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Preface
Dark matter, if exists, accounts for five times as much as ordinary baryonic 
matter. Therefore, dark matter flow might possess the widest presence in 
our universe. The other form of flow, hydrodynamic turbulence in air and 
water, is without doubt the most familiar flow in our daily life. During the 
pandemic, we have found time to think about and put together a systematic 
comparison for the connections and differences between two types of flow, 
both of which are typical non-equilibrium systems. 

The goal of this presentation is to leverage this comparison for a better 
understanding of the nature of dark matter and its flow behavior on all 
scales. Science should be open. All comments are welcome.

Thank you!
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Data repository and relevant publications 
Structural (halo-based) approach: Statistics (correlation-based) approach:

0. Data https://dx.doi.org/10.5281/zenodo.6569898

1. The statistical theory of dark matter flow for velocity, density, 
and potential fields 
https://doi.org/10.48550/arXiv.2202.00910

2. The statistical theory of dark matter flow and high order 
kinematic and dynamic relations for velocity and density 
correlations https://doi.org/10.48550/arXiv.2202.02991

3. The scale and redshift variation of density and velocity 
distributions in dark matter flow and two-thirds law for 
pairwise velocity https://doi.org/10.48550/arXiv.2202.06515

4. Dark matter particle mass and properties from two-thirds law 
and energy cascade in dark matter flow 
https://doi.org/10.48550/arXiv.2202.07240

5. The origin of MOND acceleration and deep-MOND from 
acceleration fluctuation and energy cascade in dark matter 
flow https://doi.org/10.48550/arXiv.2203.05606

6. The baryonic-to-halo mass relation from mass and energy 
cascade in dark matter flow 
https://doi.org/10.48550/arXiv.2203.06899

0. Data https://dx.doi.org/10.5281/zenodo.6541230

1. Inverse mass cascade in dark matter flow and effects on halo mass 
functions https://doi.org/10.48550/arXiv.2109.09985

2. Inverse mass cascade in dark matter flow and effects on halo deformation, 
energy, size, and density profiles https://doi.org/10.48550/arXiv.2109.12244

3. Inverse energy cascade in self-gravitating collisionless dark matter flow and 
effects of halo shape https://doi.org/10.48550/arXiv.2110.13885

4. The mean flow, velocity dispersion, energy transfer and evolution of rotating 
and growing dark matter halos https://doi.org/10.48550/arXiv.2201.12665

5. Two-body collapse model for gravitational collapse of dark matter and 
generalized stable clustering hypothesis for pairwise velocity 
https://doi.org/10.48550/arXiv.2110.05784

6. Evolution of energy, momentum, and spin parameter in dark matter flow and 
integral constants of motion https://doi.org/10.48550/arXiv.2202.04054

7. The maximum entropy distributions of velocity, speed, and energy from 
statistical mechanics of dark matter flow 
https://doi.org/10.48550/arXiv.2110.03126

8. Halo mass functions from maximum entropy distributions in collisionless 
dark matter flow https://doi.org/10.48550/arXiv.2110.09676

https://dx.doi.org/10.5281/zenodo.6569898
https://doi.org/10.48550/arXiv.2202.00910
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https://doi.org/10.48550/arXiv.2110.05784
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Structural (halo-based) 
approach for dark matter flow
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Two-body collapse model 
(TBCM): an elementary step 
of mass cascade and GSCH 

for pairwise velocity
Xu Z., 2021, arXiv:2110.05784v1 [astro-ph.CO]
https://doi.org/10.48550/arXiv.2110.05784

https://doi.org/10.48550/arXiv.2110.05784
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Introduction: TBCM as an elementary step of 
inverse mass cascade

 Analytical tools are invaluable. 

 Solutions are extremely difficult to find due to 
the highly non-linear nature of collapse.

 Two examples: the spherical collapse model 
(SCM) and stable clustering hypothesis (SCH).

 For an infinitesimal interval, mass cascade 
should involve the merging of two and only two 
substructures.

 Two-body problem in static background is 
known: Kepler’s laws.

 Goal: solutions for two-body in expanding 
background and relations with SCM and SCH

Two-body 
collapse

Two-body collapse in expanding background is 
an elementary step of mass cascade. 

 Goal: Prove SCH and Generalized SCH 
for moments of pairwise velocity.
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Introduction: Damped harmonic oscillator as a 
fundamental model in dynamics

 Damped harmonic oscillator is a fundamental model in 
dynamics that is extremely insightful.

 There exist a critical damping cs. For c<cs, spring force is 
dominant (underdamped); For c>cs, damping is dominant 
(overdamped).

 Does two-body collapse model play a similar role as 
harmonic oscillator?

 Overdamped and underdamped in gravitational collapse?
 Insights into the energy/momentum evolution? 

2sc km=
Critical damping:

Energy 
evolution:

2 0dE c K
dt m

 + = 
 

( )
( )

22
1s

c m
k m

β = =

( ) ( ) 0c m k m+ + =r r r 

damping spring force

Competition

Define a 
critical ratio to 

quantify 
competition:

http://hyperphysics.phy-astr.gsu.edu/hbase/oscda.html

E: total energy (potential + kinetic)
K: kinetic energy
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Equations of motion in comoving and transformed 
systems

2
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= = =
x xv u

1 2i i
i i i

d da H a
dt dt
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x ru r v

2 2 3
0H H a=

23 2H H= −

( )2 8 3yH G aπ ρ=

Equations of motion in a comoving 
system with expanding background

Potential with an arbitrary 
exponent of n for particle-

particle interacting

Introduce a new 
transformed time scale s

 If p=-2, s is the time variable for 
integration in N-body simulation.

 Transformed system: fixed 
damping and no scale factor a; 

3 2p = − Matter dominant
Velocity in time scale s:

Peculiar velocity in comoving:

Equation of motion in a transformed system 
with fixed damping in static background
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Formulation of a TBCM model in transformed system

( )
0 2

1 1 12 2
n

n
H nG m

r −+ = ⋅
rx x
r

 

( )
0 1
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n
H nG m

r −+ = − ⋅
rx x
r

 

( )
( )

1 20
12 2 2

n
n

nG m mH
r −

+
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( )1 2 2= −r x x

TBCM solution depends on five parameters: 
exponent n, damping H0, mass m1+m2 , Initial 
position ri, Initial velocity vi; how to reduce #?Displacement 

vector r:

Reduce to Eq. 
of motion for 

vector r:

( )
( )

( ) ( )
2

1 20
01 3 exp

2 2 2
n i i

n

nG m m rvHr r H s
rr −

+
+ − = − 

( )2 2 µ= − −x r
1 µ=v r1 µ=x r

( )2 2 µ= − −v r
2

1 2

2m
m m

µ =
+

Reduce to equations of motion for two-body:

Compute particle 
position and velocity:

Equation of motion for radius function r (magnitude 
of r): (similar to spherical collapse model)

Expanding 
background or 

damping
Gravitational 
interaction

Angular 
momentum

Competition between three terms 
determines the collapse regimes 

Similar equation as 
damped oscillator 

in dynamics

damped 
oscillator 

Two-body 
collapse

( ) 0k mγ+ + =r r r 

Standard damped 
oscillator Eq.: 
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Formulation of a TBCM model in transformed system
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Equation of motion for r: 

( )sω ω≡Frequency ω:

Frequency 
function F(s):

Introduce frequency function F(s):

Equation for frequency function:

( ) ( )
1 2

1 2 02exp
2 4

n i
m s

i

r H snF s
v n

γ − +   − = − ⋅   +  

( ) ( )2 2 01 2 2exp
2 2 2 2

n
m s

s

H sn ns
s n n

ω γ
λ

++ − = ⋅ − + stable orbital 
speed

(virial theorem):

Ratio γs reflects competition: gravity vs. angular 
momentum; System in initial virial equilibrium if γs =1;

( ) ( )1 2 0exp
2

n
m s i

H sr s r
n

γ − +  = − + 

term 2 (gravitational force) = term 3 (angular 
momentum) leads to mean solutions:
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Examples of numerical solutions

Trajectory of the motion of 
displacement vector r

Time evolution of system kinetic, 
potential and total energy

Kinetic and potential 
energy Oscillating; 
Total energy is smooth

Polar coordinate: 
Radius function r(s)
Frequency ω(s)

( ) ( )( )cosx r s s sω=
( ) ( )( )siny r s s sω=

Initial 
position
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Two-body collapse: free fall or equilibrium?

Depending on the competition between three 
forces, two types of collapse can be identified. 

Variation of radius r with time s exbibits 
two different collapse. Equilibrium 

collapse involves a mean and fluctuation.
0

4
i

s
i

H r
v

λ =
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TBCM model in the simplest form and perturbative 
solutions for equilibrium collapse
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( ) ( ) ( )( ) ( )m a m m aF s F s F s F s F xω= =

Decompose frequency function F(s) into the mean 
and amplitude and substitute to equation for F(s):

mean amplitude

The simplest form of TBCM for amplitude function Fa: 

Solution now only depends on three parameters: 
 ratio γs reflects competition: gravity vs. angular momentum
 ratio βs reflects competition: damping (or expanding 

background) vs. angular momentum
 exponent n

( )
1 2

1 22
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nG r m mv
r −

− +
=

( )mx s sω=

( ) ( )
1 2

1 2 02exp
2 4
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( ) ( )2 2 02 2 2exp
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ω γ
β

++ − = ⋅ − + 

Stable orbital speed:

Mean solutions:

For long-range interaction n>-2, the 
competition between terms 2 and 3 

leads to an oscillatory solution 
vibrating around the mean value Fa=1 
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Classifying two-body collapse

Freefall collapse : 
 Short-range interaction with exponent n<-2
 γs >>1 : gravity is dominant over angular momentum
 βs >>1 : damping is dominant
 γs <<1 : There is a turnaround before free fall

Equilibrium collapse :
 γs ≈1 and βs <<1 : stable orbit (angular momentum 

comparable with gravity) with week damping
 βs =0 : Standard two-body problem in static background

0s i iH r vβ =( )2
s ri iv vγ =

γs>>1
or 

βs>>1

γs<<1
or 

βs>>1

γs ≈1 
and 

βs<<1

Freefall 
collapse

Freefall 
collapse

Equilibrium 
collapseEquilibrium collapse has an oscillatory motion with a 

much longer time to fully collapse than free fall collapse! 
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Solutions of free fall collapse and free fall time

( )2
s ri iv vγ = →∞

( )

3 2

1 2

i
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rs
G m m
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=
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0iv =
Zero initial speed (no angular momentum):

Free fall time 
in static 

background:
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4
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For small λsi
(weak damping):

Competition between 
damping and gravity

For large λsi
(strong damping):

( )
3 2

1
0 1 2

24 2
n n

si i
c c

n

rs s
H nG m m
λ − −

≈ = =
− +

 Due to damping, free fall time of two-body in 
expanding background is greater than the free fall 
time of same two-body in static background. 

The earlier collapse starts (the smaller ti), the 
greater the free fall time (H is decreasing)
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Perturbative solutions for equilibrium collapse
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Frequency function: mean fluctuation

Radius function:

Angle function:

Radial velocity:

Specific kinetic energy:

Specific potential energy:

Specific total energy (fluctuation cancelled):
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H z z

Radial 
momentum:

Angular 
momentum:

All have exponential evolution in time scale s!
Mean energy satisfying virial theorem:

Solve:



Critical values of βs (analogue of critical damping) 
and critical halo density 

( )3 2
1 2s nβ = +
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Also see angle of incidence

( )
( )

( )0
3 2exp 1 sin

2 2
s

i s
H sr s r

n n
β θ

   = − +  +  +  

Equilibrium collapse :
 γs ≈1 and βs <<1 : stable orbit with week damping
 βs =0: Standard two-body problem in static background
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Weak damping
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angular momentum 
comparable with gravity

Critical halo density:
Angle function:
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2

s

n
β

≤
+

First critical value for existence of equilibrium 
collapse with oscillator solution:

Second critical value for equilibrium collapse 
with oscillator solution:
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1, 10 7, 8 5... 2n = − − − −
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Radius function:

139
ti 2ti 3ti
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Evolution in comoving system for two-body angular 
velocity, spin parameter and angle of incidence

Evolution in transformed system with time 
scale s can be equivalently transformed 
back to original comoving system: 

( )0 ln is t t t=
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H

Exponential evolution 
in time scale s

Power-law 
evolution in time t
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Two-body kinetic energy:
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Two-body spin parameter:

Kinetic energy in terms of angular velocity:

Angular velocity in co-moving system 
dependent on halo size rm , larger halo has 

smaller angular velocity
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Evolution of two-body angle of incidence:
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Kinetic energy for large halos with an infinitesimal lifetime:
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Prove stable clustering hypothesis (SCH) and 
derive generalized SCH

( ) ( )'2L L Lu r u u∆ = −

2 2 cosL s i su Har uβ θ∆ = − +

( )1 2 12 2 2s
L

G s
a u r

r r
⋅

∆ = = =
r v



2 2 cosL s i su Har uβ θ∆ = − +

1 2
02 2Lu Har a H r−∆ = − = −

( )2 2 2 20 4 cos 0L s i su r uβ θ∆ → = >

( ) ( ) ( )2 1 2 22 1 2 1 2m m m
L L L Lu m u u m u Har+∆ = + ∆ ∆ = + ∆ −

Peculiar pairwise velocity:

See two-body virial 
quantity for radial flow

Stable clustering 
hypothesis (SCH) 

proved

Generalized stable clustering 
hypothesis (GSCH)

Non-zero pairwise 
dispersion, a feature 
of collisionless flow
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Connections with spherical collapse model (SCM)
2

2 2

d R GM
dt R

= −

( )

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s s r
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 Spherical collapse model (SCM) solves the 
motion of spherical shells. Many important 
insights can be obtained from SCM.

 There are fundamental connections between 
two-body collapse model (TBCM) and SCM.

 The original SCM describe exactly a two-body 
collapse with one-dimensional radial motion 
only and zero angular momentum. 

 TBCM model describes a spherical collapse 
model with a non-zero angular momentum and 
non-radial orbits

 Both models predict a critical halo density ratio 
Δ=18π2, while TBCM can predict freefall and 
equilibrium collapse and SCH and GSCH.

Equation of motion 
for SCM in physical 

coordinate

Equation of motion 
for SCM in 

comoving system

Equation of motion for two-body 
collapse model (TBCM)

Term 1: due to the absence of 
a uniform background density

Term 2: angular 
momentum
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Summary and keywords

 Formulate two-body collapse model (TBCM) that plays the same role as harmonic 
oscillator for fundamental understanding of gravitational collapse

 Propose the competition between gravity, expanding background, and angular 
momentum and classify collapse into: 1) freefall collapse for weak angular momentum; 
and 2) equilibrium collapse for weak damping

 Identify two critical values, βs1=1 for free fall collapse and βs2=1/(3π) for equilibrium 
collapse, that quantifies the competition between damping and gravity

 Predict a critical halo density ratio of 18π2, same as the spherical collapse model.
 Prove the stable clustering hypothesis (SCH), i.e. mean pairwise velocity proportional to 

the separation r.
 Develop a generalized stable clustering hypothesis (GSCH) for higher order moments of 

pairwise velocity.

Harmonic oscillator Transformed system Free fall time
Critical damping Two-body collapse Expanding background 
Stable clustering Generalized SCH Spherical collapse model

Equilibrium collapse Freefall collapse Critical halo density
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