final stage. For blue dash line
with constant 𝛼 = 0.2, the limiting ratio 𝐶𝐹 ≈ 0.083.

6.3 Evolution of density profile and moment of inertia

Now let us look at the density profile variation during halo relaxation.
Halo density profile reads (from Eq. (33))

𝜌ℎ =
𝑚ℎ𝐹 (1, 𝛼)

(4/3) 𝜋𝑟3𝑠𝐹 (𝑐, 𝛼)
· 𝐹

′ (𝑥, 𝛼)
3𝐹 (1, 𝛼) 𝑥2

= 𝜌𝑐 ·
𝐹

′ (𝑥, 𝛼)
3𝐹 (1, 𝛼) 𝑥2

, (150)

where 𝜌𝑐 is the mean density of core region with 𝑟 < 𝑟𝑠 . Figure
12 plots the variation of normalized density profile of 𝜌∗

ℎ
= 𝜌ℎ/𝜌𝑐

along the path 3) (blue dash line in Fig. 11) using an Einasto (red
lines) and a NFW model (blue lines). The first segment for high v
halos with constant 𝑐 (before blue dot) is also almost along a constant
𝐶𝐹 path (see the red line in Fig. 11). The change of density profile
is from black solid line to green, and to red solid lines in Fig. 12.
With decreasing 𝛼 and constant c, fast mass accretion leads to an
increasing core mass that is proportional to the total halo mass 𝑚ℎ .
During fast mass accretion stage (high v), the mass accretion in-

duced radial flow (𝑢ℎ𝑚) is dominant and core structure is changing
significantly. The NFW and Einasto profiles are different in inner
region during this stage. It was shown that Einasto profile is a better
choice for massive (high v) halos (Klypin et al. 2016). The reason is
that NFW is a single parameter profile and cannot reflect the change
in shape parameter 𝛼 during this stage of evolution. In addition, the
mean core density 𝜌𝑐 ∼ 𝑡−2 ∼ 𝑎−3 with𝑚ℎ ∼ 𝑡 and 𝑟𝑠 ∼ 𝑡. Note that
for NFW profile with only one parameter c, the first segment simply
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Figure 12. The variation of normalized density 𝜌∗
ℎ
(𝑥) with time along the

relaxation path 3) in Fig. 11. An Einasto profile is used for the calculation.
For high v halos with fast mass accretion, the evolution is along a constant c
and𝐶𝐹 path in Fig. 11. The decreasing shape parameter 𝛼 leads to a steeper
density of inner region and core mass increases proportional to the total halo
mass (constant𝐶𝐹 ). For low v halos with slowermass accretion, the evolution
is along a constant 𝛼 path. The density profile is simply stretching to larger
c with inner density fixed (𝜌𝑐 is fixed in Eq. (150)). A NFW profile (Blue)
is also plotted for comparison that is quite different from Einasto profile for
high v halos.

reduces to the blue dot for high v halos (full solutions are discussed
in Sections 3.5 and 4.1).
The second segment for evolving toward low v halos with a con-

stant 𝛼 (after blue dot) should have decreasing𝐶𝐹 with time. During
this slower mass accretion stage (low v), the radial flow is negligible
with contributions from both 𝑢ℎ𝑚 and 𝑢ℎ𝑐 canceling each other such
that 𝑚ℎ ∝ 𝐹 (𝑐, 𝛼) (Eqs. (140) and (141)). This means a constant
core mass 𝑚𝑟 (𝑟𝑠) (Eq. (148)) and core density 𝜌𝑐 during this stage.
The density profile during this stage simply stretches to larger c with
inner density 𝜌𝑐 fixed ("halo stretching"). Similar observations were
also discussed in (Zhao et al. 2009), i.e. the slower mass accretion
during this stage simply adds more mass to the outer region with core
structure fixed. Full solutions for low v halos with fully vanishing ra-
dial flow are presented in Section 3.4.
To better understand the halo relaxation ("stretching"), the varia-

tion of momentum of inertia should also be checked. For any density
profile, the kth order moment of inertia can be obtained as (with
density 𝜌ℎ from Eq. (133)),

(𝑟𝑘 )𝑘 =
1
𝑚ℎ

∫ 𝑟ℎ

0
4𝜋𝑟2𝜌ℎ (𝑟) 𝑟𝑘𝑑𝑟 = 𝑟𝑘𝑠

∫ 𝑐

0

𝐹
′ (𝑥, 𝛼)
𝐹 (𝑐, 𝛼) 𝑥

𝑘𝑑𝑥.

(151)

Specifically, the moment of inertial for isothermal, NFW (2𝑛𝑑
order), and Einasto profiles are,

(𝑟𝑘 )𝑘 = 𝑟𝑘𝑠 𝑐
𝑘/(1 + 𝑘),

(𝑟2)2 =
𝑟2𝑠
2

𝑐

(
𝑐2 − 3𝑐 − 6

)
+ 6 (1 + 𝑐) ln (1 + 𝑐)

(1 + 𝑐) ln (1 + 𝑐) − 𝑐 ,

(𝑟𝑘 )𝑘 = 𝑟𝑘𝑠

(𝛼
2

) 𝑘
𝛼 Γ ((3 + 𝑘) /𝛼) − Γ ((3 + 𝑘) /𝛼, 2𝑐𝛼/𝛼)

Γ (3/𝛼) − Γ (3/𝛼, 2𝑐𝛼/𝛼) .

(152)

Halo moment of inertia (Eq. (74)) can be related to the root mean

square radius 𝑟2𝑔 = 𝑟22 (i.e. 𝑘 = 2),

𝐼𝜔 =
2
3
𝑚ℎ𝑟

2
𝑔 =
2
3
𝑚ℎ𝑟

2
𝑠𝐹𝜔 (𝛼, 𝑐) . (153)

Dimensionless moments of inertia for NFW and Einasto profiles are

𝐹𝜔 (𝑐) =
𝑐

(
𝑐2 − 3𝑐 − 6

)
+ 6 (1 + 𝑐) ln (1 + 𝑐)

2 (1 + 𝑐) ln (1 + 𝑐) − 2𝑐
and

𝐹𝜔 (𝛼, 𝑐) =
(𝛼
2

) 2
𝛼 Γ (5/𝛼) − Γ (5/𝛼, 2𝑐𝛼/𝛼)
Γ (3/𝛼) − Γ (3/𝛼, 2𝑐𝛼/𝛼)

=

(𝛼
2

) 2
𝛼 𝛾 (5/𝛼, 2𝑐𝛼/𝛼)
𝛾 (3/𝛼, 2𝑐𝛼/𝛼) ,

(154)

where 𝛾 (𝑥, 𝑦) is a lower incomplete Gamma function. For Einasto
profile with a constant shape parameter 𝛼 during halo stretching,

𝐹𝜔 (𝛼, 𝑐) ≈ 3
5
𝑐2 for 𝑐 → 0

and

𝐹𝜔 (𝛼, 𝑐) =
(𝛼
2

)2/𝛼 Γ (5/𝛼)
Γ (3/𝛼) for 𝑐 → ∞.

(155)

Figure 13 plots the variation of dimensionless momentum of iner-
tia 𝐹𝜔 (𝛼, 𝑐) along three different paths in Fig. 11. The scale radius
𝑟𝑠 is assumed to be relatively constant along all paths. Along path 1)
with a constant 𝐶𝐹 = 0.27 and a constant halo mass 𝑚ℎ , the radial
flow 𝑢ℎ𝑚 = 0 (𝑢ℎ𝑐 and 𝑢ℎ𝛼 may not be zero, see Eqs. (140) to
(145)). The angular momentum is conserved. The moment of inertia
is relatively constant in Fig. 13. This means that both angular velocity
and rotational kinetic energy are also constant along path 1), i.e. no
energy transfer between mean flow and randommotion. The limiting
𝛼 ≈ 0.7 along this path is the 𝛼 for the density distribution from all
particles in the same halo group (red arrow in Fig. 11). Therefore,
the final stage along that path is the equilibrium distribution of all
particles in the same halo group. That equilibrium particle distribu-
tion (Black line in Fig. 12) was studied via random walk of particles
in a halo with varying size (see Xu 2021b, Section 4). The double
arrow in Fig. 11 denotes the range of 𝛼 [0.7 1.2] for equilibrium
particle distribution in halo groups of different size from a N-body
simulation (see Xu 2021b, Fig. 9).
Along path 2) or 3) (dash green and blue lines in Fig. 11), the nor-

malized moment of inertial 𝐹𝜔 (𝛼, 𝑐) increases significantly during
halo stretching and plateaus with 𝑐 → ∞ for Einasto profile, while
𝐹𝜔 (𝛼, 𝑐) diverges for NFW (Eq. (152)), a well-known problem of
NFW profile.

6.4 Evolution of momentum and energy from early to late stage

To simplify the calculation, the path 3) (second segment of dash blue
line in Fig. 11) with a constant 𝛼 can be used to represent the path
from N-body simulations (Green line) and studied in detail.
Along this path, the scale radius 𝑟𝑠 is constant and the concen-

tration c is increasing with time. The radial flow vanishes and we
expect 𝑢𝑟 (𝑟ℎ) ≈ 0 such that halo mass 𝑚ℎ ∼ 𝐹 (𝑐) (Eq. (40)) with
a constant core mass 𝑚𝑟 (𝑥 = 1) = 𝑚ℎ (𝑐) 𝐹 (1) /𝐹 (𝑐). The spe-
cific angular momentum and rotational kinetic energy are generally
related to the effective angular velocity 𝜔ℎ as

|Hℎ | =
2
3
𝜔ℎ𝑟

2
𝑔 and 𝐾𝑎 =

1
2
|Hℎ |𝜔ℎ =

3
4

(
|Hℎ | /𝑟𝑔

)2
. (156)

For halos in their early stage (high v), |Hℎ | ∼ 𝑟𝑔 and both are
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Figure 13. The variation of dimensionless moment of inertia 𝐹𝜔 (𝛼, 𝑐)
with concentration 𝑐 along three different paths of evolution in Fig. 11. An
Einasto profile is used for the calculation. The moment of inertia is constant
along path 1) with a constant 𝐶𝐹 and halo mass, which indicates a constant
angular velocity and rotational kinetic energy. Path 1) leads to the equilibrium
distribution of all particles in the same halo group. The moment of inertia
increases significantly along paths 2) and 3). The variation of 𝐹𝜔 (𝛼, 𝑐)
along path 3) is also plotted for a NFW profile that diverges at large c.

proportional to time t (𝑟𝑔 ∼ 𝑡 and |Hℎ | ∼ 𝑡 in Table 3) such that
the specific rotational kinetic energy 𝐾𝑎 is always conserved. During
halo "stretching" (second segment of blue line in Fig. 11), the root
mean square radius 𝑟𝑔 (𝑐) = 𝑟𝑠

√︁
𝐹𝜔 (𝑐) (Eq. (153)) that can be dif-

ferent from scaling of 𝑟𝑔 ∼ 𝑡 for high v halos. However, a reasonable
estimate is that the scaling |Hℎ | ∼ 𝑟𝑔 continuously extends beyond
early stage during halo stretching such that rotational kinetic energy
𝐾𝑎 is still conserved and the angular velocity 𝜔ℎ ∼ 𝑟−1𝑔 (Eq. (156)).
At least, the scaling |Hℎ | ∼ 𝑟𝑔 should be a good approximation at
the beginning of halo stretching.
To summarize, along path 3) in Fig. 11 with constant 𝑟𝑠 and

core mass, the increasing concentration c leads to a decreasing core
mass ratio 𝐶𝐹 . The halo stretching with inner density fixed (Fig. 12)
leads to the increasing moment of inertial (Eq. (154)) and angular
momentum 𝐻ℎ , while halo angular velocity 𝜔ℎ and azimuthal flow
𝑢2𝜑 decreases along that path. With the coupling term 𝐹𝑎 (Eqs. (50)
and (51)) approaching zero for low 𝜈 halos, there is a net transfer of
spin-induced velocity dispersion to axial dispersion (𝜎2

𝑟0 dispersion
due to gravity) (from part 2 to part 1 in Eq. (45)), i.e. an increasing
in 𝜎2

𝑟0. Coefficients 𝛼𝜑 , 𝛽𝜑 and 𝛾𝜑 also decreases with time (Fig. 8)
such that halos become more isotropic with 𝛽

ℎ1 → 0 (Fig. 9).
The halo specific potential energy (see Xu 2021b, Eq. (90)) reads

Φℎ
𝐺𝑚ℎ

𝑟ℎ
= − 1

𝑚ℎ

∫ 𝑟ℎ

0
4𝜋𝑟2𝜌ℎ

𝐺𝑚𝑟 (𝑟)
𝑟

𝑑𝑟 = −𝐺𝑚ℎ𝐹 (1)
𝑟𝑠𝐹 (𝑐) Φ∗

ℎ
,

(157)

where the dimensionless number Φ∗
ℎ
reads (due to constant 𝑟𝑠 and

core mass 𝑚ℎ𝐹 (1)/𝐹 (𝑐)),

Φ∗
ℎ
=

1
𝐹 (1) 𝐹 (𝑐)

∫ 𝑐

0

𝐹 (𝑥) 𝐹′ (𝑥)
𝑥

𝑑𝑥. (158)

With 𝑚ℎ ∝ 𝐹 (𝑐), constant scale radius 𝑟𝑠 , and conserved rota-
tional kinetic energy 𝐾𝑎 along path 3) in Fig. 11, the variation of

10
0

10
1

10
2

10
3

Cocnentration c
10

-2

10
-1

10
0

10
1

10
2

m
h
(c)

r
g
(c) & H

h
(c)

h
(c)

C
F

K
a
(c)

h
(c)

p
(c)

Figure 14. The variation of halo mass 𝑚ℎ , potential Φℎ , root mean square
radius 𝑟𝑔 , rotational kinetic energy 𝐾𝑎 , and angular velocity 𝜔ℎ with con-
centration 𝑐 during halo stretching (path 3) in Fig. 11). An Einasto profile
is used for the calculation. The scale radius 𝑟𝑠 and core mass are constant
and specific rotational kinetic energy is conserved during halo stretching. The
specific potential Φ

ℎ
is almost constant. The angular momentum |Hℎ | ∼ 𝑟𝑔

and angular velocity 𝜔ℎ ∼ 𝑟−1𝑔 , while the halo spin parameter 𝜆𝑝 increases
due to faster increase in |Hℎ | than halo mass 𝑚ℎ .

all relevant quantities can be summarized in Fig. 14 for an Einasto
profile. The mass ratio 𝐶𝐹 decreases from 0.27 to 0.08. Other quan-
tities are normalized by their initial values at 𝑐 = 3.5, i.e. the values
for halos in their early stage (blue dot in Fig. 11 and shown in Table
3). Halo spin parameter 𝜆𝑝 = 0.031 when 𝑐 = 3.5 and increases
with time during halo stretching due to the faster increase in angular
momentum than halo mass (Eq. (111) and Fig. 14). This is consistent
with simulation results (Ahn et al. 2014), where 𝜆𝑝 increases with
time. In addition, 𝜆𝑝 for halos of different size should converge to a
limiting value of 𝜆𝑝 of low 𝜈 halos (late stage) with 𝑐 → ∞.

7 CONCLUSIONS

By revisiting fundamental ideas of energy transfer and cascade in
hydrodynamic turbulence, self-gravitating collisionless dark mat-
ter flow (SG-CFD) shares many similarities, but also exhibits some
unique features. In hydrodynamic turbulence, Reynolds stress arising
from velocity fluctuations acts as a conduit to continuously transfer
energy from mean flow to turbulence and sustain the continuous
energy cascade. To quantitatively describe the energy transfer be-
tween mean flow and random motion in SG-CFD, general solutions
of mean flow and velocity dispersions are derived for axisymmetric,
growing, and rotating halos in spherical coordinate. The polar flow
can be neglected (Fig. 2). The azimuthal flow is directly related to
in-plane velocity dispersions (Eq. (10)). The radial flow facilitates
the exchange of momentum and energy across different spherical
shells (Eqs. (19), (23) and (28)).
Evolution of halo momentum and kinetic energy are extensively

studied (Eqs. (14) to (30)) based on the continuity and momen-
tum equations (Eqs. (9) to (11)). A growing halo may obtain its
momentum through a continuous mass acquisition as quantitatively
described by Eq. (25). For large halo at the early stage of its life (Table
3), the specific angular momentum 𝐻ℎ increases linearly with time t,
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while the specific halo angular kinetic energy 𝐾𝑎 is a constant. Halo
angular momentum can only be changed from mass accretion and
radial flow at halo surface (Eq. (25)). Halo rotational kinetic energy
can be generated from both mass accretion and the energy transfer
with random motion (Eq. (30)). The fictitious stress 𝜌ℎ𝑢2𝜑 (equiva-
lent to “Reynolds stress”) acts on the gradient of mean flow (𝑢𝑟 /𝑟) to
facilitate the energy transfer between mean flow and random motion
(Eq. (28)). While the energy transfer in turbulence is always one-way
from mean flow to random motion, the local energy transfer can be
two-way in SG-CFD depending on the sign of radial flow 𝑢𝑟 .
By assuming that velocity anisotropy is due to finite halo spin, ve-

locity dispersions can be decomposed into a gravity induced non-spin
axial dispersion (𝜎2

𝑟0) and a spin-induced dispersion that is depen-
dent on the azimuthal flow 𝑢2𝜑 (Eqs. (45) to (47)). A new definition
of halo anisotropic parameter 𝛽ℎ1 is proposed to include the effect
of azimuthal flow 𝑢2𝜑 on anisotropy (Eq. (12)). Parameter 𝛽ℎ1 re-
duces to the usual definition 𝛽ℎ (Eq. (13)) if 𝑢2𝜑 can be neglected.
General solutions of mean flow and velocity dispersion are obtained
in Section 3.3 (Eqs. (42), (43), (49), (50) and (51)) and subsequently
applied to two limiting situations in Sections 3.4 and 3.5.
For "large" halos (high peak height 𝜈 at the early stage of halo

life) with fast mass accretion and constant concentration, there exists
a non-zero self-similar radial flow induced by fast halo growth (Eq.
(65)). The radial flow drives outward mass flow in the core region
and inward mass flow in the outer region (the gravitational infall).
The halo surface energy can be significant due to the non-zero ra-
dial flow and low halo concentration such that the halo virial ratio
𝛾𝑣 ≈ 1.3 > 1 (see Xu 2021f, Fig. 9). Angular momentum and ro-
tational kinetic energy are transported by the radial flow (Eqs. (23)
and (28)). The random motion draws kinetic energy from mean flow
in core region, and vice versa in the outer region (Eq. (28) and Fig.
10). There is a net transfer from mean flow to random motion for the
entire halo to maximize system entropy (negative 𝑆1 in Table 4). A
growing halo (the early stage of halo life) obtains its angular momen-
tum through continuous mass acquisition (Eq. (25)) that predicts a
linear increase of specific angular momentum 𝐻ℎ with time t (Eq.
(105) and Table 3). The self-similar azimuthal flow is only depen-
dent on radius r and not significantly dependent on the polar angle 𝜃
with 𝛼𝜃 � 1 (Eqs. (72), (87) and Fig. 5). The effective halo angular
velocity𝜔ℎ is proportional to the Hubble parameterH and decreases
with time (Eq. (81)). Large halos rotate with a faster spinning core
and slower outer region. For large halos, spin-induced dispersions
are dominant ( 𝜎2

𝑟0 � 𝛾𝜑𝑢
2
𝜑) and two anisotropy parameters are

equal, i.e. 𝛽ℎ1 ≈ 𝛽ℎ (Fig. 9). The radial velocity momentum van-
ishes for large halos leads to a limiting concentration 𝑐 = 3.5 (see
Xu 2021b, Eq. (53)). Halo mass 𝑚ℎ , size 𝑟ℎ , and specific angular
momentum 𝐻ℎ all increase linearly with time t. All specific energies
(radial/rotational/kinetic/potential) are time invariant for large halos
(Table 3). The halo spin parameter 𝜆𝑝 = 0.031 and the variation of
anisotropic parameter 𝛽ℎ1 in halo can be obtained analytically (Eq.
(119), Eqs. (97) to (99) and Fig. 9).
The other limiting situation consists of "small" halos with a stable

core (well bound and virialized) and low mass accretion (low peak
height 𝜈 and the late stage of halo life with an almost constant halo
mass, core mass, scale radius and an increasing halo concentration).
The radial flow vanishes for small halos (Eq. (40)) without mass,
momentum, and energy exchange between different spherical shells.
Halo surface energy can be negligible due to the vanishing radial
flow and high halo concentration (extremely low density at halo
surface). Small halos rotate more like a rigid body. The halo angular
velocity 𝜔ℎ is relatively time-invariant. For small halos, non-spin

axial dispersion is dominant (𝜎2
𝑟0 � 𝛾𝜑𝑢

2
𝜑) and the anisotropy

parameters 𝛽ℎ1 ≈ 0 (Fig. 9). Small halos are more spherical in
shape, incompressible for proper velocity, and isotropic (𝛽ℎ1 ≈ 0).
The radial and azimuthal dispersions are comparable for small halos
and greater than the polar dispersion, i.e.𝜎2𝑟𝑟 = 𝜎2𝜑𝜑 = 𝜎2

𝜃 𝜃
+𝑢2
𝜙
(Eq.

(63)) that reflects a direct connection between mean flow and random
motion in SG-CFD. The total kinetic energy including both random
motion and mean flow is not equipartitioned along each direction
with the greatest kinetic energy along azimuthal direction and the
smallest along polar direction, i.e. 𝜎2𝜑𝜑 + 𝑢2𝜑 > 𝜎2𝑟𝑟 = 𝜎2𝜑𝜑 >

𝜎2
𝜃 𝜃

= 𝜎2𝜑𝜑 − 𝑢2𝜑 . In short, small halos are isotropic (𝛽ℎ1 = 0),
incompressible (𝑢𝑟 = 𝑢𝜃 = 0), well bound and virialized structures.
Finally, the halo relaxation from high 𝜈 (early stage) to low 𝜈 (late

stage) is studied with a continuous variation of halo shape, density
profile, mean flow, momentum, and energy (dash lines in Fig. 11).
Overall, shape parameter 𝛼 decreases and concentration c increases
during relaxation (Eq. (149) and Fig. 11). The "vortex stretching"
plays an important role for the energy cascade from large to small
scales in turbulence. Due to the conservation of angular momen-
tum, the stretching of vortex along the axis of rotation decreases the
moment of inertial and increases the rotational kinetic energy. In
SG-CFD, A isotropic "halo stretching" is proposed with increasing
concentration and constant inner density (Fig. 12) and core mass.
Halo stretching leads to increasing halo mass, moment of inertial
(Eq. (154) and Fig. 13). In contrast to "vortex stretching", the halo
angular momentum is not conserved and increasing with time (Fig.
14). The specific rotational kinetic energy is relatively conserved
during halo stretching such that angular velocity 𝜔ℎ decreases with
time (Eq. (156)). With the coupling term 𝐹𝑎 (Eqs. (50) and (51)) ap-
proaching zero for low 𝜈 halos, there is a net transfer of spin-induced
velocity dispersion to the non-spin axial dispersion (𝜎2

𝑟0) (from part
2 to part 1 in Eq. (45)), i.e. an increasing in𝜎2

𝑟0 and decreasing in 𝑢
2
𝜑 ,

and coefficients 𝛼𝜑 , 𝛽𝜑 and 𝛾𝜑 . Halo becomes more isotropic with
𝛽ℎ1 → 0 during relaxation. The halo spin parameter increases with
time due to faster increasing angular momentum than halo mass.

DATA AVAILABILITY

Two datasets underlying this article, i.e. a halo-based and correlation-
based statistics of dark matter flow, are available on Zenodo (Xu
2022a,b), along with the accompanying presentation slides "A com-
parative study of darkmatter flow&hydrodynamic turbulence and its
applications" (Xu 2022c). All data files are also available on GitHub
(Xu 2022d).
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