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Preface
Dark matter, if exists, accounts for five times as much as ordinary baryonic 
matter. Therefore, dark matter flow might possess the widest presence in 
our universe. The other form of flow, hydrodynamic turbulence in air and 
water, is without doubt the most familiar flow in our daily life. During the 
pandemic, we have found time to think about and put together a systematic 
comparison for the connections and differences between two types of flow, 
both of which are typical non-equilibrium systems. 

The goal of this presentation is to leverage this comparison for a better 
understanding of the nature of dark matter and its flow behavior on all 
scales. Science should be open. All comments are welcome.

Thank you!
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Data repository and relevant publications 
Structural (halo-based) approach: Statistics (correlation-based) approach:

0. Data https://dx.doi.org/10.5281/zenodo.6569898

1. The statistical theory of dark matter flow for velocity, density, 
and potential fields 
https://doi.org/10.48550/arXiv.2202.00910

2. The statistical theory of dark matter flow and high order 
kinematic and dynamic relations for velocity and density 
correlations https://doi.org/10.48550/arXiv.2202.02991

3. The scale and redshift variation of density and velocity 
distributions in dark matter flow and two-thirds law for 
pairwise velocity https://doi.org/10.48550/arXiv.2202.06515

4. Dark matter particle mass and properties from two-thirds law 
and energy cascade in dark matter flow 
https://doi.org/10.48550/arXiv.2202.07240

5. The origin of MOND acceleration and deep-MOND from 
acceleration fluctuation and energy cascade in dark matter 
flow https://doi.org/10.48550/arXiv.2203.05606

6. The baryonic-to-halo mass relation from mass and energy 
cascade in dark matter flow 
https://doi.org/10.48550/arXiv.2203.06899

0. Data https://dx.doi.org/10.5281/zenodo.6541230

1. Inverse mass cascade in dark matter flow and effects on halo mass 
functions https://doi.org/10.48550/arXiv.2109.09985

2. Inverse mass cascade in dark matter flow and effects on halo deformation, 
energy, size, and density profiles https://doi.org/10.48550/arXiv.2109.12244

3. Inverse energy cascade in self-gravitating collisionless dark matter flow and 
effects of halo shape https://doi.org/10.48550/arXiv.2110.13885

4. The mean flow, velocity dispersion, energy transfer and evolution of rotating 
and growing dark matter halos https://doi.org/10.48550/arXiv.2201.12665

5. Two-body collapse model for gravitational collapse of dark matter and 
generalized stable clustering hypothesis for pairwise velocity 
https://doi.org/10.48550/arXiv.2110.05784

6. Evolution of energy, momentum, and spin parameter in dark matter flow and 
integral constants of motion https://doi.org/10.48550/arXiv.2202.04054

7. The maximum entropy distributions of velocity, speed, and energy from 
statistical mechanics of dark matter flow 
https://doi.org/10.48550/arXiv.2110.03126

8. Halo mass functions from maximum entropy distributions in collisionless 
dark matter flow https://doi.org/10.48550/arXiv.2110.09676

https://dx.doi.org/10.5281/zenodo.6569898
https://doi.org/10.48550/arXiv.2202.00910
https://doi.org/10.48550/arXiv.2202.02991
https://doi.org/10.48550/arXiv.2202.06515
https://doi.org/10.48550/arXiv.2202.07240
https://doi.org/10.48550/arXiv.2203.05606
https://doi.org/10.48550/arXiv.2203.06899
https://dx.doi.org/10.5281/zenodo.6541230
https://doi.org/10.48550/arXiv.2109.09985
https://doi.org/10.48550/arXiv.2109.12244
https://doi.org/10.48550/arXiv.2110.13885
https://doi.org/10.48550/arXiv.2201.12665
https://doi.org/10.48550/arXiv.2110.05784
https://doi.org/10.48550/arXiv.2202.04054
https://doi.org/10.48550/arXiv.2110.03126
https://doi.org/10.48550/arXiv.2110.09676
xuz
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Structural (halo-based) 
approach for dark matter flow
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Halo mass functions from 
maximum entropy distributions in 

collisionless dark matter flow
arXiv:2110.09676 [astro-ph.CO]

https://doi.org/10.48550/arXiv.2110.09676

https://doi.org/10.48550/arXiv.2110.09676
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Introduction
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 Halo mass function, the most fundamental quantity
 Conventional Mass function from nonlinear collapse

 Press-Schechter (PS) formalism
 Threshold overdensity from spherical collapse 

 Extended PS using an excursion set approach
 Overdensity as a random walk process 

 ST model
 Ellipsoidal collapse model gives a mass-

dependent overdensity threshold
 Mass function from mass cascade in dark matter flow

 Double-λ mass function
 Assume two different halo geometry 

parameter λ for different size of halos.
 The mass/energy cascade as an intermediate 

statistically steady state for non-equilibrium systems to 
continuously maximize system entropy. 

Are there or what are the connections between 
halo mass function and maximum entropy?? 0 0.5η = 1q = ( )PSf ν

( )PSf ν
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Maximum entropy distributions

 Long-range and collisionless nature
 Identify all halos of different sizes at given z
 Group halos according to halo size np

Symbol Physical meaning
X(v) Distribution of one-dimensional particle 

velocity v
Z(v) Distribution of particle speed v
E(ε) Distribution of particle energy ε
H(σv

2) Distribution of particle virial 
dispersion σv

2 (halo mass function)
J(σv

2) Distribution of halos with virial 
dispersion σv

2

P(v2) Distribution of square of one-
dimensional particle velocity v

( )2
p p vn n σ≡ ( ) nV r r∝ n=-1 for standard gravity( )2 2 2 2
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Relations between maximum entropy distributions
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The X distribution for maximum entropy principle:
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Halo mass function is 
intrinsically related to H, and 

hence X, the maximum 
entropy distribution

Introduce 
dimensionless 

variable
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Parameters and distributions for some typical 
potential exponents n

Short range 
interaction

Long range 
interaction
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Gaussian

Laplacian or 
exponential

Integral transformations between distributions:

X distribution
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H and J Distributions for large halos
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We first consider an extreme case, large halos with σh
2 << σv

2 :
Halo group 
temperature

Halo 
temperature
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From integral transformations between distributions:

2 2
vσ σ=With H distribution for large halos:

J distribution  for large halos:

Halo size: 

3 2β = 1n = −

and

Interestingly,  Hꝏ distribution can be obtained 
directly using the maximum entropy principle 
without resorting to X distribution (Next slides)
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Dimensionless H distribution for large halos:
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Hꝏ and Jꝏ Distributions from maximum entropy 
principle 
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Following the maximum entropy principle for velocity distrution:

Hꝏ distribution is a maximum entropy 
distribution satisfying three constraints:

Taking the variation of the entropy 
functional with respect to distribution H:

Write down the entropy functional with 
Lagrangian multiplier: 
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Modeling halo virial dispersion and halo velocity 
dispersion
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To solve H distribution using integral transformation:

We need model for velocity dispersion σ2:
2 2 2

v hσ σ σ= +

Model for halo velocity dispersion (halo group 
temperature):

Model for halo virial dispersion (halo temperature):
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H Distribution for small halos

2 0vσ → 2 2
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We consider another extreme case, small halos with σv
2 << σh

2 :

Halo group 
temperature

Halo 
temperature

H distribution for small halos:
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Dimensionless mass function for small halos:
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Halo mass functions
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Halo mass function from maximum entropy 
distributions
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Laplace transform of halo mass functions:
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From integral transformations between distributions:
H distribution from maximum entropy distribution 
should satisfy:

Relation between dimensionless halo mass function 
and H distribution:

Dimensionless maximum entropy halo mass function:
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Moments of halo mass functions:
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Halo mass function from maximum entropy 
distributions

( ) ( ) ( )
0

hv t
X XF t f e dνν ν

∞ − += ∫

No analytical solutions can be found. Instead 
Introduce a transformed function Fx to compare 
different halo mass functions:

Subscript X is the abbreviation of the mass 
function model, PS, ST, Dλ and ME. 
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Equation for maximum entropy halo mass function:

 ST and Dλ almost coincide with each other.
 Both agree better with the ME than the PS 

mass function. 
 Halo mass function can be an intrinsic 

distribution to maximize system entropy.
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Summary and keywords
Maximum entropy Velocity distribution Spherical collapse

Halo mass function Energy distribution H and P distributions

 Halo mass function is a fundamental quantity for structure formation and evolution. 

 Conventional halo mass functions are based on simplified spherical/elliptical collapse models

 The H distribution for particle virial dispersion is essentially the halo mass function that can be 
related to X distribution that maximizes system entropy.

 The H distribution for large halos is also a maximum entropy distribution. 

 For small halos, H approximates the distribution of square velocity (P) and recovers the Press-
Schechter mass function. 

 Halo mass function can be interpreted as an intrinsic distribution to maximize the system entropy
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