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ABSTRACT

N-body equations of motion in comoving system and expanding background are reformulated in a transformed system with
static background and fixed damping. The energy and momentum evolution in dark matter flow are rigorously formulated for
both systems. The energy evolution in transformed system has a simple form that is identical to the damped harmonic oscillator.
The cosmic energy equation can be easily derived in both systems. For entire N-body system, 1) combined with the two-body
collapse model (TBCM), kinetic and potential energy increase linearly with time ¢ such that K, = g,¢ and P, = —7¢g,t/5,
where g, is a constant rate of energy cascade; 2) an effective gravitational potential exponent n, = —10/7 # -1 (n, = —1.38
from simulation) can be identified due to surface energy of fast growing halos; 3) the radial momentum G o« @3/? and angular
momentum H o a°/?, where a is the scale factor. On halo scale, 1) halo kinetic and potential energy can be modelled by two
dimensionless constants «; and S;. Both constants are independent of time and halo mass; 2) both halo radial and angular
momentum o« >? and can be modeled by two mass-dependent coefficients 7, and n%; 3) halo spin parameter is determined
by oy and 175 and decreases with halo mass with derived values of 0.09 and 0.031 for small and large halos. Finally, the radial
and angular momentum are closely related to the integral constants of motion I,,, i.e. the integral of velocity correlation or the
mth derivative of energy spectrum at long wavelength limit. On large scale, angular momentum is negligible, /=0 reflects the
conservation of linear momentum, while I, reflects the fluctuation of radial momentum G. On halo scale, I is determined by
both momentum that are comparable with each other.
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CONTENTS calized, over-dense halos are fundamental structures in collisionless
system (Neyman & Scott 1952), both from observations and large
scale simulations (Evrard et al. 2002). Recent work also demonstrates
that halo structure is necessary to form in long-range interaction sys-
tems to maximize entropy (Xu 2021c,e).

1 Introduction
N-body simulations and numerical data
3 Equations of motion and evolution of system energy and momentum
3.1 Equations of motion for comoving and transformed systems
3.2 Temporal evolution of system energy
3.3 Temporal evolution of virial quantity and angular momentum
4 Evolution of energy and momentum from N-body simulation
4.1 Evolution of energy on large scale
4.2 Evolution of energy on halo scale
4.3 Halo radial and angular momentum, and spin parameter
5 Integral constants of motion in dark matter flow
5.1 Integral constants of motion on large scale
5.2 Integral constants of motion on halo scale
6 Conclusions

The halo-mediated inverse mass/energy cascade is a key feature of
self-gravitating collisionless dark matter flow (SG-CFD) (Xu 2021a):
"Little halos have big halos, That feed on their mass; And big halos
have greater halos, And so on to growth". Halos pass their mass
onto larger and larger halos, until mass growth becomes dominant
over mass propagation. This conceptual picture resembles the eddy-
mediated energy cascade in hydrodynamic turbulence, i.e. eddies
pass their kinetic energy to smaller and smaller eddies, until viscous
effects becomes dominant over inertia effect. The energy cascade in
SG-CFD is facilitated by the growth of halos and highly correlated
with inverse mass cascade (Xu 2021a,f). By contrast, "vortex stretch-
ing" (deformation of vortex structure) enables the energy cascade in
hydrodynamic turbulence (Taylor 1932, 1938; Xu 2021f).

This paper focus on the large-scale evolution of energy and mo-
1 INTRODUCTION mentum in SG-CFD. A brief review on the large-scale dynamics of
hydrodynamic turbulence should be beneficial. While Kolmogorov’s
theory of the universal equilibrium range is a huge success in the-
ory of turbulence (Kolmogoroft 1941a,b), it primarily focus on the
small scales. Very often, the dynamics on the large scale is of prac-
* E-mail: zhijie.xu@pnnl.gov; zhijiexu@hotmail.com tical importance for many practical applications that involve large

The large-scale gravitational collapse of collisionless dark matter
forms the basis of standard models for structure formation. The lo-
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scale momentum and mass transfer. When large scale dynamics is
concerned, turbulence can be classified into two categories:

(i) The first category is a forced stationary turbulence that is often
studied with an external forcing term to drive and maintain the tur-
bulence. Forced stationary turbulence can achieve higher Reynolds
number and longer statistics. Kinetic energy is continuously injected
at the integral length scale / (energy injection scale), cascaded down
to the smallest scale, and destroyed by viscous force. For forced sta-
tionary turbulence, the energy dissipation rate € is a constant and
total energy of turbulence is also conserved.

(ii) The second category is a freely decaying turbulence that is free
from any external force to maintain the turbulence. There is no energy
injection on large scale and total energy is continuously decaying with
time. Both integral scale / and the energy dissipation rate € vary with
time, i.e. the dynamics on the large scale.

It is challenging to predict the large-scale dynamics of freely de-
caying turbulence. The starting point is the energy equation

du? u’
E = 7 = —AT, (1)
where u? is the kinetic energy of entire system and A is a numerical
constant. Equation (1) is not closed with two unknows 12 and integral
length scale /. The first remarkable result is to combine the relation
u2lP = const on large scale from Loitsyansky integral constant
(Loitsyansky 1939) with energy equation (1) to obtain the variation
of kinetic energy u® ~ 171077 the integral scale [ ~ 217 and the
energy dissipation rate £ ~ =177 je. the Kolmogorov decay laws.

When self-gravitating collisionless system in expanding back-
ground is concerned, the energy evolution can be precisely described
by a cosmic energy equation (Irvine (Irvine 1961) and Layzer (Layzer
1963)). Collisionless particles interacting via a Newtonian gravita-
tional potential satisfy an energy equation,

OEy

W+H(2K,,+Py) =0, )
which is a manifestation of energy conservation in expanding back-
ground (mimics Eq. (1)). Here K, is the peculiar kinetic energy,
Py is the potential energy in physical coordinate that can be related
to the two-point density correlation (Mo et al. 1997; Xu 2022f),
Ey = Kp + Py is the total energy of the system, H = d/a is the
Hubble parameter, and a is the scale factor.

Since its discovery, the cosmic energy equation was applied for
many applications include estimating matter density (Peebles 1980)
and gravitational binding energy (Fukugita & Peebles 2004). Due
to the continuous formation and virilization of halos, the kinetic
energy K increases with time. In this regard, SG-CFD is a freely
growing turbulence. Just like Eq. (1), the cosmic energy equation
(2) only provides a single relation between K, and Py. Additional
information is required to close the energy equation (2) for dynamics
of energy evolution on large scale.

The two-body collapse model (TBCM) can be leveraged for ex-
tra insights (Xu 2021d). In standard models, large-scales structures
are formed from hierarchical merging of small substructures. In an
infinitesimal interval dt, that hierarchical merging process should
involve two and only two substructures. In this regard, the two-body
collapse model (TBCM) in expanding background (Xu 2021d) can
be a powerful analytical tool to study the non-linear structure evo-
lution. In this paper, the exponential energy evolution for two-body
collapse (see Xu 2021d, Egs. (92) and (93)) in a transformed system
(suggested by the TBCM model) will be used to close the energy Eq.
(2) for energy evolution on large scale. Similar integral constants of
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Table 1. Numerical parameters of N-body simulation

L mp lxof t

Run Qo A h T 0w \pem) Mo/h  (Kpc/h)

SCDMI 1.0 0.0 0.5 0.5 0.51 239.5 256° 2.27x10M 36

motion for SG-CFD are also developed for dynamics of energy and
momentum on large scale.

The rest of paper is organized as follows: Section 2 introduces
the simulation data used for this work, followed by equations of
motion of N-body system in Section 3. An important equivalence
is established between the original comoving system in expanding
background and a transformed system in static background. The
energy and momentum evolution are then formulated in both systems.
Comparison with N-body simulations for energy and momentum on
both large scale and halo scale is discussed in Section 4. The integral
constants of motion that are relevant to the dynamics of SG-CFD on
large and small scales are discussion in Section 5.

2 N-BODY SIMULATIONS AND NUMERICAL DATA

The simulation data used in this work is public available and gener-
ated from large-scale N-body simulations carried out by the Virgo
consortium. A comprehensive description of the data can be found in
(Frenk et al. 2000; Jenkins et al. 1998). Current study is carried out
using the simulation runs with Qy = 1 and the standard CDM power
spectrum (SCDM) to focus on the matter-dominant (Einstein—de Sit-
ter) gravitational collapse. The same set of data has been widely used
in a number of studies from clustering statistics (Jenkins et al. 1998)
to the formation of cluster halos in large scale environments (Colberg
et al. 1999) , and testing of models for halo abundances and mass
functions (Sheth et al. 2001). More details on simulation parameters
are provided in Table 1.

Two relevant datasets from this N-boby simulation, i.e. halo-based
and correlation-based statistics of dark matter flow, can be found at
Zenodo.org (Xu 2022a,b), along with the accompanying presentation
slides, "A comparative study of dark matter flow & hydrodynamic
turbulence and its applications" (Xu 2022c). All data files are also
available on GitHub (Xu 2022d).

3 EQUATIONS OF MOTION AND EVOLUTION OF
SYSTEM ENERGY AND MOMENTUM

In this section, we focus on the evolution of energy and momentum of
a N-body system in expanding background with a power-law gravita-
tional potential and an arbitrary potential exponent n. An equivalence
was established between comoving system in expanding background
and a transformed system in static background (Xu 2021d). We will
briefly review this equivalence and focus on the temporal evolution
of energy and momentum of entire system.

3.1 Equations of motion for comoving and transformed systems

In a comoving system with comoving coordinates x and physical time
t, equations of motion for N self-gravitating collisionless particles in
expanding background read (Peebles 1980)

-+ =
dr? dt a3

d?x; dx; Gmp N, x; - X;j
- O § 3 .
77 [xi = xj|
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where N particles have equal mass m and G is the standard gravi-
tational constant. The Hubble constant H (t) = d/a, where a is the
scale factor. Without loss of generality, we assume a power-law pair
potential V}, with an arbitrary exponentof n,i.e. Vp, (r) = —~Gpmpr".
Here G, is a generalized gravitational constant (reduces to G when

n = —1). The generalized equations of motion for any n read
d?x; d nG m - X;
X, 2Hﬁ - nfp Z J )
dr? |X —x,; 7"
J#L A J

For matter dominant Einstein-de Sitter (EdS) model, following rela-
tions are assumed to be valid,
H}=H%, a= %{ = —%Hz,and H? = %”pr (@), 5)
where Hy is the Hubble constant when a=1 and py, (a) is the (physi-
cal) background density. In our previous work, an effective potential
exponentn, ~ —1.3 # —1 for virial theorem has been suggested when
applied to individual halos (see Xu 2021b, Eq. (96)). The deviation
from the standard exponent of n = —1 comes from the continuous
mass cascade and halo surface energy (Xu 2021b). In this regard,
current model with an arbitrary exponent n can be instructive.

Let’s introduce a transformed time scale s as ds/dt = aP, where
p is an arbitrary exponent. The original equations of motion (4) can
be equivalently transformed to

d2 dx; nGnmp

? —(p+2)a PH= 33p Z (6)
i [xi - X1|

Specifically, p = —2 eliminates the first order derivative and s is

the time variable for integration in N-body simulations. By setting
p = —1, s is the conformal time.

The most relevant case for this work is p = —3/2 along with the
matter dominant model in Eq. (5). For this special case, equations of
motion in transformed system read (from Eq. (6))

dle l

F;
72 =nGump Z 2 e (7

m
J#i |[Xi — p

where F; is the total force on particle i from all other particles.
The scale factor a does not explicitly appear in Eq. (7) and Hubble
constant Hy can be treated as a constant damping. The original
equation of motion (4) in expanding background is equivalent to Eq.
(7) evolving with a new time scale s in a static background, i.e. a
transformed system with constant damping H/2.

Starting from Eq. (7), a non-radial two-body collapse model
(TBCM) was proposed for gravitational collapse of dark matter in
expanding background. For convenience, TBCM model can be ana-
lytically solved in transformed system to give the critical density of
Ac = 2/ﬁ?2 =1872, where the critical value B4y = 1/(37) for equi-
librium collapse (see Xu 2021d, Eq. (89)). In this regard, the TBCM
model plays the same role as the harmonic oscillator in dynamics and
can be fundamental to understand structure formation and evolution.

The transformed system consists of comoving spatial coordinates
x; and a transformed time scale s. The particle velocity v; in trans-
formed system is

i _ 3%
ds dt
while the peculiar velocity u; in physical time ¢ can be related to the

transformed velocity v; as

®)

Vi =

dx; _ dr; Y
;=

e

Vi, ®

where r; = ax; is the physical coordinate of particle i.
The specific kinetic energy of transformed system (from Eq. (8))
can be related to the specific peculiar kinetic energy K, as

1 N a N
K E 2 E 2 K
S:mi71 i :ﬁi71 ui -4 p: (10)

The specific potential energy P of transformed system can be
related to the potential Py in physical coordinate, where Py = a™"* Py,
(due to r; = ax;) with

N N
1 _ 1
PS:NZgb(Xi):a "py and Py:ﬁz¢(ri). (11)
i i
The potential ¢ (x;) of particle i reads

1 1
¢(Xi):_§G"mPZﬁ' (12)

The total force on particle i is related to the gradient of potential
as F;/mp = —NOPg/0x;. Now Eq. (7) can be rewritten as,

d%x; L Ly dxi | 0Ps
ds? ds 0x;

Since the potential energy Py is a function of coordinates of all
particles in N-body system, the total time derivative of the potential

energy Py can be obtained from the chain rule,

=0. (13)

dPy < 0Py dx;
ds &4 9x; ds’

(14)

In this section, the original equations of motion (Eq. (4)) for a
comoving system in expanding background is equivalently trans-
formed to Eq. (7) for a transformed system in static background with
a constant damping. While two systems are essentially equivalent,
for convenience, it is easier to formulate the energy and momentum
evolution in transformed system.

3.2 Temporal evolution of system energy

The energy evolution for entire system can be obtained by multiplying
v; = dx;/ds to both sides of Eq. (13) and adding equations for all
particles together. An exact and simple equation (in transformed
system) for specific energy (energy per unit mass) reads

=0, 15)

where the total energy E¢ = K + Py in transformed system is mono-
tonically decreasing with time s due to the constant damping Hyy.

Equation (15) is exact and valid for arbitrary potential exponent n
(nisnotinvolved in Eq. (15)). Note that Eq. (15) is exactly same as the
energy equation for a damped single-degree-of-freedom harmonic
oscillator, which has been well-studied with well-known exponential
solutions. With two unknowns (Eg and K) in Eq. (15), additional
information from a TBCM model will be used for a complete solution
of Eq. (15) (see Section 4.1).

Equation (15) can be transformed to an equation with respect to
the scale factor a using the relation da/ds = Hypa (from ds/dt = aP
with p = =3/2),

8(K5+Ps)+Ks

=0. 1
da a 0 (16)

Substitution of the peculiar kinetic energy K, (Eq. (10)) and the
physical potential energy Py (Eq. (11)) into Eq. (16) leads to the
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energy evolution in the original comoving system with an arbitrary
potential exponent 7,

0 [a (Kp +a‘"‘1Py)]
da

which exactly reduces to the cosmic energy Eq. (2) by settingn = —1.
We can equivalently present the energy evolution with respect to the
physical time ¢ as,

+Kp =0, (17)

-n-1
0 (K pta Py)
ot
A more convenient form is to normalize the kinetic and potential

energy by a one-dimensional peculiar velocity dispersion u? (a) =
2/3Kp, (a). The original energy Eq. (17) can be rewritten as

9 3 Py) dlnu? 3 P
In|=+—|+ +1+3/2[|-+—|=0. 19
dlna n(2 auz) dlna / 2 au? (1
For a power-law form of velocity dispersion u? (a) « a” (solutions
of TBCM model justifies a power-law evolution, see Section 4.1),

Eq. (19) admits an exact steady-state solution for the ratio between
potential and kinetic energies,

a"Py Py 2Py
akKp _Ks_3au2_

+H (2K, +a7'Py) = 0. (18)

v+2
L= 20
vy+1 (20)

The total energy (Ey = K, + Py) and the virial energy (defined as
Vy = 2K, — nPy) normalized by the kinetic energy K, are,

E K, +P +2
y _2p y=1+(7 )a1+n

K, K, 1

and 21
Vy 2K, -nP 2

> 2B Ty (LY EE) e

K Kp 1

Specifically, for standard gravitational interaction with n = —1,
Ey Kp+Py 1 Vy 2K, —nPy %
K, K,  y+l'" K, K,

X", (22)

Tyl
where y = 0 corresponds to a static system with constant energy.

For a dynamically evolving N-body system, the total energy and
virial energy normalized by K, (a) or u? (a) are functions of y only
at the steady state. An effective exponent . can be introduced for
entire system

w2 e 204Y) (1)

¢ Py 2+y

and (23)
2(1

nez—(2+;/) for n=-1,

where the standard virial theorem is satisfied in the form of 2K, —
ne Py = 0. The effective exponent n, equals n if and only if n = -1
and y = 0. However, the kinetic energy K, (a) is usually increasing
with time for self-gravitating collisionless flow (i.e. y # 0 and Vy, #
0). Therefore, for a self-gravitating N-body system, the effective
potential exponent n, can be significantly different from -1 (n, # —1)
due to the dynamic effects of mass cascade (mass accretion) and halo
surface energy (Xu 2021b).

Equation (15) relates the total energy E with the kinetic energy
K for a transformed system. To solve for energy evolution, another
relation is required to close Eq. (15) where the elementary problem of
gravitational collapse (two-body collapse) provides some additional
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insights (Xu 2021d). Analytical solutions by solving a two-body
collapse model (TBCM) suggest a power-law evolution of energy for
self-gravitating systems (see Xu 2021d, Eq. (92) and (93)). Section
4.1 presents more discussion and detail comparison with N-body
simulations.

3.3 Temporal evolution of virial quantity and angular
momentum

The virial theorem in expanding background can be obtained by
multiplying x; (dot product) to both sides of Eq. (13) for all particles
and taking the average,

1 dv;

1 N op
— Y —.x;+=-HyG 2 .x;=0 24
Nl- ds Xl+2 0 S+Zaxi Xj B (24)

where the virial quantity (the radial momentum analogue to angular
momentum) of entire system is defined as

1Y 1
Gs = NZV;'-XI' =a1/2Gp =a1/2NZi:lli'Xi

and (25)

1]\/'
GPZNZui-X[
i

for transformed and comoving systems, respectively. Equation for
virial quantity G reads (from Eq. (24))

N
dGs 1 1 dv;
—HyGy =2Ks + — — - X;. 26
ds +2 0Gs s+N i ds Xj (26)

For a power-law form of potential, we have the identity,

N N
0P 1
_N xi= — N'F .x:

T Ox; b mPZi:le

| NN N
:m—pZZFij'(Xj—Xi):_nZ¢(Xi),

i j>i

27

where the second equality assumes that Newton’s third law of motion
holds, i.e., F;j = —=F j;. For N-body systems with periodic boundary,
extra care is needed for the second equality in Eq. (27) because of
periodicity. In fact, the time evolution of virial quantity G, in a
N-body system can be related to the integral constant of motion on
large scale (see Eq. (98) and Fig. 7 in Section 5.1).

For systems with an open boundary (unbounded) and power-law
potential, equation for virial quantity G can be finally written as
(from Eq. (24) and using identity (27)),
dGs + lHOGS = 2K, — nPy. (28)

ds 2
This is the virial theorem for self-gravitating system in transformed
system with a constant damping. Equation (28) can be easily trans-
formed back to the original comoving system as

dGp 2aKp, —na™"Py
— +HGpy = ———F+——.
dt p a?
The virial quantity Gy and G, of entire system are relevant to the
translational motion of halos, as we will discuss in Section 4.3.
Similarly, we can also multiply x;X (cross product) to both sides
of Eq. (13) for all particles to obtain the evolution of specific angular

(29)
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momentum (per unit mass),

N

dH, H, oP,

o o=- Sy x 28 30
ds T2 Zi:xlxaxi (30)
where,

N N
1 1
Hszal/szzﬁz“xixvi and szﬁz“xixui. 31
i i

Here Hy and H), are the specific angular momentum in transformed
and comoving systems, respectively.
For systems with an open boundary (unbounded),

N N
dHs; Hy 0Py 1
+—H;=- | X — = — X F;
ds 208 ZXZ ox; mp LN
| NN (32)
=m—ZZ(Xi—Xj)XFij=07
P i

where the angular momentum exponentially decays (Hy ~
exp (—Hps/2)) in transformed system (or H, ~ a Y% in original
comoving system using ds/dt = a=3/% in Eq. (6)). Similarly, extra
care is needed for N-body systems with periodic boundaries for the
third equality in Eq. (32) because of the periodicity. The time evolu-
tion of Hj, in a N-body system is modelled in Eq. (99) and plotted
in Fig. 7. The evolution of virial quantity and angular momentum
on halo scale is discussed in Section 4.3, where we show that H, is
related to the angular momentum of halos.

4 EVOLUTION OF ENERGY AND MOMENTUM FROM
N-BODY SIMULATION

4.1 Evolution of energy on large scale

The evolution of system energy is described by Eqs. (15) and (17)
for self-gravitating collisionless system. Still, Eq. (15) is not closed
and we need extra information to solve it. It is well known that
energy exponentially decays for a damped harmonic oscillator of
single degree of freedom. The rate of decay is proportional to the
damping coefficient @y, i.e. E « exp (—ag4t). The exact analogue of
harmonic oscillator model in self-gravitating collisionless system is
a two-body collapse model (TBCM) (Xu 2021d).

Solutions obtained from TBCM model suggest that both kinetic
and potential energy evolve exponentially in transformed system (see
Eqgs. (73), (92), and (93), (94) in (Xu 2021d)). Just like the dynamics
of large structure system can be represented by coupled harmonic os-
cillators, the dynamics of self-gravitating collisionless system should
resemble that of a simple two-body collapse. We reasonably expect
the energy of entire system on large scale should evolve in the same
way as two-body collapse from TBCM model, i.e. an exponential
evolution in transformed system. With this in mind, the only possible
solutions for Eq. (15) are

Hys
1+8/a

Hys
1+8/a

where @ and 8 are two numerical constants.

The temporal evolution of kinetic and potential energy in trans-
formed time scale s (Eq. (33)) can be equivalently translated to a
power-law evolution in physical time ¢ with relation s = ¢ In (¢/t;)
(from ds/dt = a3/ in Eq. (6)), such that

2 (24B/a) _(@2+4B/a)
Kp =gyt 3WBla) = g,q (B/a) (34

Ks:aexp(— ) and Ps:ﬁexp(— ), (33)

2 D
Py = ggut 3(+B]a) = gsua Mpla) | (35)
and
S
Py =d"Ps=  gua™ T, (36)
@

where the constant g, is a rate of production of kinetic energy or
the energy flux across scales. Obviously, exponent y for velocity
dispersion of the entire system (u? «< a”)in Eq. (20) reads

_ @+pla)
(1+B/a)’
As shown in Egs. (19), (20), and (22), for a constant exponent 7,
the total energy normalized by K, or velocity dispersion u? is time-
invariant. In this regard, the self-gravitating collisionless system is
energy conserved (if normalized by dispersion «?) that mimics the
forced stationary turbulence with a conserved total kinetic energy.
By choosing an effective potential exponent n, for self-gravitating
system (Eq. (34) and (36)) to satisfy the virial theorem, i.e. 2K, =
nea_"_le from Eq. (29), we must have

2K
_P _HhT (38)
a‘"‘le B

(37

Ne =
2

The exponent y for velocity dispersion u~ oc a” can be finally related
to the effective potential exponent n, (found from Eq. (37)),

2(1+ne)

T T 2w (39)

The energy evolution for self-gravitating collisionless system in
expanding background with a potential exponent n can be equivalent
to the same system with an effective potential exponent for virial
theorem such that n. # n. Since a positive scaling exponent y > 0
is expected for system with increasing kinetic energy, the effective
potential exponent n, should be in the range of n, € (-2,-1).
Obviously, ¥ = 0 is only possible for an isolated system in static
background (Hp = 0 in Eq. (33)), where both kinetic and potential
energies are time-invariant and conserved.

Figure 1a plots the variation of kinetic and potential energies with
scale factor a from a N-body simulation in Section 2. Both energies
approach a power-law scaling with scale factor a, i.e. K, (a) o« a3?
(dominated by halo scale dynamics), after an initial period with
Kp (a) o a (dominated by dynamics on large scale in the linear
regime before halos are formed). The inset plot presents the time
variation of effective exponent 7. that approaches a constant value
of ne ~ —1.38 (matching the effective potential exponent for halos
(see Xu 2021b, Eq. (96))). This corresponds to a value of y ~ 3/2
(using Eq. (39)) that is consistent with N-body simulation. The total
energy Ey in comoving system is not conserved due to virilization.

The effective potential exponent of entire system n, ~ —1.38 # —1
is due to the mass cascade and halo surface energy (see Xu 2021b,
Eq. (96)). Another interpretation is also presented here. For large
halos with a typical mass m}e that grow with a constant waiting

time, the virial dispersion a'g(mﬁ, a) < g~ (m£)3/2. For mass of

that typical halo grows as m{l‘ o a3/2 (see Xu 2021a, Eq. (50)), the

velocity dispersion o-% o aY and the halo virial kinetic energy grows

as mﬁo-% oc a3/%. Now consider a closed isolated halo with a fixed
mass my, and the same virial kinetic energy (i.e. mhu2 o a3/2), the
velocity dispersion of that halo should scale as u? o a3/2. For such
a closed isolated halo, the exponent y = 3/2 leads to an effective

potential exponent n, = —10/7 ~ —1.43 from Eq. (39) that is close
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Figure 1a. The variation of specific kinetic and potential energies (km?/s%)
with scale factor a from a N-body simulation. Both energies exhibit a power-
law scaling with scale factor a at statistically steady state, with an approximate
scaling of K, (a) o a’/? and Py (a) « a3/2. The total energy Ey in
comoving system is not conserved. The virial energy Vy, (a) o a31? follows
the same scaling.

12+ *

131 B

A4t

Figure 1b. The variation of effective exponent n = 2K, / Py, that approaches
to a constant value of -1.38, dominated by dynamics on halo scale (due to
mass cascade and halo surface energy).

to ne = —1.38 from N-body simulation. Note that n, = —10/7 is
one of the possible potential exponents that leads to the existence of
critical value 85> in TBCM model (see Xu 2021d, Egs. (82) and (83))
and Table 2). Interestingly, the energy evolution of a growing halo in
N-body system with normal gravity n = —1 is equivalent to that of an
isolate halo with an effective potential exponent n, = —10/7. Table 2
lists several possible values of y along with the corresponding values
of ne and B/afrom Egs. (38) and (39). Possible values of n, is from
Equation n, = (2 — 6m) /(1 + 3m) (see Xu 2021d, Eq. (83)).

For the special case with y = 3/2, we expect 8/a@ = —=7/5 and
ne = —10/7 (from Egs. (37) and (38)) once the statistically steady
state of SG-CFD is established, where the kinetic and potential energy
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y 0 312 3 972 6 pos
ne -1 107 -85 22/13 /4 2
Bla 2 15 475 1113 /8 N

Table 2. List of possible parameters 7y, n. and 8/« for an isolate halo based
on a two-body collapse model (see Xu 2021d, Eqgs. (82) and (83)).

should evolve as

7 7
Ks = eyat, Pg= —gsuat, Kp=¢eyt, Py= —gé‘ul‘ (40)

for transformed and original comoving systems, respectively. Again,
g, is the rate of energy production on the smallest scale for energy
cascade in SG-CFD, where &, = —3 (eg, + &xp) /2 with contri-
butions from both halo virial dispersion (¢, ) and halo velocity
dispersion (e p,) (see Xu 2021f, Egs. (27), (47), Figs. 3 and 4).

The peculiar kinetic energy K, increases proportionally to the
physical time # (K}, o a3/% « 1) such that the rate of energy produc-
tion &, can be estimated to be,

30 3up 9,
R R PR P
for ug = 354.61km/s from the simulation in Section 2. The rate of
energy cascade €, is a key constant can be applied to postulate dark
matter particle mass and properties (Xu 20221i), interpret the origin
of critical MOND (Modified Newtonian Dynamics) acceleration ay
(Xu 2022j), and derive the baryonic-to-halo mass ratio (Xu 2022k).

2
Hy ~ —4.6 x 10—7';’—3 @1)

4.2 Evolution of energy on halo scale

This section focuses on the energy evolution on the scale of halos. In
N-body simulation, we first compute the (physical) root mean square
radius rg about the center of mass of a given halo and the one-
dimensional peculiar velocity dispersion 0'3 for every halo identified,

np
re = Z (mpri) [(npmp),
k=1 (42)
1 & 2 1 &
2
oL = u, —u and uy = — uy,
v 3"1) kgll k h| np ];

where np, is the number of particles in a halo, m, is the particle mass,
ri is the physical distance of kth particle to the center of mass of halo
that particle resides in. Here uy is the particle peculiar velocity and
uy, is the halo peculiar velocity as the mean velocity of all particles
in the same halo.

Both root mean square radius ¢ and halo virial dispersion o2 can
be easily computed for each halo identified in simulation. In addition,
both quantities can be analytically computed for halos with a given
density profile. Typical examples are a power-law density profile and
a Navarro—Frenk—White (NFW) profile (Navarro et al. 1997):

(i) For spherical halos of size rj, with a power-law density profile of
pn (r) ~ r~™, the root mean square radius can be found as

) 2
K" 2on andds  om
Fg =7Yglp = = T'hs (43)
8 8 i pn (x) dnx2dx —-m

0

where 7y, is a constant to relate rg to halo virial size rj. Radius of
gyration of a spherical halo is (see Xu 2022e, Eq. (75))

23— 2
rre =5 e 2 (44
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The potential energy @y, of that halo can be computed as,

Gmy,
n
i /Orh % [./Oy on (%) 47TX2dx] pn (y) 4ry*dy _ 3-m Gmy

forh' pn (x) drx2dx

D, =—vo

5-2m rn
(45)
where yg is a constant for halo potential that is on the order of one.

From virial theorem, 302 — n®;, = 0 (n* is an effective potential
exponent defined for halos of different size), the one-dimensional

virial velocity dispersion is (with virial ratio y, = —nj}),
5 Ny vy (3—-m\ Gmy
=3@, =2 , 46
Tv=F T 3(5—2m) h (46)

where 7y, is a virial ratio. Specifically, for a singular isothermal
sphere profile with m = 2,

Th 2_ _YvGmy _ yy Gmy,
re=— and o) =-—7F = R
£ V3 v 3 3v3 rg
where ny = —y, = —1.5 for an isothermal density profile (see Xu

2021b, Eq. (96)) or (see Xu 2022e, Table 3)).

C)

(i) Alternatively, for halos with a NFW density profile, a concen-
tration parameter c, size rj,, the root mean square radius is (similar
to Eq. (43) and for ¢ =4 ~ 10),

rp [2¢(c2=3c-6)+12(1+c)In(1+c)
Fo = Yol = —
§=7eTh =5 2(1+c)ln(l+c)-¢3 (48)
(0.56 ~ 0.40) ry,.

Q

The total potential energy ®;, of a NFW halo can be computed as
(similar to Eq. (45)),

@) = - %__c{l—[1+2(1+c)1n(1+c)]/(IH)z}%
o o 2[In(1+¢)—c/(1+0)]? h

M
= (0.96 ~ 1.26) M.
n

(49
The one-dimensional velocity dispersion 0'3 can be similarly ob-

tained by the virial theorem,

c{1—[1+2(1+c)1n(1+c)] /(1+c)2} M

6[In(1+c¢)—c/(1+c)]? S (50)
GM

o

2
Oy =Yv

= (032 ~ 0.42) y,

In principle, if density profile is known for halos with mass my,, all
three quantities (rg, @, and 0'3) can be modeled by three constants
Yg» ¥v, Y& and a critical density ratio A, where

13
= yern = yed 2Gmy, / y Gmy, Yo Gmy

= h = 5 s Ph = Yo =
g~ "8 S\ AcH? rh Yg Tg

(51)
and
1/3
1 A _

oy = _(Dhy?v = 3YeYy (70) (GmyHo)* a™". (52)

The critical density ratio A, = 1872 can be obtained from either a

spherical collapse model or a two-body collapse model (TBCM) (see
Xu 2021d, Eq. (89)).

All halos identified in N-body simulation are first partitioned into
groups of halos with the same mass my,. In general, the halo kinetic
energy 0'3 and root mean square radius rg in Eq. (42) can be de-
pendent on halo mass (see Xu 2021f, Figs. 2 and 13). However, it is
possible to introduce two new constants that are relatively indepen-
dent of halo mass,

2
pi='8 and ar= D08 (53)
oy Gmy,
where the root mean square radius 7 and velocity dispersion oy,
can be easily computed for each halo using Eq. (42). We compute
two dimensionless parameters &y and S for every halo in the same
group followed by averaging performed over all halos from the same
group, where (o) and ’std’ stands for the mean value and the standard
deviation of quantity ‘e’ for that halo group.

By substituting Egs. (51) and (52) into Eq. (53), two constants are

related to yg, ¥y, Yo and A. as

Hrg ’ 672 lry 1
* 8 8 * v'g
= =4/ ——— and «a = = =Y g (54)
Bs oy YoyvAc sT G A 3'}’ YvYg

With A. = 1872, Yo =1,v¢= V3/3, and v, = 1.5 for isothermal
density profile (see Xu 2022e, Table 3), we expect 85 ~ 0.09 and oy ~
0.29 for large halos with mj; — oo. The constant 85 quantifies the
competition between expanding background (via Hubble parameter
H) and gravity and is closely related to the critical value S5, in
two-body collapse model (see Xu 2021d, Eq. (82)). To form an
equilibrium collapse for halos with infinitesimally small lifetime,
Bs2 = 1/(3n) such that 85 = \/zygﬁsz = \2/3B5> ~ 0.087 (from
Eq. (54)).

Figure 2 plots the variation of mean and standard deviation of o
and S5 with halo mass mj, (or equivalently the halo size ) at z=0.
As expected, both a and S5 have much wider distributions (larger
standard deviation) for small halos and converge to constant values

for large halos. Small halos have longer lifetime when compared to
-2/3

large halos with a scaling of lifetime with halo mass as 7g ~ m
(see Xu 2021a, Eq. (45)). At a given redshift z, small halos of same
size can be generated at different time while large halos tend to be
synchronized and generated at the same time. Therefore, small halos
have a wider distribution of properties while large halos have similar
properties with a narrower distribution. Both constants approach
limiting values for large halos that can be very well estimated by Eq.
(54),1.e. B ~ 0.09 and a§ ~ 0.29.

With @ and B (Fig. 2) and y, = —nj (in Fig. 5) determined for
each halo in simulation, and critical density ratio A, = 18712, other
two constants for each halo group can be determined using Eq. (54),

6 (aip20012)”"

VV,B?AC

The variation of yg and yg with halo size is also presented in Fig.
2, with yg slightly decreasing with halo size and yg increasing with
halo size and approaching 1. Now with dimensionless constants vy,
Yv. Yo determined, the root mean square radius rg, specific potential
@, and virial dispersion 0'5 can be easily computed for halos with

known mass my, (Eqs. (51) and (52)).

1 1/3
ve=(3aiind)  and o 59)

4.3 Halo radial and angular momentum, and spin parameter

The temporal evolution of virial quantity (radial momentum) and
angular momentum in a transformed system is discussed in Section

Vol. 000, 1-15 (2022)
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Figure 2. The variation of mean and standard deviation of two dimensionless
parameters «y and B with halo size n), from a N-body simulation at z=0
(mp, = 2.27 x 10" My /h). The dispersion of @} and B (the standard
deviation) decreases with halo size because of the decreasing halo lifetime
with halo size and halo synchronization. The limiting values of a and 3
for large halos approach 0.29 and 0.09 (Eq. (54)), respectively. The variation
of yg and yg is also presented in the same plot using Eq. (55).

3.3. We can define them in a comoving system accordingly,

1 N 1 N
HP:Ninxui and GP:NZXpui, (56)
i=1 i=1
where the summation runs over all N particles in N-body system.
Next, all particles in entire N-body system can be decomposed
into a halo sub-system and an out-of-halo sub-system. The halo sub-
system includes all particles that reside in all halos identified, while
the out-of-halo sub-system includes all particles that do not belong
to any halos. The same quantity can be computed equivalently for
halo sub-system over all halos (N,) and all particles (np,) in every
halo. For every halo, we first decompose the particle motion into the
motion of halo and the motion in halo,

np
’ l ’
X =Xp+X; = | — E X; | +X;

" i3
and 57
n
, 1 & ,
w=u,tu; = n—zui +u;,
P =1

where xy, is the position of the center of halo mass and uy, is the halo
peculiar velocity. Here x;. and u;. are the relative position and velocity
of particles in that halo. By using Eq. (57), we can decompose the
momentum of halo sub-system Hy,; and G, into contributions from
motion in halo and motion of halo,

L
Hhs =~ np (Hhc + Hec)
Npp ]Z:‘f

(58)
] Nh Nh
Ghs = 5= D, mp (Ghe +Gee)  and Nyp = 37 np.
hp 550 =1

where Ny, is the total number of particles in all halos. The subscript
‘h’ stands for that quantity from the motion of particle in halos and

Vol. 000, 1-15 (2022)
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Figure 3. The time evolution of virial quantity and angular momentum
((km/s - M pc/h)?) of entire system and halo sub-system with scale factor a
from N-body simulation. All quantities exhibit a power-law scaling with scale
factor a. An approximate scaling of G, (a) o a'’? and H, (a) « a’? can
be identified for two comoving quantities. The same quantities Gy, o a’?
and Hpy a’? (in physical coordinates) for entire system are also plotted.
The evolution of halo-averaged specific quantities (momentum in physical
coordinate averaged over all halo particles) (G, ) o a*/2 and (|H}, |} o a3/2
are presented in green lines. The total virial quantity and angular momentum
in all halos scales as ~ a? with total halo mass M}, ~ all? (black lines).

‘¢’ stands for the comoving coordinate,

n n

1 P ’ ’ 1 P ’ ’

Hie= 3 (xpxup) and Gre= o 335, o) 59
i=1 i=1

The subscript e stands for that quantity from motion of entire halo,

H,.=x;xu;, and G,.=xp - uy. (60)

If all particles in N-body system reside in halos and there are no
out-of-halo particles, then G, = Gp and Hpg = H), in Eq. (56).
The virial quantity and angular momentum for entire system can
also be computed in physical coordinate and denoted as Gy and
Hpy (ust like G, and H), in comoving coordinate in Eq. (56)).
For halos, Gj, = aGp and Hj, = aHj, are the virial quantity and
angular momentum in physical coordinate (just like G, and Hy in
comoving coordinates in Eq. (59)).

Figure 3 presents the time variation of the specific virial quan-
tity G and angular momentum Hj, = |H P\ (in comoving coordi-
nate) from N-body simulation in Section 2. Both quantities exhibit a
power-law scaling with scale factor a, with an approximate scaling
of Gp (a) x al/? and H) (a) « a3/2. The same quantities G py and
H),y in physical coordinate are also presented in the same figure with
Gpy a3/% and |H,~,y‘ o a>/2. The halo averaged specific quantities
(Gp,) and (|Hy|) (average over all particles in all halos) in physical
coordinate are also presented with the scaling of (G) ~ a3 ~ ¢
and (Hp|) ~ a3/ ~ ¢ (green lines). This is consistent with the
momentum results for typical halos ("large" halos at its early stage
with fast mass accretion) that grow with a constant waiting time to
merge with single merger 7g (see Xu 2021a, Eq. (45)) (see Xu 2022,
Table 3). The total virial quantity and angular momentum in all halos
scale as My, (Gp)~ a® and My, (JH|) ~ a? with total halo mass
My, ~ a'/? (black lines).

The halo virial quantity G5 and angular momentum Hj, in physical
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Figure 4. The variation of halo virial quantity and angular momentum
(km/s - M pc/h) with halo size nj, at z=0. Halo momentum quantities
Gy, and |Hy, | are due to the particle radial and rotational motion in halos.
The rotational motion |Hy, | is dominant over the radial motion Gy, for rota-
tion supported (small) halos (|Hy, | ~ —=37Gp,a/? from (Xu 2021d)), while
they are comparable for large halos.

coordinate can be easily computed for every halo identified in the

simulation, which involves the dot and cross products between ulp and

le (Eq. (59)). Here G, and Hj, quantify particle motion in radial and
tangential directions, respectively. The halo-group averaged virial
quantity Gj, and angular momentum |Hj, | for all halos of the same
size np in the same halo group are presented in Fig. 4.

Both halo momentum quantities increase with halo size n, with
G, < 0. Particles in outer region of halo tend to fall inward due to
gravitational interaction. Rotational motion |Hj,| is dominant over
the radial motion G, for small halos, where |Hy| =~ —37rGha3/2
from a two-body collapse model (TBCM model, (Xu 2021d, see Eq.
(104))). The factor 37 comes from the critical value By, = 1/(37)
for the ratio of circular velocity to radial velocity. Two quantities are
comparable for large halos.

Halo virial quantity (radial momentum) and angular momentum
in physical coordinate (Fig. 4) have been modelled in our previous
work (Xu 2021f),

Gp~—fg (mp)a™"Hr and [Hp|~ fy (mp)a'*Hr, (61)

where two dimensionless functions fg (my) and fg (my,) are pre-
sented in (see Xu 2021f, Figs. 12 and 14).

Here with root mean square radius rg and virial dispersion 0'5
(Egs. (51) and (52)), two proportional coefficients 75 and 7§ can be
used to conveniently relate G, and |Hy,| with the typical halo size
rg and typical velocity 0'3 for each halo,

Gy = —T:a'vrga_l and [Hp|= U:O'vrgal/z, (62)
where both coefficients 73 and 7} can be functions of halo mass
mp. With Egs. (51) and (52), coefficients 7; and n§ are related to

the constant 85 and two functions fg (my,) and fg (mp,) (defined in
Egs. (53) and (54)) as,

7y = Bofc (mp) and 5y = B5 fu (mp) (63)

where 75 and 175 are dimensionless measures of halo radial (G,) and
angular momentum (|Hj,|).

Equations (61) and (62) are not empirical and can be interpreted
as follows: for halos with a given mass my,, the angular momentum
is expected to grow as Hy, o rg oc a (Egs. (51) and (62)), such that
the angular momentum of two-body halos can be exactly written as,

Hp| = (\/ga'val/z) (rg/a) a, (64)

where o, o a2 and rg o a in Egs. (51) and (52) for two-body
halos, and V3o a!/? is the particle velocity in transformed system
(Eq. (9)). Note that the factor V3 comes from the fact that 0'5 is one-
dimensional dispersion and rg /a is the comoving separation between
two particles. Note that = V3 for two-body halos by comparing
Eqgs. (64) and (62).

From a TBCM model, the dimensionless constant that quantifies
the competition between expanding background and gravity is de-
fined as (see Xu 2021d, Eq. (82)) with a critical value 1/(37),

Hy (r g / a) 1
e e PR
(\50'\) al /2) 3n

The virial quantity (radial momentum) and angular momentum of
two-body halos can be finally written as (using Eqgs. (64), (65) and
Eq. (104) from Xu (2021d)),

Bs = (65)

Hy,| = 3nHo (rg/a)* a = 3na'*Hr?
and (66)
Gp, = —Hy|a3?/(3r) = —a” " Hr,

such that fg (mj; — 0) = 37 and fg (my — 0) = 1 by comparing
with Eq. (61).

The expression for two-body halos in Eq. (64) can be generalized
to halos of any size in Eq. (62), while the coefficient % is expected
to decrease with halo mass. For large halos, particles in the same
spherical shell have similar speed on the order of ~ o, but along
different directions. The contribution from all particles in the same
spherical shell to halo angular momentum is partially cancelled out
due to particle velocity along random directions. This explains a
smaller 55 for larger halos in Fig. 6.

Finally, the halo angular momentum is usually described by a
dimensionless spin parameter (Efstathiou & Jones 1979)

_ H, ||,

67
Gmy, (67)

Ap
which represents the ratio between rotational energy and total energy
of that halo. Here E; = K} + @y, is the total halo specific energy.
The halo spin parameter characterizes the importance of rotational
motion to random motion. Next, halo spin A, can be related to 7 by
introducing parameter z and a halo effective exponent n§ defined as
(similar to n, for the entire N-body system in Eq. (23)),

*:ﬂ:Kh"'q)h

% 2Kh 30"2,
n = — =

d ng= =—yy. 68
Zs - p and s =5 T o, Vv (68)
Clearly, z; and nj are related by
« 3 3
g = 5 + E (69)

We compute the mean and standard deviation of two halo param-
eters for groups of halos of the same mass my, (or equivalently same
np, the number of particles in a halo). Figure 5 plots the variation of
mean and the standard deviation of n§ and zj; from a N-body simula-
tion at z=0. The standard deviation of n} and z decreases with halo
size np because of short lifetime and synchronization of large halos.

Vol. 000, 1-15 (2022)
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Figure 5. The variation of mean and standard deviation of halo parameters
ng and zy with halo size n,, from N-body simulation at z=0. The standard
deviation of n§ and zj for halo groups decreases with the halo size because
of short lifetime and synchronization of large halos. The halo ratio parameter
z5 ~ —0.81 and the halo potential exponent n§ ~ —1.3 # —1 for large halos
due to halo mass accretion and halo surface energy (see Xu 2021b, Eq. (96)).

The halo ratio parameter z; ~ —0.81, while halo potential exponent
~ —1.3 # —1 for large halos (see Xu 2021b, Eq. (96)), which
agrees with the effective potential exponent n, for entire system in
Fig. 1b when dynamics in halos becomes dominant.
With Egs. (61) and (68), the halo spin parameter A, for a given
halo size is finally written as

Ap = a'Painiizil = a' Pl Bz fu (mp)

vy 2 (70)
a2 i (my) | 222 L
C

With constants @y, 8%, and z§ (in Figs. 2 and 5) are all relatively
independent of halo mass my,, the mass dependence of spin parameter
Ap mostly comes from function fg (my) or 5. It can be shown that
halo spin parameter A, decreases with halo mass in 6, which is

consistent with 775 in Fig. 6 and fiy (my,) (see Xu 2021f, Fig. 14).
For small halos with extremely slow mass accretion (or both my,
and fp (my,) are independent of time), halo spin A, increases as o
a'/2 . This result for halo spin parameter agrees with other simulations
(Hetznecker & Burkert 2006). For large halos with extremely fast
mass accretion, the spin parameter A, is relatively a constant with
~ 0.031 (also see Xu 2022e, Eq. (119) and Fig. 14). This is

because fg (mp,) « mzl/S for large halos with halo mass mj, o a>/2.
The spin parameter 4, for two-body halos can be easily obtained

by a two-body collapse model (TBCM), where
V2 (mymp)3/?

G (my+my)

_|H | |Eg)?
)=

71
2 (my +my)3 an

with equations for Hy, E (see Xu 2021d, Egs. (100), (94), (24)) ,

2m1m2V%
ES = —m exp (HOS) 5 (72)
1 2
dmimov;r, H, G
|H,| = L‘; exp (__OS) and v% - M (73)
(my +mj) 2 8r;
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Figure 6. The variation of mean halo parameters 773, 75, and halo spin
parameter A, with halo size np (mp =2.27 x 10" Mg/ h) from a N-body
simulation at z=0. Parameters n; > 7 for small halos that are mostly
rotation supported, while 775 < 7 for large halos. The spin parameter A,
approaches 0.03~0.04 for large halos and 0.3 for small halos.

Type of halos Two-body Large halos Large halos
halos (NFW) (Isothermal)

Yo (Eq.(49)) 1/4 0.936 1

v (Eq.(48)) 12 0.567 V3/3

7v (Eq.(52)) 1.0 13 1.5

Ac 1872 1872 1872

a: (Eq.(54)) 1/24 0.230 V3/6

Bi (Eq.(54)) V3/(37) 0.095 V2/3/(37)

n’ (Eq.(68)) -1.0 -13 15

7% (Eq.(68)) -1.5 -0.81 0.5

nt (Eq.(63)) V3 0.151 v2/3/(37)

75 (Eq.(63)) V3/(37) 0.103 v2/3/(37)

fu (mp,) (Eq.(63) 3n 159 1

fo (mp) (Eq.(63)) 1 1.08 1

A, (Eq.(70)) \V2/16 0.031 1/(187)

Table 3. Relevant parameters for halo energy, momentum and spin from
theory and simulations

The spin parameter 1, = V2/16 ~ 0.0884 can be obtained from
Eq. (71) for two-body halos with equal masses m| = my, i.e. most
two-body halos (the mode of probability distribution of A, of all
two-body halos) should have a spin parameter 4, ~ 0.09 that is
much larger than 1, ~ 0.031 for large halos.

Figure 6 plots the variation of mean halo parameters 7§ and 7; in
Eq. (62) and the halo spin parameter 4, (Eq. (70)) with halo size
np from a N-body simulation at z=0. Parameter ny > 7 for small
halos that are mostly rotation supported and § < 7 for large halos.
Especially for halo spin parameter, it is demonstrated that 1, ~ 0.28
for small halos (mean A, for all two-body halos), while 1, ~ 0.03
for large halos that can be directly related to the critical value Sy (Eq.
(70)). With vy, vg, Yo and A, determined, other relevant parameters
can be easily calculated. Table 3 summarizes all relevant parameters
for halo energy, momentum, and spin parameter from theory and
simulation for both small and large halos.
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5 INTEGRAL CONSTANTS OF MOTION IN DARK
MATTER FLOW

The virial quantity and angular momentum defined in Egs. (25)
and (31) are intimately related to the integral constants of motion
for self-gravitating collisionless dark matter flow. The evolution of
virial quantity and angular momentum are modelled in this section
on large and halo scales (Egs. (98), (99), and (107)).

5.1 Integral constants of motion on large scale

Let’s first define a series of constants [, for (m-2)th moment of
velocity correlation function

I, = / <u ) u/> rm—Zdr3 — / R, (r) rm_2dr3

o0 74)
= / 4Ry (r) r™dr,
0

where Ry (r) = <u . u'> is the total velocity correlation for pair of

particles at locations x and x with a distance r = [r| = ‘x’ - x) and

velocity u and u (see Xu 2022f, Fig. 1 and Eq. (16)) or (see Xu
2022¢g, Eq. (A8)).

The second moment is 7, (Saffman’s integral) (Saffman & Taylor
1958) and the fourth moment is /4 (Loitsyansky’s integral) (Loitsyan-
sky 1939), both of which are relevant to the dynamics of turbulence
on large scale. In dark matter flow, the energy spectrum is related to
velocity correlation (Xu 2022f, see Eq. (25)),

1 (e8]
E, (k)= p ‘/0 Ry (r) krsin (kr) dr. (75)
The Taylor expansion of term sin (kr) leads to the mth order constant
I, that is essentially the derivatives of the spectrum E,, (k) around
wavenumber k = 0 (the long wavelength limit on large scale),

( ])1+m/2 OME,
m kM

Im = o« a, (76)

where the model of energy spectrum E,, (k) on large scale has been
provided by (see Xu 2022f, Eq. (129)). In fact, constants [, are
dependent on the scale factor a since energy and momentum increase
with time in self-gravitation collisionless flow (see Figs. la and
3), while they are time-independent in forced stationary turbulence.
Nonetheless, constants I, reflect important dynamic properties on
the large scale of SG-CFD. The physical significance of integral
constant I, can be related to the linear momentum of entire system.

For homogeneous velocity field with translational symmetry, the

integral /V <u . u'> dx3 is independent of X such that

/<u-u> r _\/11—1>an// u- u dx3dx

16}

Vlinm‘l/<('/v udx3)2>: 1§1mv<(‘1//vudx3)2>,

where (e) represents the ensemble average and V is the volume of an
enclosed system. With V — oo, effect of surface can be negligible
and velocity field can be treated as a homogeneous field.

If the system starts with a zero linear momentum that is conserved
with time, i.e. fv udx? = 0, the integral constants /5 = 0 is always

an

hm—<//u udxdx? >— hm—</udx /udx >
VooV VooV

true. This leads to a k* velocity spectrum on large scale if I4 # 0
(Eq. (76)), which is in alignment with the general argument about the
influence of short scale gravitational interactions on large scales. The
density power spectrum on scales much larger than the mean inter-
particle spacing approaches a power-law Ps (k) ~ k™ or Es (k) ~
knt2 (Baugh & Efstathiou 1994) (or equivalently E,, (k) ~ k" with
6 ~ V-uonlarge scale ), where n = 4 is the minimal large-scale power
expected for discrete stochastic system (Peebles 1980). Models for
density and velocity correlations on large scale can be found in our
previous work (see Xu 2022f, Section 5.1).

The physical significance of integral constant 4 is a little more
complicated that can be briefly outlined here. Let’s define the specific
virial quantity G, specific angular momentum H, momentum tensor
M, and inertial tensor I for an enclosed system with a volume V, where
u is the peculiar velocity field and x is the comoving coordinates from
center of mass,

1 1
G:—/x-udx3, H:—/ xxudx3,
Vv Vv

1 1
M:—/X@udx3, I:—/X®de3.
Vv Vv

Here G and H are defined based on a continuum representation of
velocity and density fields that is equivalent to the same quantities
defined based on particle representation in N-body system (Eq. (56)),
i.e. G = Gp and H = H),. For nonzero angular momentum H # 0,
there exist nonzero off-diagonal terms in momentum tensor M that
comes from H, while the virial quantity G is simply the trace of M.
The integral constant /4 can be written as (similar to Eq. (74)),

I4=/<u~u'>r2dr3
‘}TMV/ / <u u (x -x) >dx3dx (79)
:Vh_r)nw‘—//‘/ u-u (-2x- x)>dx3dx

where we use the fact linear momentum /V udx’ = fV wdx3 =
that requires

/ / <u . ulx/2> dx3dx’3 = / / <ll . ll/X2> dXSdX/3
VvV JV vV JV
= </ uxdx’ / u/dx/3> =0.
\'4 \4

Note that Eq. (79) is only valid for an isolate enclosed system and
not for system with periodic boundary. Extra care is needed for system
with periodic boundary. To further reveal the physical significance
of 14, let’s write two identities. The first identity is

(xxu).(x'xu’)=(x.x')(wu')—(x-u’)-(x'u). 81)

This can be easily proved using the notation of Einstein summation,

(78)

(80)

ror

;o
(xxXu)- (x Xu ) = XiUjE kX pUg € pak

’ ’
= xjujx pitg (6ipdq — 6igdjp)

’rr ror (82)
= XU XU G = XU X U
= (xex) (uew) = (o) (¥ ).
Using the chain rule of differentiation, the second identity is,
(x . x') (u . u/) + (x . u’) . (x, -u) =xu. (Sikxj+ 6 jkxi) ug
Joi J (83)

i ’ ror

=xju; (x,'xj)’k U =X u (xixjuk)’k X jUXX U -
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Adding the two identities in Egs. (82) and (83) leads to
(xxu)-(xlxul) =2(X'X’) (u~u/)

. . (84)
—xjui (x,-Xjuk)’k +xjuixl-x]~uk’k.
Integrating both sides of Eq. (84) with /V fV () dx3ax’® /VZ and
taking average,

’

1 s g1
|H|2:H-H:2T—V/x]uidx3~‘—//v(xix1')’kukdx3

\4

1 C 1/ 3
= 2T —— xX.u.dx’ — XiXju dx
v Ji \% V( Lad] k),k
1
1 31 2 (85)
’ ’ /3 3
+V[/xjuidx V‘/‘;xixjuk’kdx
3 4

1
=2T-M: —/ (xix]-uk) kdX3+(M:I)le k>
Vv ’ ’

where term 1 is the contraction of the momentum tensor M,

T:%/V/v(x-x/)(u'u/)dx3dx’3=M:M, (86)

The mean divergence ity  is defined as,

./V xixjuk,kdx3

/V XiX; dx3 '
The second term in Eq. (85) is the integral of a divergence term.
Using the divergence theorem, this term can be transformed into the
integral of a flux on the surface enclosing the volume V. The third
term is the momentum tensor, and the fourth term is the inertial
tensor weighted by velocity divergence.

Equation (85) is formulated in a general setting that it can be
applied to both isolate closed volume (halos) and periodic N-body
system. From Eq. (79) , the physical meaning of integral constant /4
for an isolate enclosed system can be related to scalar quantity 7" as

Iy=-2 Vlim «THv). (83)

1
Uk = gtrace ( 37

For incompressible flow with uy ; = 0 everywhere (term 4 in Eq.
(85) vanishes), Eq. (85) reduces to the usual Landau-Loitsyansky
equation (Landau & Lifschitz 1959) for a closed volume with no
surface flux contribution (term 2 in Eq. (85) should vanish), i.e.

<|H|2> =2(1) and Iy=- lim (<|H|2> v) (89)

from Eq. (88), where the integral constant /4 is related to the variance
(fluctuation) of specific angular momentum H of entire system. For
incompressible turbulence, the conservation of angular momentum
leads to a constant Loitsyansky integral /4 such that the relation
u%l? = const can be applied to Eq. (1) for dynamics on large scale.

It is entirely different in self-gravitating collisionless dark matter
flow (SG-CFD). The irrotational nature and nonzero velocity diver-
gence on large scale must be considered, which is different from
incompressible flow (Xu 2022f,g). First, applying the divergence
theorem leads to fv (x,-xjuk)’k dV = 0, i.e. there is no net flow in
or out of any enclosed system on large scale. Second, a relatively
uniform divergence field can be assumed as uj j (X) = ify i because
the density field 6 o V - u is relatively uniform on the large scale.
Now Eq. (85) can be reduced to

1 AN |
|H|2=2T+(V/xjuidx3‘—//xixjdx3)ﬁk,k 90)
\%4 \%4
=2T+(Mil)ﬁk,k.
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On the large scale, the off-diagonal terms in momentum tensor
M should be negligible (the angular momentum is negligible on the
large scale) such that (Egs. (78) and (86)) we can write

arT ~ G? > [H?, 1)

where the coefficient a7 should be related to the type of gravitational
collapse on large scale. It can be easily confirmed that a7 = 3 for
structure collapsing into a point (u = —x everywhere), ayr = 2 for
structure collapsing into a filament (u = —[X},X»,0]), and a7 =1
for structure collapsing into a plane with u = —[x;, 0, 0].

Finally, different from hydrodynamic turbulence (Eq. (89)), for
dark matter flow in an enclosed system, integral constant /4 on large
scale is related to the virial quantity as (from Eqgs. (88) and (90)),

. 2 . 2
I =-21im ((T)V)=--= lim (<G >v)
V >0 arV

= Jim_ (M :Dig)V).

The integral constants of motion (/4 in Eq. (92)) can be applied
to develop the models for large scale radial and angular momentum
evolution. For a control volume (N-body simulation box) with a
typical length scale (or size) L and uniformly distributed mass, we
expect the inertia matrix and virial quantity to be

2
1 3 1L
1= v‘/vxixj-dx = 3 (E) 6ij
and 93)

1
G = v ‘/ijuidxaéij =M:9,

92)

where 0;; is a Kronecker delta. Substituting Eq. (93) into Eq. (92) for
integral constant I, leads to the virial quantity G that is dependent
on the mean divergence defined in Eq. (87),

ar o _
G=—L . 94
24 7 koK 94)
The average velocity divergence ity i can be related to the fluctuation

of overdensity ¢ and the density fluctuation o% on the scale of L/2

(see Xu 2022f, Eq. (119)),

(2 ) = lat £ @12 (%) = laHf (@R (L/2),  ©9)
V-u 2 2
bxn= ey (82) = o3 (r2), (96)

where f(Q;,) = 1 for matter dominant model with matter content
Qn =1.

The variance of density fluctuation (dispersion function) on a given
scale r is modelled previously (see Xu 2022h, Eq. (35))). On large
scale, 0'(25 is approximately modelled as,

2.2
2 apu rz

_ 97
2 (aHf (Qm))* r* ©n

0'(2S (r) ~

2

where u~ is one-dimensional velocity dispersion (u(z) is the velocity

dispersion at present epoch). The parameter a satisfies aq (u/ uo)2 =
0.45a (see Xu 2022f, Fig. 20) and rp ~ 23Mpc/h is a constant
comoving length sale that might be related to the size of sound
horizon. Finally, the specific virial quantity reads,

2
a
lim <G2> = Vll_r)noo (G}2 = ?Taouzrg,

V —>o00

[0%
(T) = ?Taouzrg. (98)

Here the standard deviation of G should vanish with V — oo and
Egs. (94), (95), and (97) are used.
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Figure 7. The time variation of specific virial quantity G2, angular momen-
tum [H|?, and T in Eq. (85) (unit: (km/s - M pc/h)?) with scale factor a
from N-body simulation. As expected, G2 o« a and arT ~ G?* with ar ~ 2
in Eq. (91). The specific angular momentum |H| « a3/? « t <« G.

The variation of angular momentum on large scale for N-body
system can be similarly modelled,

<H2> = 0.002aqu*r2a>. (99)

Figure 7 plots the time variation of specific comoving virial quan-
tity (radial momentum) G2, angular momentum |H|2, and T from
N-body simulation in Section 2, where 2T =~ G? (Eq. (91)). In that
case, ar =~ 2 (collapse into filament is the dominant mode in large
scale N-body simulation), G? « a and |H|2 o« a>. The time varia-
tion of angular momentum |H|2 from Eq. (99) is also presented in
the same plot. Finally, all quantities on large scale can be related to
dispersion u? and comoving length scale r, (Eqgs. (98) and (99)).

5.2 Integral constants of motion on halo scale

On small (halo) scale, velocity field is of constant divergence (Xu
2022f,g). Equation (85) still can be applied to halos with an isother-
mal density profile, root mean square radius rg, specific angular
momentum H, and virial quantity G. The only differences from the
derivation on large scale in previous section 5.1 are the non-uniform
matter density on halo scale, constant velocity divergence, and non-
vanishing surface term (term 2 in Eq. (85)).

For halos with a coordinate x3 aligned with the axis of spin, the
momentum tensor reads (see Xu 2022e, Eq. (107))

G/3 -H|/2 0

1

M:—/x®uphdx3: H|/2 G/3 0 |, (100
Mh IV 0 0 G/3

such that

T=M:M=|1G?+ 1 Hp

N ) 2

and (101)

N G? 6
T =—"TFT=——"F75""7.
T  243H]? /G2

The diagonal terms in tensor M are related to halo virial quantity G

while the oftf-diagonal terms are related to halo angular momentum
|H|. Here a7 = 3 for non-rotating halos with radial flow only (H = 0).
The inertial tensor I of a spherical halo is

1 3_12
I=— iXippdx’ = =r50ij, 102
— ‘/“/xlx]ph X 3rg ij (102)

where Tg is the root mean square radius in Eq. (42). For halos with
a peculiar radial flow velocity u, = —Hr (H is Hubble parameter),
the velocity divergence is a constant with uy = —3H. Similarly, the
corresponding terms in Eq. (85) are

1

1
— X 3 _ - e 3
— (x,x])’k urppdx — /V (x,uj +x]ul)phdx

(103)
T 2
=M+M =§G(5[j,
and
L s dx3 = —Hr2s::
XiXjug gphdXx” = —Hrgéij. (104)
mp Jv
Therefore, we should have
1 1
— [ V- (x®x®u)ppdx’ = — (xixjug) kphdx3
mp Jv mp Jv ’
) (105)
2
= (gG—H?’g) 0ij-

With Egs. (101), (102), and (105), Eq. (85) is automatically satis-
fied for isothermal halos. At the same time with peculiar radial flow
u, = —Hr, we have

1 5
— | V.(x®x®u)pydx’ = —5HI = - Hrké;;. (106)
mp Jy 3

Comparing Egs. (105) and (106) leads to an expression for isothermal
halo (also see Xu 2022e, Eq. (103)),

G=-Hrj. (107)

From Eq. (88), finally, the integral constant of motion /4 on halo scale
is related to both specific virial quantity and angular momentum

2
Iy =-V (§G2 + |H|2), (108)

while /4 is only related to the virial quantity on large scale (Eq. (92)).

6 CONCLUSIONS

The energy and momentum evolution are studied on both large and
halo scales for self-gravitating collisionless dark matter flow (SG-
CFD) in expanding background. The gravitational interaction is as-
sumed to have an arbitrary potential exponent 7. Instead of working
with the original comoving system, the temporal evolution is for-
mulated in a transformed system with a static background and fixed
damping for convenience (Egs. (15), (28) and (32)). The equivalence
between transformed and original comoving systems is established.

Regardless of the potential exponent n, the energy equation in
transformed system has a simple form that is identical with the en-
ergy evolution of a damped harmonic oscillator (Eq. (15)). To solve
the energy equation, additional insights are required to complete
the energy equation. This can be supplemented by an elementary
problem of gravitational collapse, i.e. a two-body collapse (TBCM)
model. The TBCM model predicts an exponential evolution of system
energy in transformed system, or equivalently a power-law evolution
in a comoving system. Therefore, the energy equation of SG-CFD
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admits a power-law evolution of kinetic and potential energy as ex-
act steady-state solutions that are consistent with N-body simulation
(Egs. (34)-(36) and Fig. 1a).

This suggests an effective potential exponent n, (Egs. (23) and
(38)) to incorporate the dynamic effects of mass cascade, where
ne can be different from the usual gravitational potential of n =-1.
Simulation suggests n, = —1.38 (Fig. 1b), while the energy evolution
for typical halos (grow with a constant waiting time) suggests n, =
—10/7. With n, = —10/7 (also predicted by TBCM model (see Xu
2021d, Eq. (83)), the kinetic and potential energy of entire N-body
system increase linearly with time. A constant energy production rate
&y, can be introduced (Eq. (34)) that is consistent with the picture of
inverse energy cascade (Xu 2021f), where kinetic energy is injected
on the smallest scale at a constant rate and transferred to larger scales.
Unlike the freely decaying turbulence, kinetic energy in SG-CFD
constantly grows due to continuous virilization in halos.

For any halo with a given mass my, identified in simulation, the
halo virial kinetic energy 0'3 and root mean square radius rg can
be unambiguously determined (Eq. (42)). Two constants o and S
are introduced for each halo to relate halo size rg, kinetic energy
0'3, and mass my, (Eq. (5§3)). The mean values of both constants for
all halos with same mass (i.e. in the same halo group) are relatively
independent of redshift and halo mass and estimated to be 85 ~ 0.09
and of =~ 0.29 (Eq. (54)). However, small halos tend to have a
greater standard deviation in both constants. Large halos tend to be
synchronized and generated at the same time with smaller dispersion
in halo properties (Fig. 2). Just like the exponent n, for entire system,
an effective potential exponent nj (or virial ratio y, = —nj) can be
introduced for each halo with n ~ —1.3 for large halos (Fig. 5).

The momentum evolution of N-body system is also formulated
(Egs. (26) and (32)). N-body simulation suggests a scaling of co-
moving virial quantity (radial momentum) G, o« a'/? and angular
momentum H, o a3/? (Fig. 3). The entire system can be divided
into a halo sub-system including all particles in all halos and an
out-of-halo sub-system including all particles not in any halos. The
momentum of entire halo sub-system can be decomposed into con-
tributions from motion of particles in halos and motion of halos (Eq.
(58)). The averaged specific virial quantity (G ) and angular mo-
mentum (|Hy,|) (in physical coordinate) for entire halo sub-system
has a scaling of o a3/? (Fig. 3).

Momentum in each halo can be also conveniently modeled in
terms of halo kinetic energy 0'3 and root mean square radius rg by
introducing two mass-dependent coefficients n; (myp,) and 7 (mp,)
(Eq. (62) and Fig. 6). The limiting values of 7§ and 7; for small
and large halos are also identified (Egs. (64)-(66)). The halo spin
parameter A, can be expressed in terms of parameters a7y, 775, and
potential exponent n§ (Eq. (70)), where A, decreases with halo mass.
For small halos with very slow mass accretion, 4, increases with
time o /2, while for large halos in their early stage with fast mass
accretion, 4, ~ 0.031 (Fig. 6 and Eq. (70)). All relevant parameters
for halo momentum, energy and spin parameter are summarized in
Table 3 with limiting values for small and large halos.

Finally, a series of integral constants of motion can be introduced
to describe the large-scale dynamics for SG-CFD. The mth order
constant /,, is essentially the integral of (m-2)th moments of veloc-
ity correlation function (Eq. (74)) and is related to the mth derivative
of energy spectrum at small k or long wavelength limit (Eq. (76)).
The comoving virial quantity G and angular momentum H of entire
N-body system (Eq. (78)) are intimately related to these integral con-
stants. Here I, is related to the fluctuation of linear momentum (Eq.
(77)) and should vanish due to the conservation of linear momentum.
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The constant Iy is related to the fluctuation of virial quantity (radial
momentum) of SG-CFD (Eq. (92)), where angular momentum is rel-
atively small on large scale, i.e. |H| < G. By contrast, I is related
to the angular momentum that is dominant in hydrodynamic turbu-
lence. The evolution of virial quantity G2 and angular momentum
|H|2 can be modelled on large scale and compared with simulation
(Egs. (98), (99) and Fig. 7). On halo scale, the constant I, is related
both G2 and |H|2, both of which are comparable (Eq. (108)).

DATA AVAILABILITY

Two datasets underlying this article, i.e. a halo-based and correlation-
based statistics of dark matter flow, are available on Zenodo (Xu
2022a,b), along with the accompanying presentation slides "A com-
parative study of dark matter flow & hydrodynamic turbulence and its
applications" (Xu 2022c). All data files are also available on GitHub
(Xu 20224d).
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